文档库 最新最全的文档下载
当前位置:文档库 › 高等化工热力学第一章作业

高等化工热力学第一章作业

高等化工热力学第一章作业
高等化工热力学第一章作业

1.1 如果流体服从van der Waals 方程,请导出A 和G 的偏离函数以及逸度系数?的表达式。 解:

已知 van der Waals 方程的表达式:m m

a

(+

)(V -b )=RT P V

所以 2m m

RT a

P V b V =--

由0

0()ln M

V m M M m m m

V RT

A A p dV RT V V ∞

-=--

-?将van der Waals 方程代入可得: 0

20()ln M

V m M M m m m m m V RT a RT

A A dV RT V b

V V V ∞-=-----?

=0ln

ln m m m m m V b V a

RT RT V V V ---

- =0

ln m m

m V b a RT V V ---

由00

0p M M M M m m G G A A pV V -=-+-

=0

ln

m m m m m m

V b RTV a a

RT RT V V b V V ---

+--- =0

2ln

m m

m m V b a

bRT RT V V b

V ---+-

由φ=f

P ,所以00p ln ln p

M M G G RT ?-=

- =00m m 02

m m a 2ln ln (-)-b m m m m V b V V a

b

RTV V b RT V V V ---+--

1.2 请根据下列丙酮(1)-氯仿(2) 溶液的实验数据 (35.17℃) 计算 (1)以纯液态为标准态,丙酮的活度及活度系数, (2)以无限稀释为参考态,氯仿的活度及活度系数。 解:

(1)若以纯态为标准态,则x 1=1,α1=1,γ1=1,P 01=45.93 kPa ,

由拉乌尔定律:

00111111P P P x αγ==

以第二组数据为例,计算过程如下: 110143.09

0.938245.93

P P α=

=

= 11

11

2

0.9381

0.996810.0588

1x x ααγ=

=

=

=--

其他数据计算过程相同,结果整理成表,如表1.2所示。

(2)若以无限稀释为参考态,则x 2=1,γ2=1,由亨利定律: 222222P H H x αγ== 则将x 2=1,γ2=1带入可得:222239.08

39.081

P H x γ=

== kPa , 以第三组数据为例,计算过程如下: 222 1.230.031539.08P H α=

== 2220.03150.53530.0588x αγ∞

=== 3232 2.720.069639.08P H α=== 232323

0.06960.56490.1232x αγ=

=

=*2322

0.5649 1.05540.5353γγγ∞

=== **

23223 1.05540.12320.1300x αγ==?=

x 2 0.0000 0.0588 0.1232 0.2910 0.4232 0.5143 0.6635 0.7997 0.9175 1.000

p 1 / kPa 45.93 43.09 39.90 30.70 23.28 18.00 10.53 5.00 1.73 0.0 p 2 / kPa 0.000

1.23

2.72

7.39

11.85

15.71

22.69

29.92

35.61

39.08

x 2

0.0000 0.0588 0.1232 0.2910 0.4232 0.5143 0.6635 0.7997 0.9175 1.000

α1 / kPa ------- 0.9968 0.9908 0.9427 0.8787 0.8069 0.6813 0.5435 0.4566 ------- γ1

-------

1.0590 1.1300 1.3297 1.5235 1.6613

2.0247 2.7134 5.5340 ------- α2 / kPa ------- 0.0588 0.1300 0.3533 0.5665 0.7510 1.0847 1.4303 1.7023 ------- *

2

γ -------

1.0000 1.0554 1.2140 1.3386 1.4603 1.6348 1.7886 1.8554

-------

1.3 已知对45℃时四氯化碳(1)-乙腈(2)混合物的平衡气相组成,总蒸气压及混合热如下,请

分别计算:

(1)活度1a ,2a 与x 的关系曲线, (2)45℃时G ?及S T ?与x 的关系曲线, (3)ex

H

,ex G 及ex

TS 与x 的关系曲线。

x 1 0 0.128 0.317 0.414 0.631 0.821 1 y 1 0 0.400 0.521 0.560 0.608 0.670 1 P /kPa 27.50 40.53 48.01 48.65 49.09 47.10 34.50 △H /J/mol

414

745

860

930

736

解:(1)由气相压力可以计算二者的分压,均以第二组数据为例,计算过程如下: 11

?40.530.416.21f Py ==?= kPa

22

?(1)40.53(10.4)24.32f P y =-=?-= kPa 若均以无限稀释为参考态,则x 2=1,γ2=1, 易得134.5f = kPa ,227.5f = kPa 则 111?16.210.47034.5f f α=

== 222

?24.32

0.88427.5f f α=== 同理可计算其他组数据,结果整理如表1.3所示并分别以1a ,2a 对x 1作图,可得其关系曲线,如图1.3中的(1)所示。

(2)设四氯化碳和乙腈的总摩尔数为1, 则1122(ln +x ln )G RT x αα?= =8.314(273.1545)(0.128ln0.470+(1-0.128)ln0.884)?+??? = -539.32 J/mol = -T S H G ???

=414+539.32=953.32 J/mol

同理可计算其他组数据,结果整理如表1.3所示并分别以G ?、T S ?对x 1作图,可得其关系曲线,如图1.3中的(2)和(3)所示。 (3)ex id =-H H H ?? =414-0

=414 J/mol

e x i d

=-G G G ??

= -539.32- 1122(ln x +x ln x )RT x

=-539.32-8.314(273.15+45)(0.128ln 0.128+(1-0.128)ln(10.128))????-

=472.60 J/mol

ex id =T -T TS S S ??

=1122953.32(ln x +x ln x )RT x + 953.32

8.314(273.15+45)(0.128ln 0.128+(1-0.128)ln(10.128))=+????-

58.60=- J/mol

同理可计算其他组数据,结果整理如表1.3所示并分别以ex H 、ex

G 及ex

TS 对x 1作图,可得其关系曲线,如图1.3中的(4)、(5)所示。 x 1

0 0.128 0.317 0.414 0.631 0.821 1 α1 0.00 0.47 0.73 0.79 0.87 0.91 1.00 α2

1.00 0.88 0.84

0.78

0.70

0.57

0.00

G ?J/mol ------- -539.32 -592.70 -646.88 -590.29 -463.78 ------- T S ?/J/mol

------- 953.32 1337.70 1506.88 1520.29 1199.78 ------- ex H /J/mol

0 414 745

860

930

736

0 ex G /J/mol ------- 472.60 1059.40 1147.24 1151.30 779.08 ------- ex TS /J/mol

------- -58.60

-314.40 -287.24 -221.30 -43.08

-------

(5)

图1.3 各个热力学函数与x 1的关系曲线

1.4 已知NaCl 水溶液中NaCl 的浓度m B 及平均离子活度系数±m γ如下,请求出相应的x B 及

±x γ。

m B

0.001 0.01 0.1 0.5 1.0 2.0 4.0 6.0 ±m γ

0.9649

0.8960

0.7784

0.6811

0.6569

0.6676

0.7932

0.9862

解:

已知M A =18g/mol=0.018kg/mol, υ=2,以第二组数据为例,计算过程如下: 由x B 的定义可得其与m B 的关系式:

x B =

m 1B A A B

M M m υ+=

0.010.018

120.0180.01

?+??=41.8010-?

由电解质的m γ±与x γ±的关系式:

m =(1+m M )(120.010.018)0.89600.8963x B A γυγ±±=+???=

其他组数据的计算过程相同,将各组数据结果列表,如表1.4所示:

m B 0.001

0.01 0.1 0.5 1.0 2.0 4.0 6.0 ±m γ 0.9649 0.8960

0.7784

0.6811

0.6569

0.6676

0.7932

0.9862

x B 1.80510-? 1.80410-? 1.79310-? 8.84210-? 1.74210-? 3.36210-? 6.29110-? 8.88110-? x γ± 0.9649 0.8963 0.7812 0.6934 0.6805 0.7157 0.9074 1.1992

化工热力学详细答案

化工热力学详细答案

————————————————————————————————作者:————————————————————————————————日期:

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.5 6 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.6 4.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为 550.1cm 3·mol - 1所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为

化工导论69道简答题作业答案,可能有一两题的答案不怎么对

课程考核分成两部分,一是完成问答题,二是完成一份文献和网络检索总结小论文。 问答题部分: 1. 解释中文“化工”的含义,它包括哪些内容在现代汉语中,化学工业、化学工程 和化学工艺的总称或其单一部分都可称为化工,这是中国人创造的词。 化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化学工艺,也可指其综合。 2. 解释中文“化工”的含义。说明“工程”与“工艺”的关系,并举例说明。 (1)化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化学工艺,也可指其综合。 (2)应该说明的是化学工程为化学工艺、生物化工、应用化学、工业催化等学科提供了解决工程问题的基础。 3. 化学工业按原料、产品吨位、和化学特性各如何分类 (1)按原料分:石油化学工业、煤化学工业、生物化学工业、农林化学工业 (2)按产品吨位分:大吨位产品和精细化学品 (3)按化学特性分:无机化学工业、有机化学工业 4. 简述化工的特点是什么 (1)品种多(2)原料、生产方法和产品的多样性和复杂性 (3)化学工业是耗能大户 (4)化工生产过程条件变化大 (5)知识密集、技术密集和资金密集 (6)实验与计算并重 (7)使用外语多 5. 指出按现行学科的分类,一级学科《化学工程与技术》下分哪些二级学科它们的 关系如何在我国当前的学科划分中,以一级学科“化学工程与技术” 概括化工学科,并又分为以下五个二级学科:化学工程、化学工艺、应用化学、生物化工、工业催化。 化学工程为化学工艺、生物化工、应用化学和工业催化等学科提供了解决工程问题的基础。 6. 简述化学工程与化学工艺的各自的学科定义与研究内容 化学工程研究以化学工业为代表的过程工业中有关化学过程和物理过程的一般原理和共性规律,解决过程及装置的开发、设计、操作及优化的理论和方法问题。

化工热力学第1章解答

习题 第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 A ?,0=U ?,=T ?)2ln R =, G =?2. 3. 4. 5. ) 6. V )的自变 7. 1 T P 无关。) 8. 描述封闭体系中理想气体绝热可逆途径的方程是 γ γ) 1(1212-??? ? ??=P P T T (其中ig V ig P C C =γ), 而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。 (错。有时可能不一致) 10. 自变量与独立变量是不可能相同的。(错。有时可以一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 以V 表示) (以P 表示)。 4. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ???? ??--,?U =()112 1T P P R C ig P ??? ? ??--,?H = 112 1T P P C ig P ? ?? ? ??-。 B 等温过程的 W =2 1ln P P RT -,Q =2 1ln P P RT ,?U = 0 ,?H = 0 。 Q = 0 ,? 5. 1cm 2, 6. 7. 8. =8.314 J mol -1 K -1 1. t A 、B 两 室。两室装有不同的理想气体。突然将隔板移走,使容器内的气体自发达到平衡。计算 该过程的Q 、W 、U ?和最终的T 和P 。设初压力是(a )两室均为P 0;(b )左室为P 0,右室是真空。 解:(a )不变P T U W Q ,;0,0,0===? (b) 05.0,,;0,0,0P P T U W Q ====即下降一半不变? 2. 常压下非常纯的水可以过冷至0℃以下。一些-5℃的水由于受到干扰而开始结晶,由于 结晶过程进行得很快,可以认为体系是绝热的,试求凝固分率和过程的熵变化。已知冰 的熔化热为333.4J g -1和水在0~-5℃之间的热容为4.22J g -1 K -1。 解:以1克水为基准,即

化工热力学作业2

第六章 作业 6-2 某酒厂用96%(wt)的食用酒精配酒,酒中的乙醇含量为56%(wt)。现决定用1吨食用酒精进行配置,问需要多少水才能配置成所需的产品?所得酒有多少m 3 ?已经在250C 和10.133kPa 时水和乙醇的偏摩尔体积如下表所示: 250C 时水的比容为1.003cm 3 *g -1。 6-3 在300C 和10.133kPa 下,苯(1)和环己烷(2)的液体混合物的容积数据可用V=(109.4-16.8x 1-2.64x 12)*10 -6表示。式中:x 1为苯的摩尔分数;V 的单位是m 3*mol -1。已知苯的环己烷在300C 时的比重分别为0.870和0.757。求算300C 和10.133kPa 下1、2、、△V 的表达式。 6-4 在T 、P 为常数时,曾有人推荐用下面一对方程来表达某二元系的偏摩尔体积数据: 1 — V 1 = a + (b-a)*x 1 + b* x 1 2 2 —V 2 = a + (b-a)*x 2 + b* x 2 2 式中:只是温度和压力的函数,试问从热力学角度考虑,上述方程是否合理? 6-8 估算1100C 和27.5Mpa 的液体丙酮的逸度。已知1100C 时

丙酮的蒸汽压为0.436Mpa,饱和液体丙酮的摩尔体积为73cm3*mol-1。 6-17已知在250C、2.0Mpa时二元系中组分1的逸度表达式为 = 5.0*x1– 8.0*x12 + 4.0*x13 的单位为MPa。试计算在上述温度和压力下: (1) 纯组分1的逸度。 (2) 纯组分1。 (3) 组分1的亨利常数。 (4) 活度系数γ1与x1的关系式。 (5) 的表达式。 (6) 与的关系,求算在给定温度和压力下有组分1和2组成的混合物的逸度f。

化工热力学详细答案

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V =RT P =68.3146734.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.5 60.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==60.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 58.3146732.98710V -?-?-0.553.224(673)( 2.98710) V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ????=+=+?= ??????? V =1.390×10-3 m 3·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为 550.1cm 3·mol -1所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225

化工热力学答案(完整资料).doc

【最新整理,下载后即可编辑】 化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P = 6 8.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710V -?-?- 0.553.224 (673)( 2.98710) V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 6 6 4.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1

理想气体状态方程和范氏气体方程的关系

理工大学 化工热力学论文(大作业) 题目:理想气体状态方程和氏气体方程关系姓名: 专业:化学工程 学号:31307022 指导教师:乃文

理想气体状态方程和氏气体方程的关系 摘要:一般认为氏气体方程在大体积极限下和理想气体状态方程一样.不过理想气体还要求满足焦耳定律等,也就是能对体积的偏导数为零.由于能对体积的偏导数可以化为物态方程的一阶导数,是否能在状态方程一阶导数这一层次上也要求氏方程的大体积极限和理想气体一致就值得探讨.结果表明:如果在一阶导数层次上比较,氏气体方程在大体积极限下不能再回复到理想气体.推广氏方程让氏系数依赖于温度,可以得到实际气体在大体积极限下的一个渐近形式.关键词:理想气体方程;实际气体状态参数;氏气体

一、理想气体状态方程 在工程应用的围之,空气或一般气体,在压强不太大(与大气压 相比),温度不太低(与室温相比)的条件下,遵守5个基本实验定律, 可以称为理想气体。理想气体模型的微观特征:①分子间不存在相互 作用力。②分子的大小如同几何点一样,本身不占有体积。 气体热力学的5个基本实验定律是建立理想气体概念的实验依 据。气态方程是在基本实验规律的基础上直接得出的实验公式,克拉 珀龙方程则是在气态方程的基础上利用“摩尔体积”、“摩尔质量”等 概念进一步推导而成。气态方程的研究对象是一定质量的理想气体, 且与气体的状态变化过程相联系,克拉珀龙方程的研究对象是任意质 量的理想气体,它只与气体的某一状态相联系,因此,克拉珀龙方程 比气态方程具有更广泛的用途。从气态方程到克拉珀龙方程是人们的 认识从感性到理性,从特殊到一般的深化过程。 理想气体状态方程是最简单的状态方程。在工程设计中,可以用 理想气体状态方程进行近似的估算。它还可以作为衡量真实气体状态 方程是否正确的标准之一,当压力趋近干零或体积趋于无穷大时,任 何真实气体状态方程都应还原为理想气体状态方程。 根据克拉珀龙方程推导理想气体状态参数之间的函数关系。 g m PV nRT RT m T M R === (1) m m V V ρρ= ?= (2) V V v m m v =?= (3)

化工热力学第一章 习题解答

第一章习题解答 一、问答题: 1-1化工热力学与哪些学科相邻?化工热力学与物理化学中的化学热力学有哪些异同点? 【参考答案】:高等数学、物理化学是化工热力学的基础,而化工热力学又是《化工原理》、《化工设计》、《反应工程》、《化工分离过程》等课程的基础和指导。化工热力学是以化学热力学和工程热力学为基础。化工热力学与化学热力学的共同点为:两者都是利用热力学第一、第二定律解决问题;区别在于:化学热力学的处理对象是理想气体、理想溶液、封闭体系;而化工热力学面对的是实际气体、实际溶液、流动体系,因此化工热力学要比化学热力学要复杂得多。 1-2化工热力学在化学工程与工艺专业知识构成中居于什么位置? 【参考答案】:化工热力学与其它化学工程分支学科间的关系如下图所示,可以看出,化工热力学在化学工程中有极其重要的作用。 1-3化工热力学有些什么实际应用?请举例说明。 【参考答案】: ①确定化学反应发生的可能性及其方向,确定反应平衡条件和平衡时体系的状态。(可行性分析)

②描述能量转换的规律,确定某种能量向目标能量转换的最大效率。(能量有效利用) ③描述物态变化的规律和状态性质。 ④确定相变发生的可能性及其方向,确定相平衡条件和相平衡时体系的状态。 ⑤通过模拟计算,得到最优操作条件,代替耗费巨大的中间试验。 化工热力学最直接的应用就是精馏塔的设计:1)汽液平衡线是确定精馏塔理论板数的依据,可以说没有化工热力学的汽液平衡数据就没有精馏塔的设计;2)精馏塔再沸器提供的热量离不开化工热力学的焓的数据。由此可见,化工热力学在既涉及到相平衡问题又涉及到能量有效利用的分离过程中有着举足轻重的作用。 1-4化工热力学能为目前全世界提倡的“节能减排”做些什么? 【参考答案】:化工热力学是化学工程的一个重要分支,它的最根本任务就是利用热力学第一、第二定律给出物质和能量的最大利用极限,有效地降低生产能耗,减少污染。因此毫不夸张地说:化工热力学就是为节能减排而生的! 1-5化工热力学的研究特点是什么? 【参考答案】:化工热力学的研究特点: (1)从局部的实验数据加半经验模型来推算系统完整的信息; (2)从常温常压的物性数据来推算苛刻条件下的性质; (3)从容易获得的物性数据(p、V、T、x)来推算较难测定或不可测试 的数据(y,H,S,G); (4)从纯物质的性质利用混合规则求取混合物的性质; (5)以理想态为标准态加上校正,求取真实物质的性质。 其中最大的特点是将实际过程变成理想模型加校正的处理问题方法。

化工热力学考试复习题

化工热力学标准化作业一 一、是否题(正确划√号,错误划×号,并写清正确与错误的原因) 1、纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。 2、当压力大于临界压力时,纯物质就以液态存在。 3、由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。 4、纯物质的三相点随着所处的压力或温度不同而改变。 5、在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。 6、纯物质的平衡气化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零, 7、气体混合物的virial系数,如B、C…,是温度的函数。 8*、virial方程和RK方程既可以应用于汽相,又可以用于液相。 9*、在virial方程中,virial系数反映了分子间的相互作用。 10*、Pitzer普遍化方法即为普遍化的压缩因子方法。 二、填空题 1、T温度下的过热纯蒸气的压力p _____p s(T)。 2、表达纯物质的汽液平衡的准则有_____(吉氏函数)、__________(Claperyon方程)。它们(能/不能)推广到其它类型的相相平衡。 3、Lydersen、Pitzer的三参数对应态原理的三个参数分别为___________、__________。

4、对于纯物质,一定温度下的泡点压力与露点压力是______的(相同/不同);一定温度下的泡点与露点,在p-T图上是______的(重叠/分开),而在p-V图上是______的(重叠/分开);泡点的轨迹称为___________,露点的轨迹称为___________,饱和汽、液相线与三相线所包围的区域称为___________;纯物质汽液平衡时,压力称为______,温度称为______。 5、正丁烷的偏心因子ω=,临界压力p c=时,则在T r=时的蒸汽压为___________MPa。 6*、状态方程通常分为三类,分别是__________,__________,__________。7*、在状态方程的分类中,RK方程属于__________,virial方程属于__________。 8*、RK方程是在vdW方程的基础上建立起来的,vdW方程的形式是p=RT/(V -b)-a/V2,RK方程的形式为____________________。 三、计算题 1、将1mol甲烷压缩贮于容积为,温度为的钢瓶内,问此甲烷产生的压力有多大分别用(1)理想气体状态方程;(2)RK方程计算。已知甲烷的临界参数为T c=,p c=。RK方程中a=,b= RT c/p c。 解: 2、质量为500g的氨贮于体积为30000cm3的钢弹内,钢弹浸于温度为65℃的恒瘟水浴中,试分别用下述方法计算氨的压力。(1)理想气体状态方程;(2)RK方程;(3)Pitzer普遍化方法。已知氨的临界常数为T c=,p c=,V c=mol,ω=。RK方程中a=,b= RT c/p c。Virial方程中B(0)=-;B(1)=-。 解: 3、试分别用下列三种方法求出400℃、下甲烷气体的摩尔体积。(1) 用理想

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

化工热力学第一章绪论试题

第1章 绪 言 1. 凡是体系的温度升高时,就一定吸热,而温度不变时,则体系既不吸热也不放热。 答:错。等温等压的相变化或化学变化始、终态温度不变,但有热效应。气体的绝热压缩,体系温度升高,但无吸收热量。 2. 当n 摩尔气体反抗一定的压力做绝热膨胀时,其内能总是减少的。 答:对。绝热:Q=0;反抗外压作功:W <0;?U=Q +W=W<0。 3. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时, 则βα,两个相都等价于均相封闭体系。 答:对 4. 理想气体的焓和热容仅是温度的函数。 答:对 5. 理想气体的熵和吉氏函数仅是温度的函数。 答:错。理想气体的熵和吉氏函数不仅与温度有关,还与压力或摩尔体积有关。 6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T , V )的自变量中只有一个强度性质,所以,这与相律有矛盾。 答:错。V 也是强度性质 7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和 终态的温度分别为T 1和T 2,则该过程的? =21T T V dT C U ?;同样,对于初、终态压力相等的过程有 ? =2 1T T P dT C H ?。 答:对。状态函数的变化仅决定于初、终态与途径无关。 8. 状态函数的特点是什么? 答:状态函数的变化与途径无关,仅决定于初、终态。 9. 对封闭体系而言,当过程的始态和终态确定后,下列哪项的值不能确定: A Q B Q + W, ?U C W (Q=0),?U D Q (W=0),?U 答:A 。因为Q 不是状态函数,虽然始态和终态确定,但未说明具体过程,故Q 值不能确定 。 10. 下列各式中哪一个不受理想气体条件的限制 A △H = △U+P△V B CPm - CVm=R C = 常数 D W = nRTln (V2╱V1) 答:A 11.对于内能是体系的状态的单值函数概念的错误理解是: A 体系处于一定的状态,具有一定的内能 B 对应于某一状态,内能只能有一数值,不能有两个以上的数值

化工热力学第五章作业讲解

第五章 例题 一、填空题 1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡 状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。 2. 说出下列汽液平衡关系适用的条件 (1) l i v i f f ??= ______无限制条件__________; (2)i l i i v i x y ?? ??= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。 3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已 知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 2 21112212112x A x A x x A A RT G E +=) 4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分 的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数 693.1,38.121==γγ。 1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的 3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。 2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困 难是MPa P s 4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。 3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。 4. 由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数A i ,B i ,C i ; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij Λ=-λλ,Wilson 方程的能量参数是如何得到的?能从混合物的有关数据(如相平衡)得到。

化工热力学作业答案

一、试计算一个125cm 3的刚性容器,在50℃和18.745MPa 的条件下能贮存甲烷多少克(实验值是17克)?分别比较理想气体方程、三参数对应态原理和PR 方程的结果。 解:查出T c =190.58K,P c =4.604MPa,ω=0.011 (1) 利用理想气体状态方程nRT PV = g m RT PV n 14872.0=?== (2) 三参数对应态原理 查表得 Z 0=0.8846 Z 1=0.2562 (3) PR 方程利用软件计算得g m n mol cm V 3.1602.1/7268.1223=?=?= 二、用virial 方程估算0.5MPa ,373.15K 时的等摩尔甲烷(1)-乙烷(2)-戊烷(3)混合物的摩尔体积(实验值5975cm 3mol -1)。已知373.15K 时的virial 系数如下(单位:cm 3 mol -1), 399,122,75,621,241,20231312332211-=-=-=-=-=-=B B B B B B 。 解:混合物的virial 系数是 44 .2309 399 212227526212412022231 132332122132 3222121313 1 -=?-?-?----= +++++==∑∑==B y y B y y B y y B y B y B y B y y B ij i j j i 298.597444.2305.0/15.373314.8/=-?=+=B P RT V cm 3 mol -1 三、(1) 在一定的温度和常压下,二元溶液中的组分1的偏摩尔焓如服从下式2 211 x H H α+=,并已知纯组分的焓是H 1,H 2,试求出H 2和H 表达式。 解: ()112221 2 2121121222dx x dx x x x dx dx H d x x H d x x H d αα-=-=???? ??-=- =得 2122x H H α+= 同样有2211 x H H α+= 所以 212211x x x H x H H x H i i α++==∑ ()()1,,o r r r r Z Z P T Z P T ω=+323.1518.745 1.696 4.071190.58 4.604r r T P = ===0.88640.0110.25620.8892Z =+?=30.88928.314323.15127.4/18.745 ZRT V cm mol P ??= ==1250.9812127.4t V n mol V ===15.7m g =

化工热力学大作业

化工热力学大作业

1、计算下,乙醇(1)-水(2)体系汽液平衡数据 (1)泡点温度和组成的计算 计算气液平衡数据方法(步骤): 1、由C2H5OH 以及H2O ,查得两物质临界参数Tc1、Tc 2、Pc1、Pc2、ω查得antonio 方程中C2H5OH 和H2O 参数A1,B1,C1,A2,B2,C2,进入2 2、利用总压强P 总=,带入antonio 方程i i i s i C T B A p +-=ln 得T1,T2,进入3 3、假设x1,x2数据,从小到大假设,并取为间隔,逐次递增,由T=T1*x1+T2*x2, 并另各V i ??初值均为1,进入4 4、将T 值带入antonio 方程i i i s i C T B A p +-=ln 可得Ps1和Ps2,进入5 5、选择NRTL 方程,计算γi ,进入6 6、利用两物质临界参数以及T 、P 值计算Tr1,Tr2,Prs1,Prs2,再利用对比态法(计算逸度系数的对比态法)计算气态混合物各组元i 的逸度系数,进入7 7、利用平衡方程,V i s i S i i i i P P x y ??γ?=计算y1、y2,进入8 8、计算y1+y2的值,并判断是否进行迭代 9、将yi 归一化,利用混合物维里方程(计算混合物逸度系数的维里方程)结合 混合规则计算各V i ??,返回7 10、判断y1+y2是否与8的值不同,“是”返回6,“否”进入11 11、计算y1+y2,判断是否为1,“否”进入12,“是”进入13 12、调整T 值,如果y1+y2大于1,则把T 值变小,如果y1+y2小于1,则把T 值变大,并返回4 13、得出T 、所有yi 值,并列出表格,进入14 14、将所有按从小到大顺序假设的Xi 值所对应的Yi 值求出,并作出T-X-Y 图,进入15 15、结束

化工热力学各章节习题

化工热力学各章节习题 第一章 绪论 一、选择题(共3小题,3分) 1、(1分)关于化工热力学用途的下列说法中不正确的是( ) A.可以判断新工艺、新方法的可行性。 B.优化工艺过程。 C.预测反应的速率。 D.通过热力学模型,用易测得数据推算难测数据;用少量实验数据推算大量有用数据。 E.相平衡数据是分离技术及分离设备开发、设计的理论基础。 2、(1分)关于化工热力学研究特点的下列说法中不正确的是( ) (A )研究体系为实际状态。 (B )解释微观本质及其产生某种现象的内部原因。 (C )处理方法为以理想态为标准态加上校正。 (D )获取数据的方法为少量实验数据加半经验模型。 (E )应用领域是解决工厂中的能量利用和平衡问题。 3、(1分)关于化工热力学研究内容,下列说法中不正确的是( ) A.判断新工艺的可行性。 B.化工过程能量分析。 C.反应速率预测。 D.相平衡研究 参考答案 一、选择题(共3小题,3分) 1、(1分)C 2、(1分)B 3、(1分)C 第二章 流体的PVT 关系 一、选择题(共17小题,17分) 1、(1分)纯流体在一定温度下,如压力低于该温度下的饱和蒸汽压,则此物质的状态为( )。 A .饱和蒸汽 B.饱和液体 C .过冷液体 D.过热蒸汽 2、(1分)超临界流体是下列 条件下存在的物质。 A.高于T c 和高于P c B.临界温度和临界压力下 C.低于T c 和高于P c D.高于T c 和低于P c 3、(1分)对单原子气体和甲烷,其偏心因子ω,近似等于 。 A. 0 B. 1 C. 2 D. 3 4、(1分)0.1Mpa ,400K 的2N 1kmol 体积约为__________ A 3326L B 332.6L C 3.326L D 33.263 m 5、(1分)下列气体通用常数R 的数值和单位,正确的是__________ A K kmol m Pa ???/10314.83 3 B 1.987cal/kmol K C 82.05 K atm cm /3 ? D 8.314K kmol J ?/

化工热力学复习题及答案 ()

《化工热力学》课程模拟考试试卷 A 开课学院:化工学院,专业:材料化学工程 考试形式: ,所需时间: 分钟 考生姓名: 学号: 班级: 任课教师: 写T ,错的写F) 1.理想气体的压缩因子1Z =,但由于分子间相互作用力的存在,实际气体的压缩因子 。 (A) 小于1 (B) 大于1 (C) 可能小于1也可能大于1 (D) 说不清楚 2.甲烷c 4.599MPa p =,处在r 0.3p =时,甲烷的压力为 。 (A) 15.33MPa (B) 2.7594 MPa ; (C) 1.3797 MPa (D) 1.1746 MPa 3.关于建立状态方程的作用,以下叙述不正确的是 。 (A) 可以解决由于实验的p -V -T 数据有限无法全面了解流体p -V -T 行为的问题。 (B) 可以解决实验的p -V -T 数据精确度不高的问题。 (C) 可以从容易获得的物性数据(p 、V 、T 、x )来推算较难测定的数据(H ,U ,S ,G )。 (D) 可以解决由于p -V -T 数据离散不便于求导和积分,无法获得数据点以外的p -V -T 的 问题。 4.对于流体混合物,下面式子错误的是 。 (A) lim i i i x M M ∞→=(B)i i i H U pV =+ (C) 理想溶液的i i V V =,i i U U = (D) 理想溶液的i i S S =,i i G G = 5.剩余性质R M 的概念是表示什么差别的 。 (A) 真实溶液与理想溶液 (B) 理想气体与真实气体 (C) 浓度与活度 (D) 压力与逸度 6.纯物质在临界点处的状态,通常都是 。 (A) 气体状态 (B) 液体状态 (C) 固体状态 (D) 气液不分状态 7.关于化工热力学研究内容,下列说法中不正确的是( )。

化工热力学复习题及答案概要

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 4. 1kJ=1000J=238.10cal=9869.2atmcm 3=10000bar cm 3=1000Pa m 3。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314J mol -1 K -1=1.980cal mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临 界流体。) 3. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自 由度是零,体系的状态已经确定。)

化工热力学

热力学第三定律的数学表达式为S*(完美晶体,0 K)=0 关于偏摩尔性质,下面说法中不正确的是(T,P一定,偏摩尔性质就一定) 吉布斯函数的定义式为G =H -TS 溶液中挥发性溶质在气相中分压力与液相组成的关系符合亨利定律 纯物质临界点时,其对比温度Tr(=1 ) 真实气体在如下哪个条件下,可以近似作为理想气体处理(高温、低压) 下列不属于高压下影响气体混合物中组分逸度的因素的是:液相组成 总性质用符号表示为Mt 偏摩尔性质的物理意义为在给定的温度、压力和组成下,向含有组分i的无限多的溶液中加入1mol 的组分i所引起系统的某一热力学性质的增加量 吉布斯相律的表达式是f=C-φ+2 等温等压下,在A和B组成的均相体系中,若A的偏摩尔体积随A浓度的减小而减小,则B的偏摩尔体积将随A浓度的减小而( 增加) 理想气体模型的基本特征是(分子间无作用力,分子本身无体积) 下列状态方程精度比较正确的是多参数状态方程>立方型状态方程>理想气体状态方程 在373.15K和2atm下水的化学位与水蒸气化学位的关系为(μ(汽)>μ(水) ) 焓的定义式为H =U +PV 隔离系统是指与环境既没有能量交换,又没有物质交换的系统 在温度为T、体积恒定为V?的容器中,内含A、B两组分的理想气体混合物,它们的分压力与分体积分别为pA、pB、VA、VB。若又往容器中再加入物质的量为?nC?的理想气体C,则组分A的分压力pA(不变)? 关于理想溶液,以下说法不正确的是( 符合Lewis-Randall规则或Henry规则的溶液一定是理想溶液) alton分压定律的适用条件是什么实际气体混合物(压力不太高)和理想气体混合物 把200mL的水与100mL的乙醇混合,混合后的溶液中,下列关系成立的是(m-液体的质量、V-液体的体积、ρ-液体的密度):混合后溶液的质量:m混=m水+m乙醇 对于一均匀的物质,其H和U的关系为(H>U)

化工热力学(第三版)陈钟秀课后习题答案

第二章 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol 查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程 P=RT/V=8.314×323.15/124.6×10-6=21.56MPa (2) R-K 方程 2 2.52 2.560.52 6 8.314190.60.427480.42748 3.2224.610 c c R T a Pa m K mol P -?===???? 531 68.314190.60.08664 0.08664 2.985104.610 c c RT b m mol P --?===??? ∴() 0.5RT a P V b T V V b = --+ ()()50.555 8.314323.15 3.222 12.46 2.98510323.1512.461012.46 2.98510---?= - -???+? =19.04MPa (3) 普遍化关系式 323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+ ∵ c r ZRT P P P V = = ∴ c r PV Z P RT = 654.61012.46100.21338.314323.15 c r r r PV Z P P P RT -???===? 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975 此时,P=P c P r =4.6×4.687=21.56MPa 同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。 ∴ P=19.22MPa 2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。已知实验值为1480.7cm 3/mol 。 解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193

相关文档
相关文档 最新文档