文档库 最新最全的文档下载
当前位置:文档库 › 画出函数图象

画出函数图象

画出函数图象
画出函数图象

画出函数图象

1、21-++=x x y

2、21--+=x x y

3、12+--=x x y

4、x x y 1

+=

5、x x y 12+=

6、x y 1=

7、21

-=x y

8、121--=x y 9、23--=x x y

10、21--=x x

y

11、x y tan = 12、[)π,0,tan ∈=x x y

13、x y ln = 14、x y 2log = 15、x y ln =

16、x y 2= 17、12-=x y 18、x x y -=2

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x 是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函 数;当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a≠1)的反函数称为对数函数,并记为y=log a x(a >0,a≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质 对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

点集上的连续函数

1.4点集上的连续函数

定义1.160,,n E R f E x E ?∈设是定义在上的实值函数,00,0,(,)x E B x εδδ?>?>∈∩若对于使得当时,?<0|()()|, f x f x ε00f E x f E x 就称函数在上的点连续或相对于在连续。用极言描述若数的每点连续则称连续或相对00: ()=().x E x x f x f x ∈→用极限语言描述 lim .f E f E E 若函数在的每一点连续,则称在连续或相对于连续0,()()(). k f E x x E x x f x f x k ?→→→∞函数在的点连续当且仅当对于任意的点列{}只要,便有当00k k

注:f (x )在E 的孤立点00: , , . f E E E f E ?注若函数在连续而则在连续例19.121={|0}, ={ |0}, ()1())1()E x x E x x f x x E >≤=∈设2(-1(f x x E =∈或,12, f E E E E ∪ 则分别在和上连续但在上不连续. 12121, E E f E E ∪2 若和都是闭集定义在上,且 在连续则相也定连续 121E E f E E ∪2分别在和上连续,则相对于也一定连续.E E E E 不妨设它为聚点因为为闭集12x ∈∪12若,不妨设它为聚点,因为,为闭集,E E x 内任一以}只能有两种情况: 120k ∪则内任以为极限的点列{y }只能有两种情况

, ()E E x E x E ∈∈其一从某一项起全部y 属于或相应或120102k 0010lim ()lim ()(). k k k k k y x y x E f y f y f x →→==不妨设y 都属于,因此121 y E E y E k k ∈∈∪012. f x E E ∪故在相对于连续{其的无穷子列组成12{y }k E E 其二,由两个分别属于和的无穷子列组成,0120lim ()lim ()().x E E f x f x f x ∈==∩此时,,因为0012 x E x E x x x x ∈∈→→012lim ()()..k f y f x f E E =∪因此所以在上连续k →∞ :n R 中有界闭集上的连续函数满足的一些性质n f R E 设是中有界闭集上的连续函数,则

专题复习--函数图象中的行程问题

专题复习 函数图象中的行程问题 图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.而将普通的行程问题以图像的方式呈现无疑更是中考试题的亮点。解此类题的关键是“识图”和“用图”,一般步骤是: (1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系; (3)选择适当的数学工具,通过建模解决问题。下面以08、09两年的中考试题为例加以分类剖析。 一.相遇问题 例1.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象. (1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度; (2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围. (3)求出甲车返回时行驶速度及A 、B 两地的距离. 解:(1)( )内填60,甲车从A 到B 的行驶速度:100千米/时 (2)设y kx b =+,把(4,60)、(4.4,0)代入上式得: 604044k b k b =+??=+? . 解得:150 600 k b =-??=? 150660y x ∴=-+ 自变量x 的取值范围是:4≤x ≤4.4 (3)设甲车返回行驶速度为v 千米/时, 有0.4(60)60v ?+=得90(/)v =千米时 A B 、两地的距离是:3100300?=(千米) 评析:细心、耐心的读题、审题是解题的前提。本题中的行程过程分三个阶段,分别对应了三段函数图像,因此理解图像中每一条线段以及每个折点的实际意义成了解题的关键。如:点(3,120)的含义是乙车出发3小时后两车相距120千米,而此时乙车行驶了180km ,甲车行驶了300km 。 从知识点上讲,此题主要考查了二元一次方程组、一次函数、、图像交点等内容,其中第(2)小题便是函数解析式与图像、方程的综合,第(3)小题对思维能力要求较高,关键仍是对图像要有足够的理解,需要学生有相当的读图能力。这三个问题环环相扣,层层推进,区分度较明显,既有利于考查学生思维的逻辑性和灵活性,也有利于考查学生的运算能力。 二.追及问题 例2.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,

各种函数图象

各种函数图象 底数与指数函数图像: (1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。 (2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。 (3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。(如右图)》。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1) 对数函数的定义域为大于0的实数集合。 (2) 对数函数的值域为全部实数集合。 (3) 函数图像总是通过(1,0)点。 (4) a大于1时,为单调增函数,并且上凸;a大于0小于1时,函数为单调减函数,并且下凹。 (5) 显然对数函数无界。

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的 函数称为幂函数。当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识。特性 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我 们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则 x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是 偶数,函数的定义域是[0,,?)。当指数a是负整数时,设a=-k,则y=1/(x^k), 显然x?0,函数的定义域是(,?,0)?(0,,?)。因此可以看到x所受到的限制来源 于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为 负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以 是任意实数; 排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。 定义域与值域

函数图像过定点问题

函数图像过定点得研究 题1: 求证:拋物线y=(3-k)x2+(k-2)x+2k-1(k≠3)过定点,并求出定点得坐标。 归纳: 第一步:对含有变系数得项集中; 第二步:然后将这部分项分解因式,使其成为一个只含系数与常数得因式与一个只含x与常数得因式之积得形式; 第三步:令后一因式等于0,得到一个关于自变量x得方程(这时系数如何变化,都“失效”了); 第四步:解此方程,得到x得值x0(定点得横坐标),将它代入原函数式(也可以就是其变式),即得到一个y 得值y0(定点得纵坐标),于就是,函数图象一定过定点(x0,y0); 第五步:反思回顾,查瞧关键点、易错点,完善解题步骤. 题2: (2001年北京市西城区中考题)无论m为任何实数,二次函数得图像总过得点就是( ) A、 (1,3) B、(1,0)C、(-1,3)?D、 (—1,0)

巩固练习: 1.无论m为何实数,二次函数y=x2﹣(2﹣m)x+m得图象总就是过定点() A。?(1,3)?B.(1,0)?C. (﹣1,3) D. (﹣1,0) 2.对于关于x得二次函数y=ax2﹣(2a﹣1)x﹣1(a≠0),下列说法正确得有( ) ①无论a取何值,此二次函数图象与x轴必有两个交点;②无论a取何值,图象必过两定点,且两定点之间得距离为;③当a〉0时,函数在x〈1时,y随x得增大而减小;④当a〈0时,函数图象截x轴所得得线段长度必大于2. A. 1个B.2个C。3个D。4个 3、(2012?鼓楼区一模)某数学兴趣小组研究二次函数y=mx2﹣2mx+3(m≠0)得图象发现,随着m得变化,这个二次函数得图象形状与位置均发生变化,但这个二次函数得图象总经过两个定点,请您写出这两个定点得坐标:_________。 4。某数学小组研究二次函救y=mx2﹣3mx+2(m≠0)得图象发现,随着m得变化,这个二次函数图象得形状与位置均发生变化,但这个二次函数得图象总经过两个定点。请您写出这两个定点得坐标:_________. 5。(2009?宜宾县一模)二次函数y=x2+bx+c满足b﹣c=2,则这个函数得图象一定经过某一个定点,这个定点就是 _________ . 6.无论m为何实数,二次函数y=x2﹣(2﹣m)x+m得图象总就是过定点_________. 7.已知一个二次函数具有性质(1)图象不经过三、四象限;(2)点(2,1)在函数得图象上;(3)当x>0时,函数值y随自变量x得增大而增大。试写出一个满足以上性质得二次函数解析式: _________ 。 8、证明无论m为何值,函数y=mx-(4m—3)图像过定点,求出该定点坐标

二次函数图像问题及答案难题.

二次函数图像性质 1、二次函数c bx ax y ++=2的图像如图所示,OA =OC , ①abc <0;② 24b ac <;③1-=-b ac ; ④02<+b a ;⑤ a c OB OA -=?; ⑥024< +-c b a 。其中正确的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2、抛物线y=ax 2 +bx+c 的图象如图,OA=OC ,则( ) (A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是 3,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 .其中所有正确结论的序号是( ) A. ③④ B. ②③ C. ①④ D. ①②③ 4.如图是二次函数y =ax 2+bx +c x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c ________________.(填序号) 5.y =ax 2+bx +c (a ≠0)的图象如下图所示,abc ,b 2-4ac ,a -b +c ,a +b +c ,2a -b ,9a -4b 的有( ) A .1个 B .2个 C .3个 D .4个 6.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结 论: ①240b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<. 其中,正确结论的个数是 (A )1 (B )2 (C )3 (D )4 7.已知二次函数y=ax 2+bx+c 的图像与x 轴交于点(-2,0)(x 1,0),且1<x 1<2,与y 轴正半轴的交点在(0,2)下方。下列结论:(1)4a-2b+c=0.(2)a <b <0.(3)2a+c >0.(4)2a-b+1>0.其中正确的序号是 . 第(16)题

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三 象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当00时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。 ④)0()(2 ≠++=a c bx ax x f 关系 )0()(2 ≠=a ax x f 定 义 域:R 值 域:当0>a 时,值域为( );当0a 时;当0

函数图象及其应用

函数图象及其应用 武安市第十中学李冉 一.教学内容分析: 本堂课安排在人教版必修1第二章结束之后,第三章教学之前,对所学常见函数模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图像与方程的联系,渗透函数与方程的思想及数形结合思想,为第三章作了很好的铺垫,承上启下,衔接自然,水到渠成。 学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的原则.从学生认为较简单的问题入手,由具体到一般,建立方程的根与函数图像的联系。另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二.学生学习情况分析: 学生在学完了第一章《集合与函数概念》、第二章《基本初等函数》后,对函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。因此进行本堂课的教学,应首先有意识地让学生归纳总结旧知识,提高综合能力,对新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。 高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。因此,在教学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函数这一章,函数的图像就显得尤其重要而且直观。 三.设计思想:

(完整版)一次函数图像问题附答案

一次函数图像问题附答案 一、基本识图问题 1.(2007?常州)如图,图像(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是() A、第3分时汽车的速度是40千米/时 B、第12分时汽车的速度是0千米/时 C、从第3分到第6分,汽车行驶了120千米 D、从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 二、行程问题 1.(2009?滨州)小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图像能表示小明离家距离与时间关系的是() A、B、 C、D、 2.(2007?鄂尔多斯)如图,一只蚂蚁以均匀的速度沿台阶A1?A2?A3?A4?A5爬行,那么蚂蚁爬行的高度h随时间t变化的图像大致是()

A 、 B 、 C 、 D 、 三、行走路线问题 1. 图1是韩老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图像。若用黑 点表示韩老师家的位置,则韩老师散步行走的路线可能是( ) 四、速度问题 1.如图4所示的函数图像反映的过程是:小明从家去书店,又去学校取封信后马上回家,其 中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米/小时。 2. 图中由线段OA 、AB 组成的折线表示的是小明步行所走的路程和时间之间的关系,其中x 轴表示步行的时间,y 轴表示步行的路程.他在6分至 8分这一时间段步行的速度是( ) A 、120米/分 B 、108米/分 C 、90米/分 D 、88米/分 五、图像变化快慢问题 图1 图4

函数图像问题综合

一、指数函数图像应用 练习一 1.函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是( ) A.a>1,b<0 B.a>1,b>0 C.00 D.00,且a≠1,若函数y=|a x-2|与y=3a的图象有两个交点,则实数a的取值范围是________. 3.函数f(x)=1-e|x|的图象大致是( ) 4、若函数y=|3x-1|在(-∞,k]上单调递减,求k的取值范围.

练习二 1.函数y =a x -a (a >0,且a ≠1)的图象可能是( ) 2.函数y =2x 与y =2-x 的图象关系是( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y =x 对称 3.已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( ) 4.(2016·唐山二模)当x ∈[1,2]时,函数y =1 2x 2与y =a x (a >0)的图象有交点, 则a 的取值范围是( ) A.??????12,2 B.??????12,2 C.??????14,2 D.???? ??14,2

二、对数函数图像应用 1.函数f(x)=ln|x-1|的图象大致是( ) 2、(2017·成都一诊)设f(x)=|ln(x+1)|,已知f(a)=f(b)(a0 B.a+b>1 C.2a+b>0 D.2a+b>1 3已知函数f(x)=log a(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( ) A.00,且a≠1)的值域为{y|y≥1},则函数y=log |x|的图象大致是( ) a

轻松解决动点问题与函数图象

动点问题与函数图象(刘老师在线) 1、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为() A B C D 【知识点】动点问题的函数图象 【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决. 【解析】∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1. ∴当点M位于点A处时,x=0,y=1. ①当动点M从A点出发到AM=1的过程中,y随x的增大而减小,故排除D; ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等.故排除A、C. 故选B. 2、如右图所示,已知等腰梯形ABCD,AD∥BC,若动直 线l垂直于BC,且向右平移,设扫过的阴影部分的面 积为S,BP为x,则S关于x的函数图象大致是 【知识点】动点问题的函数图象 【分析】分三段考虑, ①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC段时,分别观察出面积变化的情况,然后结合选项即可得出答案. 【解析】①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快; ②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变; ③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小; 结合选项可得,A选项的图象符合. 故选A. A. … B.

3、如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而 成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图像大致是 【解析】注入水的体积增加的速度随着高度x的变化情况是:由慢到快→匀速增长→由快到慢,由慢到快的图象是越来越陡,由快到慢的图象是越来越平缓,所以选A。 4、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为() A B C D 【知识点】动点问题的函数图象 【解析】由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C. 随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D. 故选A. 5、.如图9,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t 秒,y = S△EPF,则y与t的函数图象大致是

(整理)函数的连续性及其应用

函数的连续性及其应用 函数的连续性是新教材新增加的内容之一.它把高中的极限知识与大学知识紧密联在一起.在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.本节内容重点阐述这一块知识的知识结构体系. ●难点磁场 (★★★★)已知函数f (x )=?????≤<-≤≤-+-<)51( )1(log )11( )1()1( 32 x x x x x x (1)讨论f (x )在点x =-1,0,1处的连续性; (2)求f (x )的连续区间. ●案例探究 [例1]已知函数f (x )=2 42+-x x , (1)求f (x )的定义域,并作出函数的图象; (2)求f (x )的不连续点x 0; (3)对f (x )补充定义,使其是R 上的连续函数. 命题意图:函数的连续性,尤其是在某定点处的连续性在函数图象上有最直观的反映.因而画函数图象去直观反映题目中的连续性问题也就成为一种最重要的方法. 知识依托:本题是分式函数,所以解答本题的闪光点是 能准确画出它的图象. 错解分析:第(3)问是本题的难点,考生通过自己对所学 连续函数定义的了解.应明确知道第(3)问是求的分数函数解析式. 技巧与方法:对分式化简变形,注意等价性,观察图象 进行解答. 解:(1)当x +2≠0时,有x ≠-2 因此,函数的定义域是(-∞,-2)∪(-2,+∞) 当x ≠-2时,f (x )=242+-x x =x -2, 其图象如上图 (2)由定义域知,函数f (x )的不连续点是x 0=-2. (3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 2 2-=-→-→x x f x x =- 4.

一次函数图象题(行程问题)提高篇

一次函数图象题(行程问题)提高篇 11.(2012武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到 终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出 发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中 正确的是() A.①②③B.仅有①②C.仅有①③D.仅有②③考点:一次函数的应用。 解答:解:甲的速度为:8÷2=4米/秒; 乙的速度为:500÷100=5米/秒; b=5×100﹣4×(100+2)=92米; 5a﹣4×(a+2)=0, 解得a=8, c=100+92÷4=123, ∴正确的有①②③. 1、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原 路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出 发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图10 中的折线分别表示S1、S2与t之间的函数关系. (1)甲、乙两地之间的距离为km,乙、丙两地之间的距离为km; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多 少? (3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范 围. 2· 4· 6· 8· S(km) 2 0 t(h) A B

2、一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设 客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图12所示: (1)根据图象,直接写出 ....y1,y2关于x的函数关系式。 (2)分别求出当x=3,x=5,x=8时,两车之间的距离。 (3)若设两车间的距离为S(km),请写出S关于x的函数关系式。 (4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油。求A加油站到甲地的距离。 3、在一条直线上依次有A、B、C三个港口,甲、 乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、 乙两船行驶x(h)后,与.B.港的距离 ....分别为1y、2y(km),1y、2y与x的函数关系如图所示. (1)填空:A、C两港口间的距离为km, a; (2)求图中点P的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见 时x的取值范围. O y/km 90 30 a P (第3题) x/h

连续函数图象的分解与一类剪切集

连续函数图象的分解与一类剪切集 本文主要研究连续函数图象的分解与分形维数(豪斯多夫维数,填充维数)的关系以及一类剪切集的分形测度.在第一章介绍本文的背景,第二章给出预备知识的基础上,用了三章的篇幅分别对上述三方面的问题展开了详细的论述.在第三章,我们考虑区间[0,1]上的连续函数的图象的分解与豪斯多夫维数之间的关系,我们回答了Bayart和Heurtaeux提出的一个问题.具体的,证明了:任意f∈C([0,1]),β∈[1,2],存在连续函数h,g∈C([0,1])使得.f=h+g并且 dimHG9([0,1])=dimH Gh([0,1])=β,其中Gg([0,1]),Gh([0,1])表示函数g,h的图像:Gg([0,1])={(x,g(x)):x∈[0,1]},Gh([0,1])=.{(x,h(x)):x∈[0,1]}.在第四章,我们分两部分内容:第一部分,我们利用填充维数与上盒维数的关系,把Humke和Petruska的结果推广到高维空间中,即如果X是Rn中的不可数紧子集,那么是C(X)中的拓扑普适集;第二部分讨论连续函数图象的分解与填充维数的关系.首先,我们得到:对任意f,g∈C(X),如果dimp(Gg)≠dimp(Gf),那么把该结果应用到函数分解上,我们有:假设β∈[1,2],f∈C([0,1]),那么存在连续函数g,h∈C([0,1])满足当且仅当dimp(Gf([0,1]))≤β.最后,还证明了是1-普适集(1-prevalent).在第五章,我们给出一类剪切集的h-填充测度与h-豪斯多夫测度的上下界估计,其中h是加倍的维数函数.最后,我们在第六章总结了本文的主要结果,并提出了一些可以进一步研究的问题.

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

函数图像过定点问题

函数图像过定点的研究 题1: 求证:拋物线y=(3-k)x2+(k-2)x+2k-1(k≠3)过定点,并求出定点的坐标. 归纳: 第一步:对含有变系数的项集中; 第二步:然后将这部分项分解因式,使其成为一个只含系数和常数的因式与一个只含x和常数的因式之积的形式; 第三步:令后一因式等于0,得到一个关于自变量x的方程(这时系数如何变化,都“失效”了); 第四步:解此方程,得到x的值x0(定点的横坐标),将它代入原函数式(也可以是其变式),即得到一个y 的值y0(定点的纵坐标),于是,函数图象一定过定点(x0,y0); 第五步:反思回顾,查看关键点、易错点,完善解题步骤. 题2: (2001年北京市西城区中考题)无论m为任何实数,二次函数的图像总过的点是() A. (1,3) B. (1,0) C. (-1,3) D. (-1,0)

巩固练习: 1.无论m为何实数,二次函数y=x2﹣(2﹣m)x+m的图象总是过定点()A.(1,3)B.(1,0)C.(﹣1,3)D.(﹣1,0) 2.对于关于x的二次函数y=ax2﹣(2a﹣1)x﹣1(a≠0),下列说法正确的有() ①无论a取何值,此二次函数图象与x轴必有两个交点;②无论a取何值,图象必过两定 点,且两定点之间的距离为;③当a>0时,函数在x<1时,y随x的增大而减小;④当a<0时,函数图象截x轴所得的线段长度必大于2. 3.(2012?鼓楼区一模)某数学兴趣小组研究二次函数y=mx2﹣2mx+3(m≠0)的图象发现,随着m的变化,这个二次函数的图象形状与位置均发生变化,但这个二次函数的图象总经过两个定点,请你写出这两个定点的坐标:_________ . 4.某数学小组研究二次函救y=mx2﹣3mx+2(m≠0)的图象发现,随着m的变化,这个二次函数图象的形状与位置均发生变化,但这个二次函数的图象总经过两个定点.请你写出这两个定点的坐标:_________ . 5.(2009?宜宾县一模)二次函数y=x2+bx+c满足b﹣c=2,则这个函数的图象一定经过某一个定点,这个定点是_________ . 6.无论m为何实数,二次函数y=x2﹣(2﹣m)x+m的图象总是过定点_________ .7.已知一个二次函数具有性质(1)图象不经过三、四象限;(2)点(2,1)在函数的图象上;(3)当x>0时,函数值y随自变量x的增大而增大.试写出一个满足以上性质的二次函数解析式:_________ . 8.证明无论m为何值,函数y=mx-(4m-3)图像过定点,求出该定点坐标

基本初等函数与图像大全

基本初等函数 . 幂函数(a为实数) 要记住最常见的几个幂函数的定义域及图形 . 1.当u为正整数时,函数的定义域为区间 ) , (+∞ -∞ ∈ x,他们的图形都经过原点,并当u>1 时在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称; 2.当u为负整数时。函数的定义域为除去x=0的所有实数。 3.当u为正有理数m/n时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n图形于x轴相切,如果m

奇数时,跟原点对称 .4.当u为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数. . 指数函数 定义域:, 值域:, 图形过(0,1)点,a>1时,单调增加;a时,单调减少。今后用的较多。 1.当a>1时函数为单调增,当a<1时函数为单调减. 2.不论x为何值,y总是正的,图形在x轴上方. 3.当x=0时,y=1,所以他的图形通过(0,1)点. . 对数函数 定义域:,

值域:, 4.与指数函数互为反函数,图形过(1,0)点,a>1时,单调增加;a<1时,单调减少。 1.他的图形为于y轴的右方.并通过点(1,0) 5.当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区间(1, + ),y值为正,图形 位于x轴上方.在定义域是单调增函数.a<1在实用中很少用到 . 三角函数 ,奇函数、有界函数、周期函数; ,偶函数、有界函数、周期函数; ,的一切实数,奇函数、 周期函数

专题:一次函数图象问题

专题:一次函数图像问题 一、基本识图问题 1.(2007?常州)如图,图像(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是() A、第3分时汽车的速度是40千米/时 B、第12分时汽车的速度是0千米/时 C、从第3分到第6分,汽车行驶了120千米 D、从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 二、行程问题 1.(2009?滨州)小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图像能表示小明离家距离与时间关系的是() A、B、 C、D、 2.(2007?鄂尔多斯)如图,一只蚂蚁以均匀的速度沿台阶A1?A2?A3?A4?A5爬行,那么蚂蚁爬行的高度h随时间t变化的图像大致是()

A 、 B 、 C 、 D 、 三、行走路线问题 1. 图1是韩老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图像。若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( ) 四、速度问题 1.如图4所示的函数图像反映的过程是:小明从家去书店,又去学校取封信后马上回家,其 中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米/小时。 2. 图中由线段OA 、AB 组成的折线表示的是小明步行所走的路程和时间之间的关系,其中x 轴表示步行的时间,y 轴表示步行的路程.他在6分至8分这一时间段步行的速度是( ) A 、120米/分 B 、108米/分 C 、90米/分 D 、88米/分 图1 图4

五、图像变化快慢问题 Ⅰ.直线变化 1. (2009?金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图像大致是() A、B、 C、D、 2.1、2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图像表示正确的是() Ⅱ.曲线变化 3.(2005?余姚市)向高为10cm的容器中注水,注满为止,若注水量Vcm3与水深hcm之间的关系的图像大致如下图,则这个容器是下列四个图中的() A、B、

相关文档