文档库 最新最全的文档下载
当前位置:文档库 › 车辆智能控制技术的研究与应用

车辆智能控制技术的研究与应用

车辆智能控制技术的研究与应用
车辆智能控制技术的研究与应用

车辆智能控制技术的研究与应用

车辆1003

20104043

李琳

车辆智能控制技术的研究与应用

自从汽车被发明以来,人类对于驾驶汽车的看法就一直存在分歧,一部分人热衷于让汽车变得越来越好开,强调驾驶乐趣,让你的双手舍不得离开方向盘;然而另一部分人则更热衷于让汽车变得越来越“傻瓜化”,甚至要将驾驶者的双手从方向盘上解放出来……上世纪80年代开始热播的美剧《霹雳游侠》当中的KITT,正是后者思想的集大成者。正在读这篇文章的您也许就曾经被无敌的KITT 所深深吸引吧?当然人类的科技还根本无法达到科幻电视剧当中的效果,KITT 无与伦比的人工智能、让主人公高枕无忧的自动驾驶、车身超级耐打击的能力以及几乎不用加油的动力科技看上去几乎都是天方夜谭。然而随着汽车技术的发展,现实版“KITT”正在向人们走来,近些年来许多厂商都致力于无人自动驾驶技术的研发,宝马在这领域走在时代的前边。

现阶段的技术成果虽然无法实现《霹雳游侠》或者《钢铁侠》里面那样强大的技术,但是让车子短暂脱离驾驶员的控制而自主驾驶,还是已经成功实现了。宝马将一系列最先进的无人驾驶技术设备集成到了一辆看似非常普通的5系轿车里,这些设备能够在高速公路行驶时,接管驾驶员的所有操作,自主进行油门、刹车甚至超车的动作。

车辆自主变线超车

借助布置在车身四周的传感器,它甚至可以发现从辅路匝道进入主干道的车辆,自主采取加减速或者变道的措施,而具体选择那种操作,也是通过计算当时的行驶条件而决定的,也就是说它具备了自主判断交通状况的能力。而这一切,目前都能够在130km/h以下的车速来完成。

其实这些对于驾驶员来说再容易不过的驾驶操作,对于自动驾驶系统来说可是超级复杂的一件事情。车辆不仅需要随时准确侦测出自己处于道路中的哪一条车道上,更要认出车身周边的车辆或者物体。实现这样的感知,不仅需要普通雷达,更需要激光、超声波以及摄像头的辅助。

若要精确做出判断,上述的集中探测装置至少需要两种协同作用。目前这辆能够自主驾驶的宝马5系轿车已经在驾驶员极少干预的前提下,安全行驶了3000英里。这都要归功于全车所有精良的设备。再有一点就是,这项技术的应用普及速度可能远超过你的想象,有消息称该技术在2014年的宝马i3上就会开始搭载,届时你可要分清路上开车的到底是人还是车自己了。然而一向强调给驾驶者带去驾驶乐趣的宝马开发这么一个产品,缺失会让人觉得有些意外,宝马官方给出的解释是,这项技术并不会完全将驾驶者从眼观六路耳听八方中抽离开来,所以不要指望你能在开车上班的路上睡上一觉……

1 悬架的研究方法

(1)理论研究[1]

悬架系统的理论研究具有前瞻性和探索性,为智能悬架系统的物理实现奠定理论基础。其主要研究内容:

a.悬架力学模型理论研究。悬架力学模型是振动理论中的隔振和减振理论的实际应用,通过振动理论的深入研究,全面综合研究悬架的减振和隔振性能、悬挂系统的非线性特性。

未来几年中,动力学、振动与控制领域的下述研究前沿值重视:①高维非

线性系统的全局摄动法、全局分岔和混沌动力学;②高维强非线性系统分岔与混沌动力学的实验研究;③时滞非线性系统的动力学理论及其应用;④流体一弹性体一刚体耦合系统动力学与控制;⑤碰撞与变结构系统动力学;⑥微电机系统动力学。

b.悬架系统控制模型的理论研究。悬架系统作为控制对象,其模型分为简单的线性系统和复杂的非线性系统,线性系统经过几十年的发展已经建立了一套完整成熟的理论系统,例如LQR、ITAE最优控制、零极点配置等;但非线性系统情况比较复杂,迄今还没有统一的设计理论和稳定的分析方法。受非线性系统理论的制约,要具备类似于线性系统那样严格的数学推导,形成完整的控制设计体系尚需假以时日。在这种情况下,将非线性系统在关注点“近似”线性化处理,然后作为线性系统来对待,不失为一种工程实用方法。而实际悬架系统的物理特性为严格非线性,是以非线性系统为研究对象的控制系统。(2)仿真研究

建模理论和方法仍然是推动仿真技术进步发展的重点研究方向,是系统仿真可持续发展的基础。发达国家在仿真领域一直是将建模理论和方法的研究工作列为重中之重。

大型复杂工业系统,都需要从安全性出发设计实施。仿真系统是预估其安全性的有效工具,因此仿真系统自身的可信度就变得非常重要。用计算机和相应的配套软硬件进行试验研究,具体主要集中在“实物在环仿真”和“半实物在环仿真”。“实物在环仿真”是将整个悬架系统的一部分(通常是控制器部分)用软件来仿真和模拟,而其他环节则是悬架实体。“半实物在环仿真”则是将悬架部件用硬件设备来仿真,例如用d-SPACE来模拟悬架的物理结构,而用软件来进行其他部分的仿真。或者将大部分悬架的部件(簧上、簧下质量,悬架弹性元件等)和道路激励环节用软件进行模拟,而只有研究部件(即执行机构——减振器)是实物。采用硬件在环仿真技术的优点是可以灵活调节各个环节的影响因素,突出主要矛盾,从而达到解决问题的目的。[2]

但是现行的仿真仍然存在一些缺陷,例如仿真分析的结果受到不同工程师经验、水平和所采用的分析流程的制约,不同工程师即使给定相同的模型和计算条件,分析结果可能也大相径庭,影响了仿真分析结果的置信度。因此迫切的需要规范分析者的流程,加强工程师之间的交流。而传统分析工具的最大弱点在于,企业中富有经验的工程师的工程分析经验无法进行有效的积累以形成知识库,影响了知识的继承和仿真流程的重用。企业中很多分析工作的流程是具有共性的可重复的,但目前大多数企业在仿真流程上只能通过制定企业规范来加以引导,这样导致老工程师的经验无法快速的传递给新手,知识无法共享,大量的类似的分析工作需要重起炉灶。仿真的另外一个瓶颈是仿真分析工具的耦合度不高,单技术或学科仿真分析工具形成分析计算的“孤岛”,工程师们需要花大量的时间去掌握新的仿真分析软件。另外这也导致设计流程不流畅,设计与分析不能很好的对接。

(3)试验研究

根据理论研究和仿真研究,用试验的方法对所进行的研究结果进行证实,并将试验结果反馈回理论研究和仿真研究。虽然这一类研究的投资相对较大且运行周期长,但是它是最能证实悬架可靠性的方法。同时试验研究还包括实验室台架试验研究、道路试验研究。

理论研究、试验研究和仿真研究三者之间息息相关。理论研究为仿真研究

和实验研究指明了方向;仿真研究是具体的针对某一车型的悬架做出运动学、动力学、可靠性等评价,为实验研究的进行奠定基础,同时将其结果反馈回理论研究环节,验证理论研究方向的正确性;而实验研究的结果是对理论研究和仿真研究最有效的验证。

2 奔驰ABC系统

最早提出主动车身控制理念的是LEXUS,事实上它只是仅仅是把普通悬挂用的螺旋弹簧换成了空气弹簧,增加了一套简单的自动控制单元,相对于复杂的路面情况,仍有它的局限性。之后法国人研发了一套适应性更强的悬挂,就是现在标致607,雪铁龙C5上使用的液压主动悬挂,他能分5段调节避震器的阻尼力(即软硬度),相对LEXUS是一个很大的进步。但真正首先解决适应问题的还是奔驰的ABC,它是用空气泵调节空气压力来调节悬挂阻尼力的,因此,他能无段级的调节悬挂软硬度,从而适应各种路面因素。

ABC系统功能:使汽车对侧倾、俯仰、横摆、跳动和车身高度的控制都能更加迅速、精确。车身的侧倾小,车轮外倾角度变化也小,轮胎就能较好地保持与地面垂直接触,使轮胎对地面的附着力提高,以充分发挥轮胎的驱动制动作用。此外汽车的载重量无论如何变化,汽车始终能保持一定的车身高度,所以悬架的几何关系也可以确保不变。ABC系统能够很好地适应各种路面情况,即使在崎岖不平的地方,也能保持优越的操控性、舒适性及方向稳定性。

ABC系统结构及运行特点:在ABC系统中,计算机通过遍布整车的传感器感知车辆的运动,并通过液压伺服系统的径向柱塞液压泵提供高压控制主动悬架的运行。该系统一共有13个传感器不断检测车辆的运动和水平状况,并以每十毫秒一次的频率向ABC系统更新数据。其中四个液位传感器测量每个车轮的行驶高度,三个加速度传感器测量车身的垂直加速度,另外各有一个加速度传感器测量身的横向和纵向加速度,最后四个传感器安装在伺服系统的液压缸检测液压。当ABC系统接收并处理数据,它将操控四个安装在每个弹簧支撑轮旁的液压伺服器,几乎同时,伺服系统调节悬架产生反作用力使车身倾斜、车位降低等动作以维持车辆在不同驾驶状态的稳定。由一个螺旋弹簧和减震器并联而成的悬架支柱和液压调节缸均位于车体与车轮之间。在悬架支柱方向可改变悬架的长度,悬架系统可以产生反作用力抵抗最大5赫兹的振动频率。ABC系统的高度可调减震可以使车在时速60-160km/h时下降11mm以获得良好的空气动力性、较低的油耗、良好的操控性。ABC系统还允许自流平悬架,从而降低负重对车身高低的影响。而且每一辆车都拥有一个“ABC运动”

按钮,以适应不同驾驶员不同的驾驶偏好。下面是奔驰的一款悬架

梅赛德斯-奔驰CLK车型多连杆悬架

3 智能材料悬架系统

目前的智能悬架系统主要采用液体和气体两种介质作为振动的缓冲器,虽然其基本上能实现柔性调节,但是其也有明显缺点—动作响应滞后,主要表现为执行机构响应时间长,响应频率低,降低了执行机构的响应精度,使其无法满足系统实时最优控制的要求。另外智能悬架得不到推广主要是由于其能耗太高,一般的小排量汽车无法支持这样大能量损失,且其结构复杂(如上图中的奔驰悬架),造价昂贵。在仅仅的传统的机械改进不能从根本上解决问题之时,将智能材料引入悬架的想法也就应运而生。

比如目前对执行机构的研究主要体现在对材料的研究上,其包括:(1)电流变流体、磁流变流体材料技术;(2)压电式材料执行机构; (3)形状记忆合金材料;(4)电/磁致伸缩材料执行机构。这些材料均具有响应快、频响高等特点。以形状记忆合金材料(SMA)为例,SMA具有“智能”特性,它既有传感功能(感知和接收应力、应变、电、热等信号),又有驱动功能(对激励产生响应)。此外,由于SMA具有源于热弹性马氏体相变的所谓形状记忆效应,又可根据热、力、电等各种物理参变量之间的关系对响应进行主、被动控制。其效应具体如下:当T≤Aa时,没有新的奥氏体的产生,回应力与温度呈线性关系;当Aa≤T≤Af时,温度将诱发马氏体向奥氏体的转化;当T≥Af时,马氏体向奥氏体的转化结束(其中Aa,Af为奥氏体相变的开始和结束温度)。[3] 所以在Aa≤T≤Af这段温度范围内,材料的恢复应力随温度的升高急剧增加,这十分有助于控制悬架的刚性。

下面是记忆合金的形状记忆效应

[4]

但是这种材料的反应时间和反应频率仍然不能满足人们对零滞后的要求,目前应该仅有电/磁致伸缩材料能达到这样的要求,但是其耐反复曲折的能力又有待提高。

而今的汽车发动机发展已经很成熟了,就ECO智能发动机而言,很多大公司已经开发出很多,就如丰田的连续可变气门升程技术valvematic,该技术称为VVT(可变气门正时),随后推出了VVT-i(智能可变气门正时),这两项技术都只能改变气门正时,而不能改变气门升程,发动机在高转速时需要更多的进排气重叠时间与气门开关行程。可变气门正时技术,其功能主要是改变发动机气门开启和闭合的时间,以达到更合理的控制相应发动机转速所需的空气量,作用主要还是为了降低油耗,提高经济性。而发动机的实质动力表现却是和单位时间内进入到汽缸内的氧气量有关,可变气门正时系统无法有效改变这一点,因此它对动力的提升帮助不大。既然可变气门正时系统无能为力,那现在就该轮到可变气门升程系统登场了。本田也研发出了自己的连续可变气门升程及正时系统AVTEC,只是还没有正式开始使用。简单说就是两个进气气门摇臂中间还有一个特殊的摇臂,它对应的是凸轮轴上的一个高角度凸轮,而在发动机低转速时两个进气摇臂和这个特殊摇臂是分离的、互无关系,进气摇臂只由低角度凸轮驱动,因此进气气门打开的升程较小,这有助于提高低转速时的燃油经济性。但当发动机达到一定转速时,由电子液压控制的连杆会将两个进气摇臂和那个特殊摇臂连接为一体,此时三个摇臂就会同时被高角度凸轮驱动,而气门升程也会随之加大,单位时间内的进气量更大,从而发动机动力更强。[1]这就是经济性的代表。还有笔式点火线圈:将火花塞和点火线圈“合二为一”,减少了能量损失,增进燃烧,提高燃油能效。使燃油的效率大大提高。自动调整正时链条:终身免维护,降低维护成本。油冷喷注纳米活塞:采用纳米技术可延长活塞寿命,降低冷启动噪音,有效控制积碳;喷注油冷技术更可有效散热。双对旋平衡轴:降噪减震,消除惯性振动。[2]这些都是应用在智能发动机上的硬件,它们的研发都使ECO智能发动机的性能推向极致,但是我理解的真正的“智能”不仅仅是这样的发动机,我觉得这只是将发动机的硬件提升到了一种极度节能的情况,但是智能的,自动调节

的功能还是空间很小。接下来就是要靠发动机控制单元-ECU,这是发动机智能化的核心,就像发动机的大脑一样,我们通常说发动机是心脏,但是控制神经要敏锐才更好。那么发动机就要有一个敏锐的控制系统,还要有更多的自动调节的变量来控制才好。这主要就要依赖于发动机控制单元。ECU可以控制监测发动机是否爆燃及爆燃的程度,作为反馈信号使ECU指令实现点火提前,使发动机不会爆燃又能获得较高的燃烧效率。还可以通过各种传感器收集数据进行分析在发出指令来进行控制,来时发动机使用最少的能源来产生最大的功。但是这与赛车有区别,因为家用的汽车与赛车的用途不同,赛车追求的是马力,而家用的的追求的是低转速时的响应能力和加速能力。所以ECU的用途也不同。赛车的Misfiring System(偏时点火系统)就是要减少涡轮迟滞的现象,这系统会在电脑上造手脚,在松油门时,如转弯或减速的时候,电脑会命令汽车的供油系统将大量的汽油射入引擎,但不会点火,直接让这些雾状汽油在未经燃烧的情况下经过引擎直接进入温度极高的排气系统.当雾状的汽油进入之后会因碰到高温而自动引爆,产生出来的压力会冲向唯一的出口,推动涡轮增压器的叶片持续加速,让车子即使在减速的情况下也能维持涡轮叶片的转速(大约14000-20000rpm),使涡轮迟滞的现象消失,让车子同时拥有涡轮增压的马力及自然吸气的反应,另外高挥发性的汽油进入引擎及排气系统的时候能有效降低引擎和涡轮增压器的温度。

[3]这就是在赛车上的智能应用,这就是说智能是个大趋势,随着计算机技术的发展发动机的智能化会越来越高。最后会有很高智能的发动机,使燃油发挥最大的功能,使发动机的损耗降到最低,寿命更长,适应性更强。最重要的是要降低造价。这才能让这种智能真正的起到作用。

纳米技术在发动机上的应用

意识到纳米技术将会给人类社会带来巨大的影响,纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。[4]现在可能在发动机上运用最多的是纳米润滑油,虽然这还不是100%的普及。但是一已经解决了很多问题,减少里很多摩擦,对发动机的性能已经有一定量的提高了。这就是突破。还有油冷喷注纳米活塞,它采用纳米技术,可以延长活塞寿命,降低冷启动噪音,有效控制积碳;喷注油冷技术更可有效散热。这就是配合,只有强悍的硬件支持才能使智能发动机的性能发挥极致,以后还可以有纳米级的零件,磨损的零件都要强化。这对发动机的寿命会有很大的提升。而现在纳米芯片已经随处可见了,但是如果纳米级的发动机,再加上现在的纳米锻造技术,使工件更加精密从而将智能植入每一个机件。使其彻底成为智能机器。大量加入纳米技术无疑会使智能发动机产

生更大的发展空间。

发动机更加环保

燃油紧张已经成为现在发动机的一大挑战。众所周知我们地球的资源有限,所以不仅仅是燃油发动机要有智能的技术,而且如生物柴油,天然气发动机,电动车更需要强大的智能技术来让我们的环保实现得更加快速。随着我们汽车产量的不断增长,燃油的消耗也越来越快,大气污染也越来越严重。据环保部称,目前,我国城市大气环境质量较差,与世界卫生组织环境空气质量指导值有一定差距。还有专家称,已经有科学数据证明,PM2.5与肺癌、哮喘等疾病发生密切相关。而PM2.5正是形成灰霾天气的元凶。我国现行的空气质量标准编制于1982年,后又分别在1996年和2000年进行了修订。按照我国《环境空气质量标准》的规定,每天监测和发布的主要有三项空气污染物指标:可吸入颗粒物、二氧化氮和二氧化硫。[5]而燃油发动机排放的汽车排放污染物中含有大量的一氧化碳、碳氢化合物、氮氧化合物(NOx)、二氧化硫、铝、碳微粒和其他杂质粉尘等,这些物质对人类和整个生态环境危害极大。[6]所以智能一定要综合这些排放量,还有那些氢燃料发动机,纯电动机汽车。可是由于价格问题,这些发动机还都无法普及,所以全世界内的燃料情况还是很紧张。所以还要致力于普通发动机的改造和智能化才是真正的解决办法。

EBD能够根据由于汽车制动时产生轴荷转移的不同,而自动调节前、后轴的制动力分配比例,提高制动效能,并配合ABS提高制动稳定性。汽车在制动时,四只轮胎附着的地面条件往往不一样。比如,有时左前轮和右后轮附着在干燥的水泥地面上,而右前轮和左后轮却附着在水中或泥水中,这种情况会导致在汽车制动时四只轮子与地面的摩擦力不一样,制动时容易造成打滑、倾斜和车辆侧翻事故。EBD用高速计算机在汽车制动的瞬间,分别对四只轮胎附着的不同地面进行感应、计算,得出不同的摩擦力数值,使四只轮胎的制动装置根据不同的情况用不同的方式和力量制动,并在运动中不断高速调整,从而保证车辆的平稳、安全。

ABS的主要作用是改善整车的制动性能,提高行车安全性,防止在制动过程中车轮抱死(即停止滚动),从而保证驾驶员在制动时还能控制方向,并防止后轴侧滑。其工作原理为:紧急制动时,依靠装在各车轮上高灵敏度的车轮转速传感器,一旦发现某个车轮抱死,计算机立即控制压力调节器使该轮的制动分泵泄压,使车轮恢复转动,达到防止车轮抱死的目的。ABS的工作过程实际上是“抱死—松开—抱死—松开”的循环工作过程,使车辆始终处于临界抱死的间隙滚动状态,有效克服紧急制动时由车轮抱死产生的车辆跑偏现象,防止车身失控等情况的发生。

EBD的英文全称是Electric Brakeforce Dis-tribution,中文直译就是“电子制动力分配”。自动调节前、后轴的制动力分配比例,提高制动效能(在一定程度上可以缩短制动距离),并配合ABS提高制动稳定性。汽车制动时,如果四只轮胎附着地面的条件不同,比如,左侧轮附着在湿滑路面,而右侧轮附着于干燥路面,四个轮子与地面的摩擦力不同,在制动时(四个轮子的制动力相同)就容易产生打滑、倾斜和侧翻等现象。

当紧急刹车车轮抱死的情况下,EBD在ABS动作之前就已经平衡了每一个轮的有效地面抓地力,可以防止出现甩尾和侧移,并缩短汽车制动距离。

EBD实际上是ABS的辅助功能,它可以改善提高ABS的功效。所以在安全指标上,汽车的性能又多了“ABS+EBD”。

EBD电子制动力分配系统

EBD能够根据由于汽车制动时产生轴荷转移的不同,而自动调节前、后轴的制动力分配比例,提高制动效能,并配合ABS提高制动稳定性。汽车在制动时,四只轮胎附着的地面条件往往不一样。比如,有时左前轮和右后轮附着在干燥的水泥地面上,而右前轮和左后轮却附着在水中或泥水中,这种情况会导致在汽车制动时四只轮子与地面的摩擦力不一样,制动时容易造成打滑、倾斜和车辆侧翻事故。EBD用高速计算机在汽车制动的瞬间,分别对四只轮胎附着的不同地面进行感应、计算,得出不同的摩擦力数值,使四只轮胎的制动装置根据不同的情况用不同的方式和力量制动,并在运动中不断高速调整,从而保证车辆的平稳、安全。

ABS的主要作用是改善整车的制动性能,提高行车安全性,防止在制动过程中车轮抱死(即停止滚动),从而保证驾驶员在制动时还能控制方向,并防止后轴侧滑。其工作原理为:紧急制动时,依靠装在各车轮上高灵敏度的车轮转速传感器,一旦发现某个车轮抱死,计算机立即控制压力调节器使该轮的制动分泵泄压,使车轮恢复转动,达到防止车轮抱死的目的。ABS的工作过程实际上是“抱死—松开—抱死—松开”的循环工作过程,使车辆始终处于临界抱死的间隙滚动状态,有效克服紧急制动时由车轮抱死产生的车辆跑偏现象,防止车身失控等情况的发生。

EBD的英文全称是Electric Brakeforce Dis-tribution,中文直译就是“电子制动力分配”。自动调节前、后轴的制动力分配比例,提高制动效能(在一定程度上可以缩短制动距离),并配合ABS提高制动稳定性。汽车制动时,如果四只轮胎附着地面的条件不同,比如,左侧轮附着在湿滑路面,而右侧轮附着于干燥路面,四个轮子与地面的摩擦力不同,在制动时(四个轮子的制动力相同)就容易产生打滑、倾斜和侧翻等现象。

当紧急刹车车轮抱死的情况下,EBD在ABS动作之前就已经平衡了每一个轮的有效地面抓地力,可以防止出现甩尾和侧移,并缩短汽车制动距离。

EBD实际上是ABS的辅助功能,它可以改善提高ABS的功效。所以在安全指标上,汽车的性能又多了“ABS+EBD”。

参考文献:

[1]严宇,刘天琪.基于神经网络和模糊理论的电力系统动态安全评估[J].四川大学学报,2004,36(1):106-110.

[2]张利平,唐德善,刘清欣.遗传神经网络在凝汽器系统故障诊断中的应用[J].水电能源科学,2004,22(1):77-79.

[3]刘红波,李少远,柴天佑.一种设计模糊PID复合控制器的新方法及其在电厂控制中的应用[J].动力工程,2004,24(1):78-82.

[4]顾伟军,彭亦功.智能控制技术及其应用.

[5]Lee T H Ge ,S S. Intelligent control of mechatronic systems [J].Pr oceedings of the 2003 IEEE International Symposium on Intelligent Con trol,2003,646-660.

[6]Li Mengqing; Zhang Chunliang; Yang Shuzi etc. Intelligent recognit ion using fuzzyneural network for trend & jump pattern in control cha rt[J]. China Mechanical Engineering, 2004 ,15(22):1998-2000.

[7] 严宇,刘天琪.基于神经网络和模糊理论的电力系统动态安全评估[J].四川大学学报,2004,36(1):106-110.

[8] 张利平,唐德善,刘清欣.遗传神经网络在凝汽器系统故障诊断中的应用[J].水电能源科学,2004,22(1):77-79.

[9] 刘红波,李少远,柴天佑.一种设计模糊PID复合控制器的新方法及其在电厂控制中的应用[J].动力工程,2004,24(1):78-82.

[10] 顾伟军,彭亦功.智能控制技术及其应用. PROCESS AUTOMATION IN STRUMENTATION. 2006

车辆智能控制技术的研究与应用

车辆智能控制技术的研究与应用 车辆1003 20104043 李琳

车辆智能控制技术的研究与应用 自从汽车被发明以来,人类对于驾驶汽车的看法就一直存在分歧,一部分人热衷于让汽车变得越来越好开,强调驾驶乐趣,让你的双手舍不得离开方向盘;然而另一部分人则更热衷于让汽车变得越来越“傻瓜化”,甚至要将驾驶者的双手从方向盘上解放出来……上世纪80年代开始热播的美剧《霹雳游侠》当中的KITT,正是后者思想的集大成者。正在读这篇文章的您也许就曾经被无敌的KITT 所深深吸引吧?当然人类的科技还根本无法达到科幻电视剧当中的效果,KITT 无与伦比的人工智能、让主人公高枕无忧的自动驾驶、车身超级耐打击的能力以及几乎不用加油的动力科技看上去几乎都是天方夜谭。然而随着汽车技术的发展,现实版“KITT”正在向人们走来,近些年来许多厂商都致力于无人自动驾驶技术的研发,宝马在这领域走在时代的前边。 现阶段的技术成果虽然无法实现《霹雳游侠》或者《钢铁侠》里面那样强大的技术,但是让车子短暂脱离驾驶员的控制而自主驾驶,还是已经成功实现了。宝马将一系列最先进的无人驾驶技术设备集成到了一辆看似非常普通的5系轿车里,这些设备能够在高速公路行驶时,接管驾驶员的所有操作,自主进行油门、刹车甚至超车的动作。 车辆自主变线超车 借助布置在车身四周的传感器,它甚至可以发现从辅路匝道进入主干道的车辆,自主采取加减速或者变道的措施,而具体选择那种操作,也是通过计算当时的行驶条件而决定的,也就是说它具备了自主判断交通状况的能力。而这一切,目前都能够在130km/h以下的车速来完成。

其实这些对于驾驶员来说再容易不过的驾驶操作,对于自动驾驶系统来说可是超级复杂的一件事情。车辆不仅需要随时准确侦测出自己处于道路中的哪一条车道上,更要认出车身周边的车辆或者物体。实现这样的感知,不仅需要普通雷达,更需要激光、超声波以及摄像头的辅助。 若要精确做出判断,上述的集中探测装置至少需要两种协同作用。目前这辆能够自主驾驶的宝马5系轿车已经在驾驶员极少干预的前提下,安全行驶了3000英里。这都要归功于全车所有精良的设备。再有一点就是,这项技术的应用普及速度可能远超过你的想象,有消息称该技术在2014年的宝马i3上就会开始搭载,届时你可要分清路上开车的到底是人还是车自己了。然而一向强调给驾驶者带去驾驶乐趣的宝马开发这么一个产品,缺失会让人觉得有些意外,宝马官方给出的解释是,这项技术并不会完全将驾驶者从眼观六路耳听八方中抽离开来,所以不要指望你能在开车上班的路上睡上一觉…… 1 悬架的研究方法 (1)理论研究[1] 悬架系统的理论研究具有前瞻性和探索性,为智能悬架系统的物理实现奠定理论基础。其主要研究内容: a.悬架力学模型理论研究。悬架力学模型是振动理论中的隔振和减振理论的实际应用,通过振动理论的深入研究,全面综合研究悬架的减振和隔振性能、悬挂系统的非线性特性。 未来几年中,动力学、振动与控制领域的下述研究前沿值重视:①高维非

智能控制整理

第一章: 1、传统控制方法包括经典控制和现代控制,是基于被控对象精确模 型的控制方式,缺乏灵活性和应变能力,适于解决线性、时不变性等相对简单的控制。 2、智能控制的研究对象具备以下的一些特点:不确定性的模型、高度的 非线性、复杂的任务要求。 3、IC(智能控制)=AC(自动控制)∩AI(人工智能) ∩OR(运筹学) 4、AC:描述系统的动力学特征,是一种动态反馈。AI :是一个用来模拟人 思维的知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。OR:是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。 5、智能控制:即设计一个控制器,使之具有学习、抽象、推理、决策等功能, 并能根据环境信息的变化作出适应性,从而实现由人来完成的任务。 6、智能控制的几个重要分支为模糊控制、神经网络控制和遗传算 法。 7、智能控制的特点:1,学习功能2,适应功能3,自组织功能4,优化功能 8、智能控制的研究工具:1,符号推理与数值计算的结合2,模糊集理论3,神 经网络理论4,遗传算法5,离散事件与连续时间系统的结合。 9、智能控制的应用领域,例如智能机器人控制、计算机集成制造系统、工 业过程控制、航空航天控制和交通运输系统等。 第二章: 10、专家系统:是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。 11、专家系统的构成:由知识库和推理机(知识库由数据库和规则库两部分构成) 12、专家系统的建立:1,知识库2,推理机3,知识的表示4,专家系统开发语言5,专家系统建立步骤。 13、专家控制:是智能控制的一个重要分支,又称专家智能控制。所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。

智能控制理论简述

智能控制理论简述 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。智能控制是指驱动智能机器自主地实现其目标的过程,即无需人的直接干预就能独立地驱动智能机器实现其目标。其基础是人工智能、控制论、运筹学和信息论等学科的交叉,也就是说它是一门边缘交叉学科。 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 近20年来,智能控制理论(IntelligentControl Theory)与智能化系统发展十分迅速[1].智能控制理论被誉为最新一代的控制理论,代表性的理论有模糊控制(Fuzzy Control)、神经网络控制(Neural Networks Control)、基因控制即遗传算法(Genetic Aigorithms)、混沌控制[2](Chaotic Control)、小波理论[3](Wavelets Theo-ry)、分层递阶控制、拟人化智能控制、博奕论等.应用智能控制理论解决工程控制系统问题,这样一类系统称为智能化系统。它广泛应用于复杂的工业过程控制[4]、机器人与机械手控制[5]、航天航空控制、交通运输控制等.它尤其对于被控对象模型包含有不确定性、时变、非线性、时滞、耦合等难以控制的因素.采用其它控制理论难以设计出合适与符合要求的系统时,都有可能期望应用智能化理论获得满意的解决。 自从“智能控制”概念的提出到现在,自动控制和人士_智能专家、学者们提出了各种智能控制理论,下面对一些有影响的智能控制理论进行介绍。 (1)递阶智能(Hierarchical IntelligentControl) 阶智能控制是由G.N.Saridis提出的,它是最早的智能控制理论之一。它以早期的学习控制系统为基础,总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。递阶智能控制遵循“精度随智能降低而提高”的原理分级分布。该控制系统由组织级、协调级、执行级组成。在递阶智能控制系统中,

2019级智能控制技术专业人才培养方案

(3+2)智能控制技术专业人才培养方案 一、专业名称及代码 专业名称:智能控制技术 专业代码:560304 二、招生对象、学制及学历 本专业招收普通初中毕业生,全日制五年,其中中职3年、高职2年。 三、人才培养目标与规格 1.人才培养目标 本专业主要针对锦州地区对智能控制技术技能型人才的需要,面向新型工业化的机电制造、新能源、电力和新型建材等行业,从事智能化电气元件的设计、制造、调试、维护和管理的高级技术应用性专门人才。能完成智能化设备及其生产线的安装调试、运行和维护;智能电气元件的自动化设计与改造、故障诊断、管理与售后;智能配电柜的设计制造等典型工作任务,具有较强的实践动手能力、拥护党的基本路线,德、智、体、美全面发展的高级技术应用型人才。 三、培养规格及课程体系: 能力、素质结构如下表:

六、专业核心课程简介

七、实践教学安排表 八、专业教学计划 1.教学执行计划

填写说明:打*号课时由讲座、班会、讨论、竞赛等形式完成, 2、教学环节综合分析 (1) 理论教学与实践教学比例分析 学时与学分分析 (2) 九、教学实施保障 1.师资队伍配备 (1)“双师型”专业教学团队 智能控制专业教学团队由专、兼职教师组成,本专业的专职专业教师为28人,兼职教师16其中,专业带头人1人,专业骨干教师4人;具有高级以上职称12人、具有中级职称10人;双师型教师24人;均为大学本科以上学历。教师队伍的职称、学历、专业能力满足教学要求。 (2)专业带头人 专业带头人具有本科学历,副高职称,具有双师能力;有较高的专业建设水平和企业实践能力;掌握国内外职业教育与专业发展动态,能够在专业规划、专业建设、科研与教研、教学改革和青年教师培养等方面发挥引领作用。 (3)专业骨干教师 专业骨干教师应具有本科以上学历,讲师以上职称,具有中高级职业资格证书,具有双师能力;独立承担一门以上工学结合专业主干课程,能够独立完成课程开发和教学改革项目,在专业建设中发挥骨干作用。 (4)企业兼职教师 兼职教师为锦州地区机电类相关企业和学校的能工巧匠,具有从事5年以上机电专业的

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

学校智能控制技术专业可行性报告

江西师范高等专科学校开设智能制造相关 专业的可行性报告 一、智能制造产业现状分析 1.智能制造产业上升到国家战略 近年来,随着世界各国在智能制造产业投入和发展,新的科技革命和产业革命能正在兴起,各国纷纷出台啦以智能制造为核心的战略。美国大力推进“工业互联网”,德国提出工业4.0的概念都致力于发展制造业的“未来工厂”的项目。智能制造不仅是全球制造业的发展方向,也是我国战略性新兴产业的重要支柱。中国制造业已经进入了新的阶段,智能制造是我国制造业摆脱高损耗和低效率的困局、提高制造业竞争力、实现“制造强国”的必由之路。 2.人才需求旺盛 与之相适应的智能控制相关的工业机器人、3D打印、智能飞行器等方面的人才的需求急速增加,尤其是工业机器人的人才需求尤为突出。传统制造业的改造提升、人工成本快速提高促使企业用工业机器人来提高产业附加值、保证产品质量,使工业机器人及智能装备产业面临前所未有的发展时机。一台工业机器人(机械臂)能否投入到生产当中去,以及能发挥多大的作用,取决于生产工艺的复杂性,产品的多样性还有周边设施的配套程度。而解决这些问题却需要3到5名相关的操作维护和集成应用人才。目前在长三角地区使用工业机器人的企业六千多家,人才缺口达5000人左右。不仅企业需要工业机器人现场编程、机器人自动化线维护等方面的人才,还需要大量从事工业机器人安装调试和售后服务等工作的专门人才。随着我国制造业的发展,预计未来3-5年,工业机器人的增速有望达到25%,高技能人才缺口将逐年加大。 3.工业机器人技术人才短缺

目前,机器人在汽车制造以外的一般工业领域应用需求快速增长,而相应的人才储备数量和质量却捉襟见肘。工业机器人应用(系统集成)是典型的多学科交叉融合的行业,目前的当务之急,是大量培养掌握机器人系统知识并能与各行业工艺要求相结合的应用工程人才,帮助用户解决机器人的应用的实际问题,取得实效,以此开拓机器人市场。从一些招聘要求不难看出,操作机器人的技术人员,是目前企业中最缺的技术工人。企业把工业机器人买回来以后,想要把标准的机器人变成一台可以投入生产的专用自动化设备,这就需要机器人应用工程师结合生产工艺和工件的类型,通过手动示教编程并结合周边的辅助设施,才能使机器人完成特定的任务。目前国内高职院校尚无工业机器人应用方面的对口专业毕业生,从事工业机器人现场编程、机器人自动线维护、工业机器人安装调试等岗位的人员主要来自对电气自动化技术、机电一体化等专业毕业生的二次培训,而且短期培训难以达到岗位要求。 二、我校开设智能制造相关专业的必要性 1.具备开设智能制造(工业机器人方向)专业的办学基础。 我校现有机电一体化技术、电气自动化技术等高职专科专业,这些为我系工业机器人技术专业的申办提供了良好的基础。首先具备一支结构合理、素质优良的专业教学团队,我院机电一体化技术专业现有机械、电子电气类16位专任教师,具备开设专业的基础,其中2位从企业引进的企业能工巧匠作兼职教师,专任教师中硕士11人,副高职称以上4人,“双师型”教师16人;其次,实验实训条件良好,目前具备开设此专业所需的电工电子实验室、电气拖动、电工实训、液压与气动、机械制图、先进制造、CAD机房、单片机实验室等实训室12个,只需补充机器人、传感器检测实训室就能满足专业建

智能控制技术试卷

一、选择题 1、蔡自兴教授提出智能控制系统的四元结构,认为智能控制是人工智能、控制理论、系统理论和运筹学四种学科的交叉。 2、专家是指在某一专业领域内其专业知识与解决问题的能力达到很高水平的学者。 3、专家系统中的知识按其在问题求解中的作用可分为三个层次,即数据级、知识库级和控制级。 4、不确定性知识的表示有三种:概率、确定性因子和模糊集合。 5、Hebb学习规则是一种无教师的学习方法,它只根据神经元连接间的激活水平改变权值,因此这种方法又称为相关学习和并联学习。 6、交叉运算是两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。 二、判断题 1、IEEE控制系统协会把智能控制归纳为:智能控制系统必须具有模拟人类学习和自适应的能力。(T ) 2、不精确推理得出的结论可能是不确定的,但会有一个确定性因子,当确定性因子超过某个域值时,结论便不成立。( F ) 3、一般的专家系统由知识库、推理机、解释机制和知识获取系统等组成。(T ) 4、人机接口是专家系统与领域专家、知识工程师、一般用户间进行交互的界面,由一组程序及相应的硬件组成,用于完成知识获取工作。( F ) 5、Hopfield神经网络是反馈神经网络中最简单且应用广泛的模型,它具有联想记忆的功能。(F ) 6、知识是将有关的信息进一步关联在一起,形成了更高层次含义的一种信息结构,信息与关联是构成知识的两个基本要素。(T ) 7、建造知识库涉及知识库建造的两项主要技术是知识获取和知识存放。(F ) 8、模糊控制系统往往把被控量的偏差(一维)、偏差变化(二维)以及偏差的变化率(三维)作为模糊控制器的输入。(T ) 9、RBF网络的学习过程与BP网络的学习过程是类似的,两者的主要区别在于使用了相同的激励函数。(F ) 10、应用遗传算法求解问题时,在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自信组织搜索。(T ) 三、简答题 1.分别说明专家系统与专家控制系统? 答:专家系统就是利用存储在计算机内的某一特定领域内人类专家的知识,来解决过去需要人类专家才能解决的现实问题的计算机系统。专家控制是将人工智能领域的专家系统理论和技术与控制理论方法和技术相结合,仿效专家智能,实现对较为复杂问题的控制。基于专家控制原理所设计的系统称为专家控制系统。 2.人工神经网络中两种典型的结构模型是什么?它们进行学习时具有哪些特点? 答:两种典型的结构模型是前馈神经网络和反馈神经网络。前馈神经网络有感知器和BP网络等;主要采用 学习规则,这是有教师学习方法。反馈神经网络有Hopfield神经网络、Boltzmann机网络等;主要采用Hebb学习规则,概率式学习算法。 3.应用遗传算法计算时,设计编码的策略与编码评估准则(即编码原则)是什么?

智能控制技术及其发展趋势

智能控制技术及其发展趋势 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。 一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统。智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。

智能控制及其在机电一体化系统中的应用 张惠

智能控制及其在机电一体化系统中的应用张惠 发表时间:2019-06-10T14:14:59.703Z 来源:《防护工程》2019年第5期作者:张惠李春生郭慧洁连丽锋 [导读] 智能控制技术弥补了传统控制技术的缺点,并将其自身优点发扬光大,使机电一体化系统更加完善,其作用运用在各个领域。 摘要:目前我国科技发展的十分迅速,智能控制被广泛应用于机电一体化系统中。本文分析机电一体化系统中智能控制的应用,它改变了传统的生产效率低,质量差等问题,节省了人工,提高工作效率,备受各行各业青睐。以推动工业发展为前提,阐述机电一体化系统中智能控制的应用,有效地促进企业的现代化发展。 关键词:智能控制;机电一体化系统;应用 引言 机电一体化系统的重要组成包括驱动、机械、测试、控制、信息等方面,随着经济科技的飞速发展,这些综合技术也要随着时代去改变、去创新。其中在机电一体化系统中融入智能控制技术就是信息化的体现。智能控制技术弥补了传统控制技术的缺点,并将其自身优点发扬光大,使机电一体化系统更加完善,其作用运用在各个领域。 1机电一体化系统 我们通常所说的机电一体化系统,就是指最近兴起的一种用于微电子方面的技术,这个系统有机地对多项技术进行融合,其中就包括了机械、信息、电工、微电子、传感器等多项技术,依靠包括机械设备、计算机设备与电子元件在内的多项硬件构成,并依赖电子、微机还有通信等多项操作用于系统的软件构成,管控用于生产的系统还有设备。 我们将大部分应用于机电一体化成品和执行一体化的系统称为机电一体化系统,这个系统主要由五个部分构件所构成,一是信息处理的构件,二是控制的构件,三是用于供应电力的构件,最后还有机械的构件和用于执行的构件。这个系统的应用在于可以很大程度的减少能源损耗,提高生产的精细程度。所以可以说是一种综合性的功能性技术。 2智能控制技术 2.1数字控制技术 数字控制主要是应用数字化、智能化设备,将其应用在机电一体化系统中,是对预定的产品精密的加工,加工过程中的问题可以进行自动处理,除此之外还可以检测作业环境。 2.2智能数控机床设备 数控机床在机电一体化系统中是不可缺少的一部分,通过智能控制技术,直接提高机床设备运行效率,保证精准性。将智能控制技术和数控机床相结合,芯片、CPU控制系统会在智能控制的作用下得到优化,提高产品质量。由此可见,将智能控制技术应用于机床设备,为其赋予智能性特点,全面提高机床工作效率,保证生产过程的安全性与准确性,这对于机电一体化系统运行有重要作用。 2.3智能机器人(机械臂) 机器人技术在我国已经有一些研究成果,相关技术的实际应用十分复杂。例如应用在动力领域,不仅具有多变性,还呈现出使用领域的限制,对于环境感受传导,会应用到诸多传感器,增加接收的信息以及传感任务。如果应用智能控制技术,便可以将机器人技术进行优化,获得更好的效果。 3机电一体化系统中智能控制的应用 3.1机电一体化系统中智能控制在机械制造中的应用 智能控制是当下机电一体化的发展方向。智能控制可以模拟人的脑力劳动、动作以及专家的一系列智能活动,为我们提供更好的服务。机械制造是机电一体化系统中的重要环节之一,在机械制造中对智能控制的应用,可有根据智能控制中的数据得出相关的结论,可以利用数学理念以及神经网络系统监控整个机械制造的过程,构建动态、立体的环境建设模型。智能控制在机械制造中的应用,实现了智能学习、智能诊断、智能监控、智能传感器等方面技术的融合,推动了机械制造的数字化进程。 3.2应用在GPS农业机械系统中 随着机电一体化系统的不断完善,农业机械领域也运用了智能控制技术,使农业作业效率大大提升。要想农业机械的工作更加完美,绝对离不开GPS的应用。使用GPS定位系统,同时利用信息技术,可以将各种气候、各种地区的农作物的产量和农作物的其他信息采集起来,制作数据表格来作为农业方面的研究。将信息技术与GPS相结合,使GPS有着更加强大的功能,它可以将农业机械的位置坐标、农业现场的三维图像等等以电子信息的形式展现出来。有时候大型农业作业需要很多的农业机械来集体运作,GPS定位将在这个过程当中发挥极大的作用。 3.3机电一体化系统中智能控制在机器人研发中的应用 智能控制在机器人研发中的应用越来越广泛,机器人技术是当下高端技术之一。对机器人行为的控制,核心是要实现动力学控制,动力学理论具有非线性、实时变化性、高内聚性的特点。比如对于双足行走的机器人,我们可以将其看作动态二级倒立摆,体现了非线性的特点。在机器人的研发中还涉及繁杂的传感器信息数据,而机器人的控制系统属于多变量系统,具有较高的复杂性,要想机器人的平衡行动得到保障,就要同时执行多个命令,比如平衡调整命令、躲避障碍命令、规划动作命令等。传统的控制系统由于自身限制无法实现对机器人的全方位控制,而机电一体化系统中智能控制有效地弥补了传统控制系统存在的不足。 3.4在数控领域的应用 对于数控领域需求来说,数控机床的控制需求主要是依赖于传统的经典控制来建立部分模型,然而在模糊信息中,对于以往的经典控制离乱,没办法通过其进行建模,就是因为建模的一个条件是需要高准确度的信息,模糊推理规则的构建,模糊控制的实现,数据精确程度的降低,还有对加工步骤的不断改善,降低机床对运行环境的条件都是智能控制的应用。模糊理论,能够在数控系统中,通过轻微调节参数,有效地提高数控机床的性能,尤其是在适应性这一方面。而这一理论的基础,就是一体化系统中的一个部分,即智能控制。数控加工在算法方面有许多妙处,而插补计算就是其核心之一,然而在现实的计算过程中我们往往需要取点加工信息,见的最多的加工信息就是包括多个方面,即起点,终点、线型等,在以往的加工系统中,位置软件在调控增益方面的表现往往不尽人意依据现有的技术条件,我们

智能控制习题答案54733

第一章绪论 1. 什么是智能、智能系统、智能控制? 答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”。 “智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。 “智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。 2.智能控制系统有哪几种类型,各自的特点是什么? 答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。 各自的特点有: 集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管 AHA12GAGGAGAGGAFFFFAFAF

理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。 人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。可以说是一种模拟人类专家解决领域问题的计算机程序系统。 多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。这种结构的特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。2.信息在上下级间垂直方向传递,向下的信息有优先权。同级控制器并行工作,也可以有信息交换,但不是命令。3.上级控制决策的功能水平高于下级,解决的问题涉及面更广,影响更大,时间更长,作用更重要。级别越往上,其决策周期越长,更关心系统的长期目标。4.级别越往上,涉及的问题不确定性越多,越难作出确切的定量描述和决策。 学习控制系统:靠自身的学习功能来认识控制对象和外界环境的特性,并相应 地改变自身特性以改善控制性能的系统。这种系统具有一定的识别、判断、记 AHA12GAGGAGAGGAFFFFAFAF

智能控制理论及其应用论文

智能控制理论及其应用 [摘要] 本文回顾了智能控制理论的提出与发展过程,介绍了智能控制的特点,给出了智能控制理论的主要类型及其特点,列举了智能控制理论与技术的主要应用领域,最后总结了智能控制理论的发展趋势。 [关键词] 智能控制模糊控制神经网络专家控制[abstract] this paper reviewed the development of intelligence control, and introduced its main methods and characteristics, and particularized their mostly application fields, and pointed out the prospects of intelligent control development trend and put forward the study direction. [key words] intelligent control fuzzy control net neural expert control 0.引言 随着工业和自动化技术的发展,控制理论的应用日趋广泛,所涉及的控制对象日益复杂化,对控制性能的要求也越来越高,控制对象或过程的复杂性主要体现在系统缺乏精确的数学模型、具有高维的判定空间、多种时间尺度和多种性能判据等,要求控制理论能够处理复杂的控制问题和提供更为有效的控制策略。现代控制理论从理论上解决了系统的可观、可控、稳定性以及许多复杂系统的控制。但实际中的许多复杂系统具有非线性、时变性、不确定性、多层次、多因素等热点,难以建立精确的数学模型,因此需要引入新

机电一体化系统中的智能控制技术应用

机电一体化系统中的智能控制技术应用 摘要:近年来,随着我国科学技术的不断发展,使机电一体化系统在智能化和 自动化的研究中得到普及。全新技术的应用极大程度的转变了以往的产业模式, 有效提高了生产效益,同时也提高了产品质量的稳定性。本文就对机电一体化系 统中智能控制技术的应用进行探讨。 关键词:机电一体化;智能;控制;应用 随着我国经济水平的不断提高,各行各业的竞争力逐渐加大,市场经济环境 变得日益复杂。在这一经济发展背景下,各个行业只有不断优化自身的缺点、完 善自己,才能在激烈的竞争中屹立不倒。机电一体化系统是我国应用范围最广的 系统,对于一个工业大国来说至关重要,所以对于机电一体化系统的发展,我们 要不断改进其不足,提高其可靠性与高效性。 1、智能控制概述 智能控制的目标在于无人参与的条件下,也能通过实现的程序来进行自动化 操作,驱动设备进行生产活动,实现程序目标。该项技术属于机械模拟的应用, 用计算机对人类控制模式进行了模仿和替代,在复杂性和系统性的工作要求下, 能够更加稳定的完成工作目标。同时,该项技术在现代化社会也取得了广泛的应用,实现了传统控制模式对复杂系统控制无力的问题。该项技术由多个学科交叉 融合而成,综合了包括信息理论、统筹学、计算机科学、人工智能以及自动化控 制理论等内容。经过多年的研究和发展,智能控制已经具备了相当的优势:1) 智能控制的核心在高层控制,即组织级。2)智能控制器具有非线性特性。3)智 能控制具有变结构特点。4)智能控制器具有总体自寻优特性。5)智能控制系统 应能满足多样性目标的高性能要求。 现阶段,智能控制的主要类型包括集成或者混合(复合)控制、分级递阶控 制系统、专家控制系统、人工神经网络控制系统、学习控制系统以及进化计算与 遗传算法。相信在未来智能控制会取得更大的成果,尤其是在智能控制系统本身 的学习功能和组织功能不断强化之后,在机电一体化系统中也会发挥更大的作用,对于工业生产质效的提升贡献更多力量,促进工业升级。 2、机电一体化系统的特点 2.1综合性 机电一体化系统是由信息技术、控制技术和系统理论技术组成的复合型一体 化系统,机电一体化系统中包含工业生产中控制管理功能、机械生产功能、机械 检测功能等,具有较高的综合能力。 2.2智能性 机电一体化系统的应用根本上转变了传统机械处理的现象,例如,微处理技 术的应用彻底的改变了传统的控制方式,并且有效的提高了控制的精度。机电一 体化系统中的机械构成主要为仪表、传感器,通过对机械一体化系统中的参数调 整和设置可以使机电一体化系统发挥出不同的功能和特性,这一原因使机电一体 化系统的应用较为广泛。通过智能化系统的应用,传感器可以将自身收集的信息 反馈传输到中央处理器,实现智能化的处理方式。 2.3完整性 机电一体化系统主要包含了微处理器、传感器、动力系统、传输系统以及执 行构件等,所以机械一体化系统属于较为完善的系统,机电一体化系统通过对多 种技术的有效融合,使得机电一体化系统可以为各个行业的工业生产提供更加优

智能控制发展趋势及应用

智能控制的发展趋势和应用 学号0000000 姓名****** 老师钟春富

摘要:描述了智能控制产生的历史以及全世界对于智能控制有研究的多个国家在智能控制的研究方向以及研究水平,介绍了智能控制的发展趋势以及智能控制发展面临的问题,详述了智能控制的主要研究方向,说明了智能控制的应用方向以及具体应用,展望了智能控制的发展前景以及对于社会生产和日常生活的积极意义。 关键词:智能控制、模糊控制、神经网控制、专家控制、智能化。 一、智能控制的产生 人类的进化归根结底是智能的进化,而智能反过来又为人类的进步服务。我们学习与研究智能系统、智能机器人和智能控制等,其目的就在于创造和应用智能技术和智能系统,从而为人类进步服务。因此,可以说对智能控制的钟情、期待、开发和应用,是科技发展和人类进步的必然趋势。 在科学技术发展史上,控制科学同其他技术科学一样,它的产生与发展主要由人类的生产发展需求和人类当时的知识水平所决定和限制的。 20世纪以来,特别是第二次世界大战以来,控制科学与技术得到了迅速的发展,由研究单输入单输出被控对象的经典控制理论,发展成了研究多输入多输出被控对象的现代控制理论。1948年,美国著名的控制论创始人维纳(N.Wiener)在他的《控制论》中第一次把动物和机器相提并论,引起哲学界的轩然大波,有人骂控制论是“伪科学”。 直到1954年钱学森博士在《工程控制论》中系统地揭示了控制论这一新兴学科对电子通讯、航空航天和机械制造工业等领域的重要意义和深远影响后,反控制论的热潮才逐渐开始平息。20世纪60年代,由于空间技术,海洋技术和机器人技术发展的需要,控制领域面临着被控对象的复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的复杂性和不确定性表现为对象特性的高度非线性和不确定性,高噪声干扰,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。 面对复杂的对象,复杂的环境和复杂的任务,用传统控制(即经典控制和现代控制)

智能控制理论与方法

智能控制理论与方法 智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、神经生理学、进化计算和计算机等多种学科的高度综合与集成,是一门新兴的边缘交叉学科。它不仅包含了自动控制、人工智能、运筹学和信息论的内容,而且还从计算机科学、生物学、心理学等学科中汲取营养。什么又是智能控制理论呢? 智能控制的概念和原理是针对被控对象及其环境、控制目标或任务的复杂性和不确定性而提出来的。对“智能控制”这一术语没有确切的定义,但是也有前辈做过归纳总结的,例如,IEEE控制系统协会归纳为:只能控制系统必须具有模拟人类学习(Learning)和自适应(Adaptation)的能力。智能控制系统是智能机自动完成其目标的控制过程,由智能机参与生产过程自动控制的系统称为智能控制系统。定性的说,智能控制系统应具有学习、记忆和大范围的自适应和自组织能力;能够及时地适应不断变化的环境;能有效的处理各种信息,以减小不确定性;能够以安全和可靠地方式进行规划、生产和执行控制动作而达到预定的目的和良好的性能指标。 智能控制系统一般具有以知识表示的非数学广义模型和艺术学模型表示的混合控制过程。它适用于含有复杂性、不完全性、模糊性、不确定和不存在的已知算法的生产过程。它根据被控动态过程特征辨识,采用开闭环控制盒定性与定量控制相结合的多模态的控制方式。 智能控制器具有分层信息处理和决策机构。它实际上是对人神经

结构或专家决策机构的一种模仿。复杂的系统中,通常采用任务分块、控制分散方式。智能控制核心在高层控制,它对环境或过程进行组织、决策和规划,实现广义求解。要实现此任务需要采集符号信息处理、启发式程序设计、知识展示及自动推理和决策的相关技术。底层控制也属于智能控制系统不可缺少的一部分,一般采用常规控制。智能控制器也具有非线性。这是因为认得思维具有非线性,作为模仿人的思维进行决策的智能控制也具有非线性。由于智能控制器具有在线特征辨识、特征记忆和拟人特点,在整个控制过程中计算机在线获取信息和实时处理并给出控制决策,通过不断优化参数和寻找控制器的最佳结构方式,以获取整体最有控制性能。 模糊控制系统是智能控制的重要组成部分。模糊控制器是非线性控制器,许多传统的建模、分析和设计方法可以直接采用。任何的控制都有其数学理论和数学基础,模糊控制系统的数学基础是模糊集合、模糊规则和模糊推理。模糊集合就是指具有某个模糊概念所描述的属性的对象的全体,这一概念是美国加利福尼亚大学控制论专家L.A.扎德于 1965 年首先提出的。模糊集合这一概念的出现使得数学的思维和方法可以用于处理模糊性现象,从而构成了模糊集合论(中国通常称为模糊性数学)的基础。 模糊控制的核心就是利用模糊集合理论,把表达的人控制策略的自然语言转化为计算机能够承受的算法语言的控制算法,这种方法不仅能实现控制,而且能模拟人的思维方式,对一些无法构造的数学模 型的被控对象进行有效的控制。模糊控制与一般的自动控制的根本区

智能控制技术的发展现状及心得体会

智能控制技术的发展现状及心得体会 摘要: 在此综述了智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法,然后介绍智能控制在各行各业中的应用现状,接着论述智能控制的国内外发展和现状。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出创新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制模糊控制神经网络遗传算法 一、引言 智能控制作为当今的一种交叉前沿学科,其研究中心始终是解决传统控制理论、方法(包括经典控制、现代控制、自适应控制、鲁棒控制、大系统方法等)所难以解决的不确定性问题。自智能控制概念的提出,自动控制界纷纷仿效,主流是人工智能技术引入到自动控制系统中,寻求难以精确建模的复杂系统的自动控制(自治)。 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 二、智能控制的性能特点 智能控制是自动控制发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂、非线性和不确定的系统控制问题。智能控制系统具有以下几个特点:(1)较强的学习能力: 能对未知环境提供的信息进行识别、记忆、学习、融合、分析、推理,并利用积累的知识和经验不断优化、改进和提高自身的控制能力; (2)较强的自适应能力: 具有适应受控对象动力学特性变化、环境特性变化和运行条件变化的能力; (3)较强的容错能力: 系统对各类故障具有自诊断、屏蔽和自恢复能力; (4)较强的鲁棒性: 系统性能对环境干扰和不确定性因素不敏感; (5)较强的组织功能: 对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有主动性和灵活性; (6)实时性好:

相关文档
相关文档 最新文档