文档库 最新最全的文档下载
当前位置:文档库 › 2016年辽工大数值分析试题(附答案)

2016年辽工大数值分析试题(附答案)

2016年辽工大数值分析试题(附答案)

研究生 学院 2015-2016 学年 第一学期数值分析课程考试试卷

模拟试题 一

二 三 四 五 六 七 总分

一、填空(每小题3分,共30分) 注意:答案请填在横杠上,写在它处者不得分

1211.(2016)||||_____,||||_____,||||_____.

2012.620,||||_____,||||_____,||||_____.1623.44.89992016,44.8999______204,()_____.165.F x x x A A A A A Cond A ∞∞∞ ===????====??????

??==????

计算向量的设则已知是的近似数有位有效数字.

.设则用二分法求3201620152014012017201620150[0,1]2016ln 20162016_____.

7.201620152014,[2,2,...,2]_____.

8.(2014,2015),(2015,2016),(2016,2017)_x x x x y x x x f +-==-=++=解方程在区间的一个实根,则进行两步后根的区间____.

6.非线性方程的牛顿迭代格式为已知则差商拟合三点的水平直线方程为12016

20162015___.

9.5Simpson _____.

10.()____,________.x n n e dx L x a ===?用个节点的复化公式计算积分拉盖尔多项式是在区间上带权____正交多项式系,其最高项 参考答案:

1.6;41;9

2.9;221;9

3.5

4.3.5

5.[0.75,1]

6.1ln 20162016201612016k k k k k

x x x x x +--=-- 7.0

8.y=2016

9.2.171410

10.();[0,);;(1)n n x x x n n d x e e e x --∞-

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析-华中科技大学研究生招生信息网

华中科技大学博士研究生入学考试《数值分析》考试大纲 第一部分考试说明 一、考试性质 数值分析考试科目是为招收我校动力机械及工程专业博士研究生而设置的。它的评价标准是高等学校动力机械及工程专业或相近专业优秀硕士毕业生能达到的水平,以保证被录取者具有较好的数值分析理论与应用基础。 二、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; (三) 各部分内容的考查比例(满分为100分) 误差分析约10% 插值法, 函数逼近与计算约30% 数值积分与数值微分约20% 常微分方程数值解法, 方程求根约20% 解线性方程组的直接方法, 解线性方程组的迭代法约20% (四) 题型比例 概念题约10% 证明题约10% 计算题约80% 第二部分考查要点 一、误差分析 1.误差来源 2.误差的基本概念 3.误差分析的若干原则 二、插值法 1. 拉格朗日插值 2. 均差与牛顿插值公式 3. 差分及其性质 4.分段线性插值公式 5.分段三次埃米尔特插值 6.三次样条插值 三、函数逼近与计算 1. 最佳一致逼近多项式 2. 切比雪夫多项式 3. 最佳平方逼近

4. 正交多项式 5. 曲线拟合的最小二乘法 6. 离散富氏变换及其快速算法 四、数值积分与数值微分 1. 牛顿-柯特斯求积公式 2. 龙贝格求积算法 3. 高斯求积公式 4. 数值微分 五、常微分方程数值解法 1. 尤拉方法 2. 龙格-库塔方法 3. 单步法的收敛性和稳步性 4. 线性多步法 5. 方程组与高阶方程的情形 6. 边值问题的数值解法 六、方程求根 1. 牛顿法 2. 弦截法与抛物线法 3. 代数方程求根 七、解线性方程组的直接方法 1. 高斯消去法 2.高斯主元素 3.追赶法 4.向量和矩阵的范数 5.误差分析 八、解线性方程组的迭代法 1. 雅可比迭代法与高斯-塞德尔迭代法 2. 迭代法的收敛性 3. 解线性方程组的松弛迭代法 第三部分考试样题(略)

计算数学排名

070102 计算数学 计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性差分析等理论问题。我们知道五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。 在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。在计算方法中,数值逼近本方法。数值逼近也叫近似代替,就是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表值逼近的基本方法是插值法。 初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。在遇到求微分和积分的时候,的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题,目前常用的是有限元素法等。有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程求出差分方程的解法作为求偏微分方程的近似解。有限元素法是近代才发展起来的,它是以变分原理和剖分的方法。在解决椭圆形方程边值问题上得到了广泛的应用。目前,有许多人正在研究用有限元素法来解双曲方程。计算数学的内容十分丰富,它在科学技术中正发挥着越来越大的作用。 排名学校名称等级 1 北京大学A+ 2 浙江大学 A+ 3 吉林大学A+ 4 大连理工大学A+ 5 西安交通大学A 北京大学:http:https://www.wendangku.net/doc/0f3590722.html,/NewsSpecialDetailsInfo.aspx?SID=4 浙江大学:http:https://www.wendangku.net/doc/0f3590722.html,/NewsSpecialDetailsInfo.aspx?SID=21847 吉林大学:http:https://www.wendangku.net/doc/0f3590722.html,/NewsSpecialDetailsInfo.aspx?SID=5506 大连理工大学:http:https://www.wendangku.net/doc/0f3590722.html,/NewsSpecialDetailsInfo.aspx?SID=4388 西安交通大学:http:https://www.wendangku.net/doc/0f3590722.html,/NewsSpecialDetailsInfo.aspx?SID=18285

数值分析试卷及答案

二 1 求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。 3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,, 4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2)

(3)由事后误差估计式,右端为 而左端 这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵 ,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 , 故高斯-赛德尔法收敛的充要条件是。 9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。证明由于是雅可比法的迭代矩阵,故 又,故, 即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。 10设A为对称正定矩阵,考虑迭代格式 求证:(1)对任意初始向量,收敛; (2)收敛到的解。 证明(1)所给格式可化为 这里存在是因为,由A对称正定,,故也对称正定。 设迭代矩阵的特征值为,为相应的特征向量,则与做内积,有 因正定,故,从而,格式收敛。

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析

华中科技大学 数值分析 姓名祝于高 学号T201389927 班级研究生院(717所) 2014年4月25日

实验4.1 实验目的:复化求积公式计算定积分 试验题目:数值计算下列各式右端定积分的近似值。 (1)3 22 1 ln 2ln 321 dx x -=--?; (2)12 1 41 dx x π=+?; (3) 10 2 3ln 3x dx =?; (4)2 21 x e xe dx =?; 实验要求: (1)若用复化梯形公式、复化Simpson 公式和复化Gauss-Legendre I 型公 式做计算,要求绝对误差限为71 102 ε-=?,分别利用他们的余项对每种算法做出 步长的事前估计。 (2)分别用复化梯形公式、复化Simpson 公式和复化Gauss-Legendre I 型公式做计算。 (3)将计算结果与精确解做比较,并比较各种算法的计算量。

实验内容: 1.公式介绍 (1)复化梯形公式: []110(x )(x )2n n k k k h T f f -+==+∑=1 1(a)2(x )(b)2n k k h f f f -=??++???? ∑; 余项:2'' (f)()12 n b a R h f η-=- ; (2)复化Simpson 公式: 1 1210 (x )4(x )(x )6n n k k k k h S f f f -++=??=++??∑ =11 1201(a)4(x )2(x )(b)6n n k k k k h f f f f --+==??+++???? ∑∑; 余项:4(4) (f)()()1802 n b a h R f η-=- ; (3)复化Gauss-Legendre I 型公式: 112120(x)(x (x 2n b k k a k h f dx f f -++=?? ≈++???? ∑? ; 余项:4 )4(4320 )())(h f b a f R n η-= (; 该余项是这样分析的: 由Gauss 求积公式)()()(0 k b a n k k x f A dx x f x ?∑=≈ρ得: 余项dx x x n f x f A dx x f x f b a n n b a n k k k )()()!22()()()()()(R 12)22(0 G ?? ∑++=+=-=ωρηρ 由于复化G-L 求积公式在每个子区间],[1+k k x x 上用2点G-L 求积公式: )]3 1 22()3122([2)(111111 k k k k k k k k x x k k x x x x f x x x x f x x dx x f k k -+++--+-≈ +++++? + 其余项为:dx x x x x f f R k k x x G 2 1 20)4()()(!4)()(1--=?+η,其中kh a x k +=,h k a x k )1(1++=+。

河北工业大学数量经济学

河北工业大学 数量经济学 学科专业攻读硕士学位研究生培养方案 一、 培养目标 为适应我国社会主义现代化建设的需要,本专业硕士生培养面向现代化、面向世界、面向未来,培养德、智、体全面发展的具有创新精神和一定创新能力的数量经济学专业高层次专门人才。毕业生应达到的要求是: (一)努力学习马克思列宁主义、毛泽东思想、邓小平理论和“三个代表”重要思想,热爱祖国,遵纪守法,具有良好的思想品德和科学素养。 (二)掌握本学科坚实的基础理论、系统的专门知识以及本学科的现代化实验方法和技能,现代实验方法及技能,熟悉所从事研究领域的发展动向,具有从事科学研究工作或独立担负专门技术工作的能力。较熟练地掌握一门外国语。 (三)具有健康的身体和良好的心理素质。 二、 学制与学习年限 数量经济学专业硕士生的学制为二年半,其中课程学习时间为一年,毕业论文(即学位论文)工作时间为一年半。硕士生在校学习年限(含休学、延期)最长为四年。硕士生已完成规定课程学习和毕业论文工作确属成绩优异者,可以提出提前毕业申请,经研究生学院和上级有关部门批准后,最多提前半年毕业。硕士生如需延期毕业,必须在第五学期的十月份之前提出申请,由本人提出申请,经导师同意,并经研究生学院和上级有关部门批准。 三、 培养方式 (一)硕士生的培养实行导师负责制,采用导师与硕士生双向选择的办法确定硕士生的导师。 (二)课程学习和毕业论文工作并重,使硕士生既能掌握坚实的基础理论和系统的专门知识,又能掌握科学研究的基本方法和技能。 (三)注重因材施教,培养硕士生独立分析和解决问题的能力,注重对硕士生科学严谨的工作作风和创新能力的培养。 (四)在确保培养质量的前提下,经研究生学院批准,可与有关单位联合培养硕士生。 四、 主要研究方向 数量经济学学科以经济学理论为指导,利用经济模型对经济目标的影响因素进行

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

河北工业大学数值分析实验一

实验一 舍入误差与数值稳定性(2学时) 目的与要求: 1、通过上机编程,复习巩固以前所学程序设计语言; 2、通过上机计算,了解舍入误差所引起的数值不稳定性。 3、通过上机计算,了解运算次序对计算结果的影响,从而尽量避免大数吃小数的现象。 实验内容: ●通过正反两个实例的计算,了解利用计算机进行数值计算中舍入误 差所引起的数值不稳定性,深入理解初始小的舍入误差可能造成误差积累从而对计算结果的巨大影响。 ●通过实际编程,了解运算次序对计算结果的影响,了解实数运算符 合的结合律和分配律在计算机里不一定成立。 概要 舍入误差在计算方法中是一个很重要的概念。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取稳定的算法,在实际计算中是十分重要的。 程序与实例 例 1 对n = 0,1,2,…,20 计算定积分 y n = dx 5 x 1 n x ? + 算法1利用递推公式 y n = n 1 - 5y1n-n = 1,2,…,20

取 =+=?dx 5 x 11 00y ln6- ln5 ≈ 0.182 322 算法 2 利用递推公式 515n 1y 1n -=-y n n = 20,19,…,1 注意到 1051dx 51dx 5x dx 611261102010201020x x x =≤+≤=??? 取 730 008.0)126 11051(201y 20≈+≈ 上机实验:用两种不同的顺序计算644834.110000 12≈∑=-n n ,分析其误差的变化。 1) #include void main(void) { int n; float s=0,d; for(n=1;n<10001;n++) { d=1.0/(n*n); s=s+d; } printf("%f\n",s); } 2) #include void main(void) { int n; float c=0,d; for(n=10000;n>0;n--) { d=1.0/(n*n); c=c+d;

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

华中科技大学《数值计算方法》考试试卷

华中科技大学《数值计算方法》考试试卷 2006~2007学年 第一学期 《计算方法》课程考试试卷(A 卷) (开卷) 院(系)__________专业班级______________学号______________ 姓名__________________ 考试日期: 2007年1月30日 考试时间: 下午 2:30~5:00 一. 填空题 (每小题 4分,共 28份) 1.已知矩阵 ? ?????-=1011A ,则=∞A 。 2. 若用正n 边形的面积作为其外接圆面积的近似值,则该近似值的相对误差是 。 3.三次方程012 3 =+--x x x 的牛顿迭代格式是 。 4.若求解某线性方程组有迭代公式 F BX X n n +=+)()1(,其中 ?? ??????--=33a a a B ,则该迭代公式收敛的充要条件是 。 5.设x xe x f =)(,则满足条件) 2,1,0(22=? ?? ??=?? ? ??i i f i p 的二次插值公式 =)(x p 。 6.已知求积公式) 1()1()2/1()0()1()(10 f f f dx x f ααα+++-≈? 至少具0次 代数精度,则=α 。 7.改进的Euler 方法 )],(),([2 11n n n n n n n f h y t f y t f h y y +++ =++ 应用于初值问题1)0(),()('==y t y t y 的数值解=n y 。 二. (10分) 为数值求得方程022 =--x x 的正根,可建立如下 迭代格式 ,2,1,0, 21=+=-n x x n n , 试利用迭代法的收敛理论证明该迭代序列收敛,且满足 2 lim =∞ →n n x . 解答内容不得超过装订线

河北工业大学学术型硕士研究生培养方案

河北工业大学学术型硕士研究生培养方案 所属学院名称:经济管理学院 学科专业代码:120100 学科专业名称:管理科学与工程 一、培养目标 为适应我国社会主义现代化建设的需要,适应国家和区域经济发展对高层次人才的需求,硕士生培养要面向现代化、面向世界、面向未来,使之成为全面发展的具有一定创新能力的高层次专门人才: (一)努力学习马列主义、毛泽东思想、邓小平理论和“三个代表”重要思想,践行科学发展观,热爱祖国,遵纪守法,品德良好,学风严谨,明礼诚信,身心健康。 (二)掌握本学科坚实的基础理论、系统的专门知识和现代实验方法及技能,熟悉所从事研究领域的发展动向,具有从事科学研究工作或独立担负专门技术工作的能力。较熟练地掌握一门外国语。 二、学制与学习年限 管理科学与工程专业硕士生的学制为二年半,其中课程学习时间为一年,毕业论文(即学位论文)工作时间为一年半。硕士生在校学习年限(含休学、延期)最长为四年。 硕士生已完成规定课程学习和毕业论文工作确属成绩优异者,可以提出提前毕业申请,经研究生院和上级有关部门批准后,最多提前半年毕业。硕士生如需延期毕业,必须在第五学期的九月份之前由本人提出申请,经导师同意,并经研究生院和上级有关部门批准。 三、培养方式 (一)硕士生的培养以课程学习和毕业论文工作并重,促进课程学习和科学研究的有机结合,使硕士生既能掌握坚实的基础理论和系统的专门知识,又能掌握科学研究的基本方法和技能。强化创新能力的培养,重视对硕士生进行系统科研训练,要求并支持研究生更多地参与前沿性、高水平的科研工作,以高水平科学研究支撑高水平硕士生培养。 (二)硕士生的培养实行导师负责制,采用导师与硕士生双向选择的方式

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析整理版试题及答案

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为

011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111()46S x x =+ 例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近 多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n = 的复合梯形和复合辛普森公式计算积分1 ? 。 解: (1)用4n =的复合梯形公式 由于2h =,( )f x =()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,( )f x =()121,2,3k x k k =+=,()12 220,1,2,3k x k k + =+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x = 所以,线性方程组的解为11x =,22x =,33x = 例6、 用直接三角分解法求下列线性方程组的解。 解: 设 则由A LU =的对应元素相等,有 1114u = ,1215u =,1316u =, 2111211433l u l =?=,3111311 22 l u l =?=, 2112222211460l u u u +=?=-,2113232311 545l u u u +=?=-,

华中科技大学数值分析2016年试卷

华中科技大学研究生课程考试试卷 课程名称: 课程类别 考核形式 学生类别______________考试日期______________学号__________________姓名__________________任课教师___________________ 一、填空 (每题3分,共24分) 1.设0.0013a =, 3.1400b =, 1.001c =都是经过四舍五入得到的近似值,则它们分别有 , , 位有效数字。 2.设(0,1,2,3,4)i x i = 为互异节点,()i l x 为对应的4次Lagrange 插值基函数,则 4 40 (21)()i i i i x x l x =++=∑___________________,4 40 (21)(1)i i i i x x l =++=∑________。 3. 已知3()421f x x x =++, 则[]0,1,2,3f = ,[]0,1,2,3,5f = 。 4.当常数a = , ()1 2 3 1 x ax dx -+?达到极小。 5. 三次Chebyshev 多项式3()T x 在[-1, 1]上3个不同实零点为1x = , 2x = ,3x = ;()()()12311 max x x x x x x x -≤≤---= 。 6.已知一组数据()()() 01,12,25, y y y ===利用最小二乘法得到其拟合直线y ax b =+,则a =_____ ,b =_____。 7. 当0A = ,1A = 时,求积公式 ()()()1011 1 ()1013 f x dx f A f A f -≈ -++? 的代数精度能达到最高,此时求积公式的代数精度为 。 8.已知矩阵1 222A ?? = ?-?? ,则A ∞= ,2A ,()2cond A = 。 二、(10分) 设函数()y f x =, 已知()()()0'01,14f f f ===, (1) 试求过这两点的二次Hermite 插值多项式()2H x ; 研究生 2016-6-1 数值分析

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

河北工业大学 生物医学工程.

河北工业大学生物医学工程 学科专业攻读硕士学位研究生培养方案 一、培养目标 努力学习、掌握马列主义、毛泽东思想和邓小平理论,坚持四项基本原则,牢固树立科学的世界观和方法论;热爱祖国;遵纪守法,品德优良;勤奋学习,刻苦钻研,勇于创新,努力掌握现代科学文化知识,成为思想道德素质、科学文化素质、身体心理素质全面发展的高层次人才。 具有本学科坚实宽广的理论基础和系统深入的专门知识,全面深入了解本学科有关研究领域的现状、发展方向。 具有独立从事本学科的科学研究或解决工程中技术课题的能力。具有严谨求实的科学态度和工作作风。 至少掌握一门外国语,能熟练地阅读本学科的外文资料,具有一定的写作能力和学术交流的能力。 二、学制与学习年限 培养年限为二年半,其中课程学习时间为一年,学位论文工作时间为一年半。无特殊情况不允许延期。若需延期,本人必须提前五个月递交申请,经导师同意、所在学院主管院长审批后报研究生学院批准,并向学校交纳2000元培养费后,可延期半年。延期期间,停发该硕士生的普通奖学金。未被批准而逾期者,按结业处理。 本校定向培养的硕士生,若承担一定的教学和科研工作量,经教学和科研部门证明,可申请延期一年。 硕士生提前完成课程学习和学位论文工作,可以申请提前进行学位论文答辩。申请者需提前五个月写出书面申请,经导师同意、所在学院主管院长审批、报研究生学院批准后,可提前答辩和毕业。提前时间一般不得超过半年。 三、培养方式 硕士生的培养实行导师负责制,导师可指定讲师以上职称的教师作为副导师,协助导师指导硕士生的学习和科研实践。 硕士生的课程学习以听课、教师辅导与自主学习相结合的方式进行,科研能力的培养以参加科研课题的研究与撰写论文相结合的方式进行,鼓励硕士生积极参加国内

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

相关文档