文档库 最新最全的文档下载
当前位置:文档库 › 简述变压器保护用熔断器的选择(高压侧)

简述变压器保护用熔断器的选择(高压侧)

简述变压器保护用熔断器的选择(高压侧)
简述变压器保护用熔断器的选择(高压侧)

简述变压器保护用熔断器的选择

与负荷开关开断能力的配合

目前采用负荷开关-熔断器组合电器对10kV变压器保护的数量极大,根据我们公司生产负荷开关多年的情况来看,负荷开关、熔断器、转移电流三者与变压器保护要求如何匹配是用户经常提出的问题,希望作如下简述:

一、熔断器额定电流的选择原则

变压器的额定容量为SN,额定电压为UN,则变压器高压侧一次额定电流IN1的大小由下式提供:

设变压器分接开关按-5%分接抽头计算,同时户内变压器过负荷按120%,那么变压器高压侧可能出现的电流IN可由下式确定:

IN=IN1×120%×105%

一般情况下,限流式熔断器的额定电流I选用变压器额定电流的1.5~3倍,其大小可由下式确定:I=(1.5~3)×IN1综合变压器容量-SN、额定电流-IN、实际电流-IN1、熔断器电流-I 大小如下:

二、变压器励磁电流下熔断器持续时间

变压器投入时会产生励磁电流,要求该励磁电流不对所配熔断器构成损伤,那么熔断器的持续时间应大于励磁电流的持续时间,励磁电流 IS 的大小一般为变压器额定电流的10~20倍,绝大多数情况下不超过12倍,因此其值大小可由下式确定:

IS=12×IN1 其持续时间为0.1S。为确定励磁电流下熔断器的持续时间,须引入反映熔断器动作特性的时间-电流特性曲线,如下图是我们公司常用的熔断器厂家提供的曲线,以IS作为横坐标值,分别求取对应纵坐标值,此值为不同熔断器规格的持续时间值t。

综合变压器容量-SN、励磁电流-IS 、熔断器电流-I、持续时间-t表如下:

由上表可以看出,熔断器按前表原则选择,变压器励磁电流持续时间均小于熔断器在该电流下的熔断持续时间,故励磁电流不会对所配熔断器造成损伤。

二、转移电流与负荷开关的开断能力熔断器应对变压器的短路故障进行保护,特别是最严重的低压侧短路故障保护,变压器阻抗电压按UK=4.5%(630KVA及以上为5%),变压器低压侧故障时,高压侧可能产生的最大故障电流IK可由下式求得:

有关转移电流在相关标准和文选中均有详细论述,我们公司生关的负荷开关中,熔断器撞击脱扣器触发负荷开关的分闸时间为T0=60ms,引入熔断器的时间—电流特性曲线,纵坐标中以T=0.9 T0作一水平线分别求出熔断器各规格曲线的电流值,即为熔断器熔断时首开相的电流值ISK,负荷开关二相开断的转移电流值IZ可由下式求得:IZ=0.87 ISK

综合变压器容量-SN 首开相电流-ISK 转移电流-IZ短路电流- IK表如下:

由上表可以看出,变压器容量在400KVA及以下时,变压器可能产生的最大短路电流值均小于负荷开关的额定开断电流值,负荷开关可自行开断,不会产生转移电流,或者说转移电流小于负荷开关额定开断电流,此时配用630A的负荷开关是满足技术条件的,变压器容量超过上述容量时,短路电流大于630A,熔断器首开相形成后,将产生转移电流,负荷开关两相开断的转移电流的大小超过一般负荷开关的额定开断电流(630A),这就要求进行负荷开关设计时,不应拘泥于额定开断电流为630A,而应考虑配用最大熔断器时可能产生的并且要求负荷开关能够顺利开断的转移电流值,此时意义的负荷开关不再是传统意义上的负荷开关(额定开断电流为630A)。

如何选择熔断器

(1)熔断器的安秒特性 熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。 图熔断器的安秒特性 每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。熔断电流与熔断时间之间的关系如表1-2所示。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 表1-2熔断电流与熔断时间之间的关系 (2)熔断器的选择 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。 熔体的额定电流可按以下方法选择: 1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。 2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取: IRN ≥(1.5~2.5)IN 式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。 3)保护多台长期工作的电机(供电干线) IRN ≥(1.5~2.5)IN max+ΣIN IN max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。 (3)熔断器的级间配合 为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。 常用的熔断器有管式熔断器R1系列、螺旋式熔断器RLl系列、填料封闭式熔断器RT0系列

简述变压器保护用熔断器的选择(高压侧)

简述变压器保护用熔断器的选择 与负荷开关开断能力的配合 目前采用负荷开关-熔断器组合电器对10kV变压器保护的数量极大,根据我们公司生产负荷开关多年的情况来看,负荷开关、熔断器、转移电流三者与变压器保护要求如何匹配是用户经常提出的问题,希望作如下简述: 一、熔断器额定电流的选择原则 变压器的额定容量为SN,额定电压为UN,则变压器高压侧一次额定电流IN1的大小由下式提供: 设变压器分接开关按-5%分接抽头计算,同时户内变压器过负荷按120%,那么变压器高压侧可能出现的电流IN可由下式确定: IN=IN1×120%×105% 一般情况下,限流式熔断器的额定电流I选用变压器额定电流的1.5~3倍,其大小可由下式确定:I=(1.5~3)×IN1综合变压器容量-SN、额定电流-IN、实际电流-IN1、熔断器电流-I 大小如下: 二、变压器励磁电流下熔断器持续时间 变压器投入时会产生励磁电流,要求该励磁电流不对所配熔断器构成损伤,那么熔断器的持续时间应大于励磁电流的持续时间,励磁电流 IS 的大小一般为变压器额定电流的10~20倍,绝大多数情况下不超过12倍,因此其值大小可由下式确定: IS=12×IN1 其持续时间为0.1S。为确定励磁电流下熔断器的持续时间,须引入反映熔断器动作特性的时间-电流特性曲线,如下图是我们公司常用的熔断器厂家提供的曲线,以IS作为横坐标值,分别求取对应纵坐标值,此值为不同熔断器规格的持续时间值t。

综合变压器容量-SN、励磁电流-IS 、熔断器电流-I、持续时间-t表如下: 由上表可以看出,熔断器按前表原则选择,变压器励磁电流持续时间均小于熔断器在该电流下的熔断持续时间,故励磁电流不会对所配熔断器造成损伤。 二、转移电流与负荷开关的开断能力熔断器应对变压器的短路故障进行保护,特别是最严重的低压侧短路故障保护,变压器阻抗电压按UK=4.5%(630KVA及以上为5%),变压器低压侧故障时,高压侧可能产生的最大故障电流IK可由下式求得: 有关转移电流在相关标准和文选中均有详细论述,我们公司生关的负荷开关中,熔断器撞击脱扣器触发负荷开关的分闸时间为T0=60ms,引入熔断器的时间—电流特性曲线,纵坐标中以T=0.9 T0作一水平线分别求出熔断器各规格曲线的电流值,即为熔断器熔断时首开相的电流值ISK,负荷开关二相开断的转移电流值IZ可由下式求得:IZ=0.87 ISK

熔断器种类及选择

对熔断器的选择要求是: 在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。 选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。 例如,用于保护照明和电动机的熔断器,一般是考虑它们的过载保护,这时,希望熔断器的熔化系数适当小些。所以容量较小的照明线路和电动机宜采用熔体为铅锌合金的RC1A系列熔断器,而大容量的照明线路和电动机,除过载保护外,还应考虑短路时分断短路电流的能力。若短路电流较小时,可采用熔体为锡质的RCIA系列或熔体为锌质的RM10系列熔断器。用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。当短路电流较大时,宜采用具有高分断能力的RL1系列熔断器。当短路电流相当大时,宜采用有限流作用的RT0系列熔断器。 熔断器的额定电压要大于或等于电路的额定电压 熔断器的额定电流要依据负载情况而选择。 ①电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。 ②电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。

熔断器型号规格用途对照大全 第一位:产品字母代号(R-熔断器) 第二位:使用环境(N-户内,W-户外) 第三位:设计序号(1,2,3……) 第四位:额定电压(KV) 第五位:结构特点(H-带有限流电阻,Z-带重合闸,T-带热脱扣器) 第六位:额定电流(A) 1;熔断器型号:QX374-RN2 用于1000v以下电力设备保护 2;PW10户外跌落式熔断器 产品名称:PW10户外跌落式熔断器 产品型号:RW10-100 RW10-200 10KV-15KV 产品概述:PW10户外跌落式熔断器采用IEC60282、GB15166标准!适用于交流50Hz,额定电压为10KV ∽35KV户外架空配电系统上,作为线路或电力变压器的过载和短路保护用。

熔断器选择原则

熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路. (2)I N熔断器≥IN 线路. (3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。 熔断器在工矿企业的生产过程中和日常生活中主要用于保护低压电器设备,由于使用于不同的电气设备,其容量、大小的选择原则差别很大,在实践中必须严格按照规程规定选择配置。否则,将失去其应有的保护作用。

XRNT变压器保护用高压限流熔断器

XRNT变压器保护用高压限流熔断器XRNT-12(SDLAJ) 本产品适用于户内交流50Hz,额定电压为3.6Kv、7.2KV、12KV、24KV、 40.5KV系统,可与其它开关、电器如负荷开关真空接触器配合使用,作为电力变压器及其它电器设备短路、过开的保护元件,又是高压开关柜、环网框、高、低压预装式变电站必备的配套产品。 型号同等型号额定电压(KV) 熔断器额定电流(A) 熔体额定电流(A) XRNT-12 SDLAJ 40 6.3、10、16、20、25、31.5、40 XRNT-24 SDLAJ 100 50、63、71、80、100、(125) 12、24、40.5 XRNT-40.5 SDLAJ 125 125 XRNT-40.5 SDLAJ 200 160、200 图1/a熔断器 注:ΦA:Φ51mm(?40A时)Φ76mm(>40A)Φ88(160A和200A)

图1/b熔断器(12KV) 图2插入式熔断器图2母线式熔断器XRNT?-40.5/40

3.6-40.5KV型熔断器(插入式) 额定开额定电额定开额定电额定电额定电直径×长度L 断流直径×长度L 断国外参考型型号压流型号压D×L(mm) 电流电流D×L(mm) 电流号 UN(KV) IN(A) UN(KV) (KA) (KA) (KA) 6.3 Φ 6.3 10 10 Φ52×192 16 16 20 20 Φ72×192 25 25 31.5 31.5 40 40 52×192标准尺 50 50 寸 63 63 80 6.3 Φ

100 10 Φ76×192标准 125 20 尺寸 63 SDLAJ 160 31.5 52×292标准尺 *200 40 寸 50 63 Φ88×192标准 尺寸 *250 50 Φ 6.3 63 10 80 SFLAJ 16 100 72×292标准尺寸20 125 SKLAJ Φ52×292 25 *160 Φ XRNT 3.6/7.2 1 XRNT1 6/12 50 31.5 *200 63 88×292标准尺 寸 40 6.3 Φ52×422 50 10 63 16 80 20 100 25 125 Φ76×292 31.5 160 40 *200 50 *250 63 *315 80

常用电气设备熔断器选择

熔断器的额定电流选择 由于各种电气设备都具有一定的过载能力,允许在一定条件下较长时间运行;而当负载超过允许值时,就要求保护熔体在一定时间内熔断。还有一些设备起动电流很大,但起动时间很短,所以要求这些设备的保护特性要适应设备运行的需要,要求熔断器在电机起动时不熔断,在短路电流作用下和超过允许过负荷电流时,能可靠熔断,起到保护作用。熔体额定电流选择偏大,负载在短路或长期过负荷时不能及时熔断;选择过小,可能在正常负载电流作用下就会熔断,影响正常运行,为保证设备正常运行,必须根据负载性质合理地选择熔体额定电流。 (1) 照明电路 熔体额定电流≥被保护电路上所有照明电器工作电流之和。 (2) 电动机: ①单台直接起动电动机 熔体额定电流=(1.5~2.5)×电动机额定电流。 ②多台直接起动电动机 总保护熔体额定电流=(1.5~2.5)×各台电动机电流之和。 ③降压起动电动机 熔体额定电流=(1.5~2)×电动机额定电流。 ④绕线式电动机 熔体额定电流=(1.2~1.5)×电动机额定电流。 (3) 配电变压器低压侧 熔体额定电流=(1.0~1.5)×变压器低压侧额定电流。 (4) 并联电容器组 熔体额定电流=(1.3~1.8)×电容器组额定电流。 (5) 电焊机 熔体额定电流=(1.5~2.5)×负荷电流。 (6) 电子整流元件 熔体额定电流≥1.57×整流元件额定电流。 说明:熔体额定电流的数值范围是为了适应熔体的标准件额定值。

在3~66kV的电站和变电所常用的高压熔断器有两大类:一类是户内高压限流熔断器, 额定电压等级分3、6、10、20、35、66kV,常用的型号有RN 1、RN 3、RN 5、XRNM 1、XRN T 1、XRN T 2、XRN T3 型, 主要用于保护电力线路、电力变压器和电力电容器等设备的过载和短路;RN2和RN 4型额定电流均为0.5~10A , 为保护电压互感器的专用熔断器。另一类是户外高压喷射式熔断器,此类熔断器在熔体熔断产生电弧时,电弧烧损反白纸产气吹拉长电弧,弧感抗改变相位, 正好电流过零时产生零休,才能开断电路,限流作用不明显。常用的为跌落式熔断器,型号有RW 3、RW 4、RW 7、RW 9、RW 10、RW 11、RW 12、RW 13和PRW系列型等, 其作用除与RN 1 型相同外, 在一定条件下还可以分断和关合空载架空线路、空载变压器和小负荷电流。户外瓷套式限流熔断器RW 10- 35/0.5~50-2000MVA 型中RW10-35/0.5~1-2000MVA为保护35kV电压互感器专用的户外产品。所以根据熔断器的型式和不同的保护对象来选择。 2.2 按工作电压选择 (1) 一般条件: U e≥Uwe 式中: U e——熔断器额定电压 Uwe——安装处电网额定电压 即熔断器的额定电压(kV ) 应不小于熔断器安装处电网额定电压(kV )。 (2) 对于限流型熔断器: 以石英砂作为熔断器填充物的限流型熔断器只能按Ue=Uwe的条件选择, 这种情况下此类熔断器熔断产生的最大过电压倍数限制在规定的2.5 倍相电压之内, 此值并未超过同一电压等级电器的绝缘水平。如果熔断器使用在工作电压低于其额定电压的电网中, 过电压倍数造成威胁可能增大3.5~4。 2.3 按工作电流及保护特性选择 (1) 一般条件: I e≥Ije≥Ig·zd 式中: I e——熔断器熔管的额定电流,A I je——熔断器熔体的额定电流,A I g·zd——回路最大持续工作电流,A 此条件为选择熔断器额定电流的总体要求, 其中熔体额定电流的选择最为重要, 它的选择与其熔断特性有关, 应能满足保护的可靠性、选择性和灵敏度要求。 (2) 具体情况: ①保护配电设备(即35kV 及以下电力变压器) : Ije= K Ie 式中

变压器保护测试题

变压器保护测试题 产品维护部 一、选择题(在每小题的备选答案中,选出正确答案,并将正确答案的序号填在题干的括号 内。每小题2分,共50分) 1、气体(瓦斯)保护是变压器的( )。 (A)主后备保护;(B)内部故障的主保护;(C)外部故障的主保护;(D)外部故障的后备保护。 2、当变压器外部故障时,有较大的穿越性短电流流过变压器,这时变压器差动保护( )。 (A)立即动作;(B)延时动作;(C)不应动作;(D)短路时间长短而定。 3、我国220kV及以上系统的中性点均采用 ( )。 (A)直接接地方式;(B)经消弧线圈接地方式;(C)经大电抗器接地方式;(D)不接地方式。 4、两台变压器并列运行的条件是( )。 (A)变比相等;(B)组别相同;(C)短路阻抗相同;(D)变比相等、组别相同、短路阻抗相同。 5、变压器零序功率方向继电器的最大灵敏角是( )。 (A)70°;(B)80°;(C)90°;(D)110° 6、330~550KV系统主保护的双重化是指两套不同原理的主保护的( )彼此独立。 (A)交流电流;(B)交流电压;(C)直流电源;(D)交流电流、交流电压、直流工作电源。 7、电抗变压器在空载情况下,二次电压与一次电流的相位关系是( )。 (A)二次电压超前一次电流接近90°;(B)二次电压与一次电流接近0°; (C)二次电压滞后一次电流接近90°;(D)二次电压与一次电流的相位不能确定。 8、变压器励磁涌流可达变压器额定电流的( )。 (A)6~8倍;(B)1-2倍; (C)10~12倍; (D)14~16倍。 9、利用接入电压互感器开口三角形电压反闭锁向电压回路断相闭锁装置,在电压互感器高压侧断开一相时,电压回路断线闭锁装置( )。 (A)动作;(B)不动作;(C)可动可不动;(D)动作情况与电压大小有关。 10、自耦变压器中性点必须接地,这是为了避免当高压侧电网内发生单相接地故障时,( )。 (A)中压侧出现过电压;(B)高压侧出现过电压; (C)高压侧、中压侧都出现过电压;(D)以上三种情况以外的。 11、谐波制动的变压器保护中设置差动速断元件的主要原因是( )。 (A)为了提高差动保护的动作速度;(B)为了防止在区内故障较高的短路水平时,由于电流互感器的饱和产生高次谐波量增加.导致差动元件拒动;(C)保护设置的双重化,互为备用; (D)为了提高差动保护的可靠性。 12、变压器过励磁保护是按磁密召正比于( )原理实现的。 (A)电压U与频率f乘积; (B)电压U与频率f的比值;(C)电压U与绕组线圈匝数N的比值; (D)电压U与绕组线圈匝数N的乘积。 13、变压器差动保护为了减小不平衡电流,常选用一次侧通过较大的短路电流时铁芯也不至于饱和的TA,一般选用( )。 (A)0.5级;(B)D级;(C)TPS级;(D)3级。 14、电流互感器的二次绕组按三角形接线或两相电流差接线,在正常负荷电流下,它们的接线系数是( )。 1;(D)2。 (A)3;(B)1;(C) 3 15、按90°接线的相间功率方向继电器,当线路发生正向故障时,若φK为30°,为使继电器动作最灵敏,其内角值应是( )。

配电变压器的熔断器保护

配电变压器的熔断器保护 摘要:分析了限流熔断器和负荷开关—熔断器组合电器在环网供电单元和预装式变电站中的应用形式与特点,介绍了熔断器选择的基本原则。1 前言配电变压器的过流保护有两种途径:一种是利用断路器;另一种是利用熔断器。用熔断器保护配电变压器不仅结构简单、成本低,而且比断路器保护更有效。短路试验结果表明,当变压器内部发生故障时,为避免油箱爆炸,必须在20ms内切除短路故障[1]。限流熔断器可在10ms内切除短路故障,而断路器一般需要三周波(60ms)切除短路故障。断路器全开断时间由三部分组成:继电保护动作时间、断路器固有动作时间和燃弧时间。欧洲一些电力公司的实践说明了这一点。德国R WE电力公司在配电网中使用的41000台变压器,均采用高压熔断器保护,1987年其变压器发生故障87起,仅出现一次箱体炸开。法国电力公司曾于1960年~1970年做了取消熔断器保护的尝试,使用的7500台变压器在10年中发生500起故障,其中有50起箱体炸开。在1991年国际配电网会议(CIRED)上,比利时也提供了有力证据。比利时对,万台变压器观察10年以上,其中97%的变压器通过熔断器保护,3%的变压器通过断路器保护,在整个期间,没有出现一次箱体炸裂。近年来,熔断器保护在一些新型变配电设备中得到广泛应用。2 配电变压器熔断器保护的形式长期以来,在我国的配电网中,小容量配电变压器(一般在630kVA以下)大都采用熔断器保护。户外315kVA及以下配电变压器采用跌落式熔断器(RW系列);户内630kvA用以下配电变压器采用RN系列限流熔断器。近年来,环网供电单元和预装式变电站(组合式变压器)在我国的配电网中应用日益增多。这两种类型的变配电设备大都采用限流熔断器来保护配电变压器。2.1 环网供电单元环网供电单元常用于环网供电系统,它一般至少由三个间隔组成,即两个环缆进出间隔和一个变压器回路间隔,其主接线如图1所示。它有两个环缆进出间隔(负荷开关柜),一个变压器回路间隔(负荷开关—熔断器组合电器柜)。环缆进出间隔采用电缆进线,是受电柜。它安装有三工位(合—分—接地)负荷开关,一旦供电线路出现故障时,进出环网间隔可及时切除故障线路,并迅速接通另一正常线路,恢复系统供电。变压器回路间隔对所接变压器起控制和保护作用。利用负荷开关一熔断器组合电器保护变压器可以限制短路电流,并快速切除变压器内部短路故障,使变压器得到更为经济有效的保护。

高压熔断器的应用和原理

高压熔断器的应用和原理 是最简单的保护电器,它用来保护电气设备免受过载和短路电流的损害;按安装条件及用途选择不同类型高压熔断器如屋外跌落式、屋内式,对于一些专用设备的高压熔断器应选专用系列;我们常说的保险丝就是熔断器类。 用途主要用于高压输电线路、电压变压器、电压互感器等电器设备的过载和短路保护。 工程原理其结构一般包括熔丝管、接触导电部分、支持绝缘子和底座等部分,熔丝管中填充用于灭弧的石英砂细粒。熔件是利用熔点较低的金属材料制成的金属丝或金属片,串联在被保护电路中,当电路或电路中的设备过载或发生故障时,熔件发热而熔化,从而切断电路,达到保护电路或设备的目的。工程原理其结构一般包括熔丝管、接触导电部分、支持绝缘子和底座等部分,熔丝管中填充用于灭弧的石英砂细粒。熔件是利用熔点较低的金属材料制成的金属丝或金属片,串联在被保护电路中,当电路或电路中的设备过载或发生故障时,熔件发热而熔化,从而切断电路,达到保护电路或设备的目的。 型式的选择 在3~66kV的电站和变电所常用的高压熔断器有两大类:一

类是户内高压限流熔断器,额定电压等级分3、6、10、20、35、66kV,常用的型号有RN 1、RN 3、RN 5、XRNM 1、XRN T 1、XRN T 2、XRN T3 型,主要用于保护电力线路、电力变压器和电力电容器等设备的过载和短路;RN2和RN 4型额定电流均为0.5~10A ,为保护电压互感器的专用熔断器。另一类是户外高压喷射式熔断器,此类熔断器在熔体熔断产生电弧时,电弧烧损反白纸产气吹拉长电弧,弧感抗改变相位,正好电流过零时产生零休,才能开断电路,限流作用不明显。常用的为跌落式熔断器,型号有RW 3、RW 4、RW 7、RW 9、RW 10、RW 11、RW 12、RW 13和PRW系列型等,其作用除与RN 1 型相同外,在一定条件下还可以分断和关合空载架空线路、空载变压器和小负荷电流。户外瓷套式限流熔断器RW 10- 35/0.5~50-2000MV A 型中RW10-35/0.5~1-2000MV A为保护35kV电压互感器专用的户外产品。所以根据熔断器的型式和不同的保护对象来选择。 2.2按工作电压选择 (1)一般条件: U e≥Uwe 式中:

熔断器的选择规范

电流1.2-2倍。 追问: 能说详细点吗 回答: 熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN ≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路.

简述变压器保护用熔断器的选择高压侧定稿版

简述变压器保护用熔断器的选择高压侧 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

简述变压器保护用熔断器的选择 与负荷开关开断能力的配合 目前采用负荷开关-熔断器组合电器对10kV变压器保护的数量极大,根据我们公司生产负荷开关多年的情况来看,负荷开关、熔断器、转移电流三者与变压器保护要求如何匹配是用户经常提出的问题,希望作如下简述: 一、熔断器额定电流的选择原则 变压器的额定容量为SN,额定电压为UN,则变压器高压侧一次额定电流IN1的大小由下式提供: 设变压器分接开关按-5%分接抽头计算,同时户内变压器过负荷按120%,那么变压器高压侧可能出现的电流IN可由下式确定: IN=IN1×120%×105% 一般情况下,限流式熔断器的额定电流I选用变压器额定电流的1.5~3倍,其大小可由下式确定:I=(1.5~3)×IN1综合变压器容量-SN、额定电流-IN、实际电流-IN1、熔断器电流-I 大小如下: 二、变压器励磁电流下熔断器持续时间

变压器投入时会产生励磁电流,要求该励磁电流不对所配熔断器构成损伤,那么熔断器的持续时间应大于励磁电流的持续时间,励磁电流 IS 的大小一般为变压器额定电流的10~20倍,绝大多数情况下不超过12倍,因此其值大小可由下式确定: IS=12×IN1 其持续时间为0.1S。为确定励磁电流下熔断器的持续时间,须引入反映熔断器动作特性的时间-电流特性曲线,如下图是我们公司常用的熔断器厂家提供的曲线,以IS作为横坐标值,分别求取对应纵坐标值,此值为不同熔断器规格的持续时间值t。 综合变压器容量-SN、励磁电流-IS 、熔断器电流-I、持续时间-t表如下: 由上表可以看出,熔断器按前表原则选择,变压器励磁电流持续时间均小于熔断器在该电流下的熔断持续时间,故励磁电流不会对所配熔断器造成损伤。

快速熔断器的选择及应用

快速熔断器的选择及应用 整流变电是氯碱行业中的重要环节,而快速熔断器在半导体电力整流变电保护中的配置至关重要,一旦设备定型后,快速熔断器的选用会直接影响直流供电的质量和用电的效率等整流变电参数。 电力半导体器件热容量小,在故障状态下必须要有快速熔断器保护,而快速熔断器具有与半导体器件类似的热特性,是一种良好的保护器件。本文涉及的是封闭式有填料式快速熔断器,在运行中没有外部现象。 1 快速熔断器的配置 快速熔断器在半导体电力整流器保护中的配置一般分2类。 1.1 变流臂内部并联支路配置保护式 此类型主要用于大功率和超大功率整流器的保护。当变流臂中某一支路器件因某种原因损坏时(每一支路根据设备功率不同,一般并联几对快速熔断器和半导体整流元件串联而成,图1仅标出1对快速熔断器与半导体整流元件),导致与之串联的快速熔断器保护分断后,一般情况下仅1个器件出故障,并不影响整个整流器的正常运行。目前,唐山三友集团冀东化工有限公司的半导体电力整流器保护中的配置就属于变流臂内部并联支路配置保护式,运行效果很好,如图1所示。

1.2 分相配置总体保护式 此类型主要用于中、小功率整流器的保护。当某一变流臂中的器件因某种原因损坏时,导致该相快速熔断器保护分断后,整流器的保护将自动切断供电电源,停止向整流器供电,氯碱行业不常用该配置,如图2所示。 2 快速熔断器的选用 也称电压电流法。线路变流变压器的线电压应低于快速熔断器的额定电压。经电力半导体器件与快速熔断器串联短路实验验证,以半导体额定电流乘以系数,做为所选用的快速熔断器的额定电流。因快速熔断器的额定电流是有效值,而半导体器件的额定电流是平均值,针对上述第一类配置方案(图1),对第一代产品RS0、RS3系列(我国快速熔断器的发展史可分为4个阶段,第一代是全国联合设计的RS0、RS3系列,参数为480A、750V以下,分断能力为50kA,是一种体积较大、价格低廉、电寿命短的初级产品,目前尚有相当装机量)而言,该系数可按整流管为1.4、晶体管1.2、快速晶体管为1来选配,如ZP1000配1400A快速熔断器。针对上述第二类配置方案(图2),则可依据阀电流Iv以及变流装置的负载特性选择快速熔断器,再按整流器可能产生的最大故障电流,来选择有足够分断能力的快速熔断器,如50kA或 100kA,其中50kA为合格品,100kA为一级品。

什么是变压器保护熔断器

赫森电气https://www.wendangku.net/doc/0317474130.html, 变压器保护熔断器 熔断器是各种电器中重要的部分,变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。那么下面我们一起来和赫森电气有限公司看看变压器保护熔断器的介绍,希望对大家有所帮助。 通常是用电磁铁切断电路而不是燃烧掉,变压器保护熔断器可以重复使用。 在大型的分布式系统中,通常需要调用或操作远程的服务或者资源,这些远程的服务或者资源由于调用者不可以控的原因比如网络连接缓慢,资源被占用或者暂时不可用等原因,导致对这些远程资源的调用失败。 熔断器模式可以防止应用程序不断地尝试执行可能会失败的操作,使得应用程序继续执行而不用等待修正错误,或者浪费CPU时间去等到长时间的超时产 生。 赫森电气(无锡)有限公司坐落于享誉“太湖明珠”之城-无锡,由加拿大赫森电能研究所参与

赫森电气 https://www.wendangku.net/doc/0317474130.html, 赫森电气(无锡)有限公司坐落于享誉“太湖明珠”之城-无锡,由加拿大赫森电能研究所参与 变压器保护熔断器装置哪家专业?小编为您推荐赫森电气有限公司。 赫森电气(无锡)有限公司坐落于享誉“太湖明珠”之城—无锡,专注于超快速半导体设备保护与光伏熔断器的研发﹑制造﹑销售和服务的专业厂家。 公司以国际化市场为导向,通过不断的研究、开发以及大量的实践,终于在大功率电动汽车电池组与充电﹑轨道交通﹑航天器UPS 电源﹑光伏发电等电力系统保护领域获得显著成果。赫森成功改良固化技术﹑设计领域产品结构与工艺,使产品体积显得缩小。同时,赫森是全球高分断能力熔断器的纪录创造者。超快速半导体保护和光伏熔断器分断能力创世界高纪录,主导产品已获得美国UL 安全试验所认证。

一般熔断器类型的选择

熔断器类型的选择(一) (一)熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流 IN熔体=Ist/(2.5~3) 式中 Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 请登陆:输配电设备网浏览更多信息 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4)电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用

变压器都有哪些保护方式

变压器都有哪些保护方式?它们具体是怎么保护的? 一、变压器纵差保护 变压器的纵差保护是反应相间短路、高压侧单相接地短路以及匝间短路的主保护,其保护范围包括变压器套管及引出线。 变压器在空载合闸时的过励磁电流,其值可为In的数倍到10倍以上,这样大的励磁电流通 常称为励磁涌流。 二、气体保护 为防止变压器内部单相绕组的匝间短路,通常在容量大于800KVA的变压器上装设有气体保 护。 不论是哪一种型式的气体继电器都有两对触点: 轻瓦斯保护:当变压器内发生轻微故障时,产生的气体较少且速度缓慢,气体上升后逐渐积聚在继电器的上部,使气体继电器内的油面下降,使得其中一个触点闭合而作用于信号。 轻瓦斯保护动作值采用气体容积大小表示:250-300cm3 重瓦斯保护:当变压器内发生严重故障时,强烈的电弧将产生大量的气体,油箱压力迅速升高,迫使变压器油沿着油箱冲向油枕,在油流的激烈冲击下,使另一触点接闭而动作于跳闸。 重瓦斯保护动作值采用油流速度大小表示:0.6-1.5m/s 三、变压器的相间短路后备保护 主要有过电流保护和低阻抗保护。 四、变压器的过负荷保护 变压器的过负荷大多数情况下都是三相对称的,因此,过负荷保护只要接入一相,用一个电流继电器即可实现。过负荷保护通常延时动作于信号 对于双绕组升压变压器,装于发电机电压一侧;对于三绕组升压变压器,当一侧无电源时,装在发电机电压侧和无电源一侧,当三侧都有电源时,装在所有三侧。 五、变压器的单相接地保护 1.中性点直接接地的普通变压器接地后备保护 2.中性点可能接地或不接地运行的变压器接地后备保护 1)中性点全绝缘变压器 2)分级绝缘且中性点装放电间隙的变压器 3.自耦变压器的接地后备保护 1)高、中压侧的方向零序电流保护整定计算 2)自耦变压器中性点零序过电流保护整定 六、变压器温度保护

变压器保险丝的选用

变压器保险丝的选用 ??? 熔丝配置有这样一个原则,100kVA以下的变压器熔丝的额定电流按变压器一次额定电流的2-3倍选择,考虑机械强度,最小不得小于10A;100kVA以上的变压器,熔丝的额定电流按变压器额定电流的1.5-2倍来选择。变压器的容量有20kVA、20kVA、50kVA、80kVA、100kVA、125kVA、160kVA、200kVA、250kVA、315kVA、400kVA等。 ??? 例:有一台400kVA变压器,高压10kV,低压 0.38kV,高压端跌落保险的保险丝最大多少A,低压部分最大承载电流为多少A。 ??? 额定电压是10kV/0.4kV, kVA是变压器的视在功率,用S来表示,kw指的是有功功率,用符号P来表示,还有一个无功功率用Q来表示。它们的关系用一个直角三角形来表示,视在功率S是三角形的斜边;有功功率是三角形的一个直角边,无功功率是一个直角三角形的直角边。视在功率Se=√3IeUe;则400kVA 的变压器一次侧额定电流为:Ie=Se/√3Ue=400/1.732×10=23.1(A),熔丝可在1.5至2倍来选择,选择50至75A的即可。熔体额定电流3、5、7.5、10、20、30、40、50、75、100、150及200A等规格。低压侧的电流为:I=400/1.732×0.4=577.4A。 变压器的容量大小是指变压器负载电流的大小。100kVA变压器的负载电流为:I=100/1.732*0.4=144A(变压器二次电流为0.4kV)。100kW电机的输入电流为:I=100/1.732*0.38*0.75*0.75=270A(电机的额定电压为0.38kV,功率因素和效率均按0.75估算)。所以,100kVA变压器不能带动100kW的电机。通过计算,可以得出,100kvA变压器能带动53kW的电机。 三相100kVA变压器(10/0.4kV),低压侧电流为144A,考虑到负载一般为电动机,其起动电流比较大,功率因数又比较低,电流互感器可以选200A/5A 或250A/5A

一般熔断器选用

Ⅰ、一般熔断器选用: ①导线保护:线路中过载电流和短路电流会造成导线、电缆温度过高,导致导线、电缆的绝缘破坏,甚至断裂。熔断器作导线、电缆过载保护可布置在导线、电缆的进线端或出线端,熔断器额定电流约为线路电流的1.25倍;作短路保护时熔断器必须安装在导线、电缆的进线端,熔断器额定电流约为脱扣电流的1.45倍。 ②电动机保护:一套简单的电动机线路通常由熔断器、接触器、热继电器、电动机等组成。根据经验,在此线路中,选择熔断器额定电流约为电动机额定电流的1.2~1.5倍。 ③电容器开关设备保护:在电容器开关设备中,熔断器推存作短路保护,所选择的熔断器的额定电流不得小于电容器额定电流的1.6倍。 Ⅱ、半导体器件保护熔断器选用: 电力半导体器件热容量小,在故障状态下必须要有快速熔断器保护。而快速熔断器具有与半导体器件类似的热特性,所以是一种良好的保护器件。快速熔断器选用一般原则如下: ①额定电压:快速熔断器的额定电压U N应稍大于快速熔断器熔断后两端出现的故障电路的外加交流电压。若半导体设备的负荷是有源逆变器、逆变型制动的电动机等逆变型负载时,应考虑半导体器件失控等引起设备直流侧短路的可能性,此时快速熔断器熔断时,熔片两端交流电压与直流电压叠加现象,快速熔断器的额定电压应按下式计算:U N≥Uac+Udo×1/√2式中:Uac:快速熔断器熔断后外加交流电压;Udo:半导体设备负载端逆变型直流电压。 ②额定电流:熔断器的额定电流I NF是以电路中实际流过熔断器的电流有效值I F为基础,并考虑环境温度、冷却条件、电流裕度等因素影响进行计算。I NF≥K×I F式中:K值一般可取1.5~2。对于自冷式熔断器K取较大值,尤其对熔断器两端连接导线特别短的电路,需取最大值;对水冷式熔断器K取较小值。快速熔断器选用额定电流过大势必增加熔断器的I2tF 值,对半导体器件的保护是有害的。 ③分断I2t:当半导体器件与快速熔断器串联工作时,半导体器件允许通过的I2tD值应大于快速熔断器的I2tF值,不然熔断器熔断时,器件也被烧损。二者关系应满足:I2tF≤0.9I2tD。 ④分断过电压:熔断器在减弧过程中,在线路中产生的过电压,过高的过电压会使半导体器件产生反向击穿,因此分断过电压必须小于或者等于半导体器件允许反向峰值电压。快速熔断器熔断时产生的过电压(峰值)一般为故障电压(方均根值)的2~2.5倍左右。 ⑤额定分断能力:快速熔断器的额定分断能力应大于半导体设备中快速熔断器分断时流过的故障电流峰值,一般应包括半导体设备中的变压器阀侧内部短路电流值及直流侧短路电流值,不然将会引起快速熔断器炸裂、串弧等事故。

【doc】浅谈10kV配变容量在1600kVA以下采用负荷开关+熔断器组合方式保护变压器的合理性

浅谈10kV配变容量在1600kV A以下采用负荷开关+熔断器组合方式保护变压器的合 理性 交流与探讨主持人:党毅 GUANGXIDIANYE 店景 浅谈10kV配变容量在1600kV A以下采用负荷开关+ 熔断器组合方式保护变压器的合理性 张俊成龚文英 (1.南宁供电局,南宁市530031;2.广西大学电气工程学院,南宁市530004) 【摘要】本文通过对短路电流和变压器激磁涌流的分析,以及对高压熔断器性能的分析,论证了变压器容量在1600kV A 以下采用熔断器保护的合理性. 【关键词】短路电流;激磁涌流;熔断器 城网改造工程中,环网柜已被广泛和大量的使用,对于容 量在1600kV A以下的变压器多采用熔断器来保护,熔断器的 熔体电流也由厂家配套选用,设计人员免去了繁琐的计算,但 熔断器保护变压器时的开断时间,灵敏度,选择性以及负荷开 关承担的转移电流等问题又如何考虑呢?本文对此作简单的

探讨. 1低压电网短路电流的特点 低压电网发生短路时,电网运行将由正常工作状态过渡 到短路状态,其短路电流曲线如图1所示: U 正常状态短路状态:短路状态 图1 短路过程分为暂态过程和稳态过程,暂态短路电流i可 分解为周期性i,和非周期性,周期分量的幅值是不变的,它 等于稳态短路电流I的幅值,非周期分量是不断衰减的.短路发生后,大约经过10ms,出现短路电流的最大瞬时值(电流峰值),我们称为短路冲击电流,其值可达稳态短路电流的1-4 倍左右,例如当变压器短路电压为5%,高压侧为额定电压,低压侧短路,则稳态短路电流可达额定电流的20倍;其冲击电流可达到额定电流的28倍左右.冲击电流峰值在半个周波也就是10ms时段出现.其值一般取; i2.55IIsh=1.5I 而在1000kV A及以下变压器低侧发生三相短路时,其值 取: i,h=1.8II.h=1.09I 按照以上方式计算出的结果,在一般书中均有所刊载.对 短路电流的描述主要是为了探讨熔断器的熔体在短路过程中

相关文档
相关文档 最新文档