文档库 最新最全的文档下载
当前位置:文档库 › 2016SEG岩石物理与井筒地球物理研讨会

2016SEG岩石物理与井筒地球物理研讨会

2016SEG岩石物理与井筒地球物理研讨会
2016SEG岩石物理与井筒地球物理研讨会

2016 SEG 岩石物理与井筒地球物理研讨会

日期:2016年8月28-30日

地点:北京

岩石物理学构建了衔接地表、井下、及实验室地球物理测量数据与岩石内在物理性质的桥梁。综合物理、应用数学、地质、地球物理以及相关学科的原理和方法,岩石物理学为我们提供了优化和解释地球物理成像模型及油藏描述的理论和方法,将地球物理数据转化成储层岩石和流体的物理性质。岩石物理是油气勘探、开发、生产中不可或缺的一门应用学科,在石油天然气勘探开发中的重要性日益增加。当前油气行业面临页岩油气、致密砂岩油气、裂缝油藏等非常规油气藏等方面的挑战,需要更加精准和高效的岩石物理学方法。

井筒地球物理提供现场测量数据,用于刻画油藏构造,确定储层岩性和流体的物理属性。当前井筒地球物理面临的问题是怎样为常规和非常规油气藏的勘探和开发提供高性价比的增值服务。这需要对油藏属性进行更为精确的定量评估,增进岩石物理学方法在井中、井间和地面地震等测量数据处理解释上的综合应用。

研讨会将包括四个主题:(1)更为精确和全面的岩石物理参数测量、分析、岩石物理模型和解释方法;(2)近井及远井的高分辨率成像,井中微地震监测;(3)电缆测井及油藏描述;(4)井震数据综合应用最新进展。

研讨会的专题包括:

?岩石物理——碳酸盐岩、含裂缝岩石和非常规油气藏的岩石物理参数测量;

岩石物理模型;定量解释;实验岩石物理;数字岩石物理;

?测井——纵、横波速的精确测量;油藏描述和地层评价;裂缝检测与描述;

井震数据综合应用;

?测井声学与地震学——井周和井间高分辨率成像,时移监测,井震结合,垂直地震剖面,井间地震,水力压裂微地震监测与评估;

?新概念与创新技术——分布式光纤声波检测技术,岩石物理进展,岩石物理和地球物理学科中的创新方法和技术。

重要日期:

论文投稿开始日期:2016年3月21日

论文投稿截止日期:2016年5月20日

注册开始日期:2016年6月1日

优惠注册截止日期:2016年8月1日

如投稿,请填写Call for Abstracts中第二页的表格,并将表格及论文一共发邮件至SEG中国邮箱:china@https://www.wendangku.net/doc/0317629478.html,。论文不得超过4页纸,用英文撰写,格式严格按照研讨会摘要模板写作。摘要可以为Microsoft Word 或者Adobe Acrobat PDF 格式。请在网站活动页面下载Call for Abstracts及摘要模板(Workshop Abstract Template)。

所有录用的论文将以口头或张贴报告的形式展示。

主办方:

SEG中国

研讨会形式:

技术委员会主席:

唐晓明,中国石油大学(华东)

余刚,中国石油集团东方地球物理勘探公司

周冉,哈里伯顿

联系方式

如有任何参会问题,请联系SEG中国办公室:

邮箱: china@https://www.wendangku.net/doc/0317629478.html,

电话: +86 10 5820 5048

岩石孔隙度的测定

岩石孔隙度的测定 一、实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握气测孔隙度的流程和操作步骤。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占的体积越大,与标准室连通后,平衡压力就越低;反之,当放入岩心室内的岩样体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力后,根据标准曲线反求岩样的固相体积。按下式计算岩样的孔隙度: 三、实验流程 (a)流程图 (b)控制面板 图1 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体压力为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.发开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘;

6.用同样的方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯中,按上述方法测定装岩样后的平衡压力; 8.将上述数据填入原始记录表 五、实验数据处理 1.计算各个铜圆盘体积和岩样的外表体积 取编号为2的钢圆盘进行分析,其直径d=2.50cm,长度L=2.030cm; 所以,由得: 同理,可得表1中V f数据。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制标准曲线,并根据待测岩样测得的平衡压力,在标准曲线上反查出岩样的固相体积 由下表1中数据,可绘制标准曲线图如下: 图2 标准曲线图 所以,有上图2得:岩样固相体积V s=25.0cm3 4.计算岩样孔隙度 所以岩样孔隙度为20.10% 钢圆盘编 号2号3号4号1-4号 自由组合钢圆盘岩样编号 2,4 3,4 2,3,4 A15-1B 直径 d(cm) 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.482 长度 L(cm) 2.030 2.484 5.000 10.014 7.030 7.484 9.514 6.468 体积V f9.96 12.19 24.54 49.16 34.51 36.74 46.70 31.29

岩石孔隙度测定 实验报告

中国石油大学油层物理实验报告 实验日期:2010年11月22日成绩: 班级:资源(中石化)07-1班学号:07131419姓名:武鑫彪教师:张丽丽同组者:无 实验内容:岩石孔隙度测定 一、实验目的 1.悉知岩石孔隙度的概念,掌握其测定原理(膨胀法测定孔隙度)。 2.掌握气测孔隙度的流程与操作步骤。 二、实验原理 根据波义耳定律,在恒定温度下,岩心室体积一定,放入岩心室样品的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: % 100×?=f s f V V V φ三、实验流程与设备 图1.流程图 图2.控制面板

设备:QKY-II型气体孔隙度仪 仪器部件组成: 1气源阀:供给孔隙度仪调节器低于1000KPa的气体。当供气阀开启时,调节器通过常泄,使压力保持稳定。 2调节阀:将1000KPa的气体准确地调节到指定压力(小于1000KPa)。 3供气阀:连接经调节阀后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 5样品阀:能使标准室的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 四、实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆 盘从小到大编号为1、2、3、4),并记录在数据表中。 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形 转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压。 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压 力调至某一值(如560KPa)。待压力稳定后,关闭供气阀,并记录标准 室气体压力。 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。 5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘。 6.用同样的方法将3号、4号及全部(1-4)钢圆盘装入岩心杯中,重复步 骤2~5,记录平衡压力。 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五、数据处理与计算 1.计算各个钢圆盘体积和岩样外表体积。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制 标准曲线。 P——平衡压力,KPa; V ——岩样固相体积,cm3; s V ——岩样外表体积,cm3; f d——岩样直径,cm; L——岩样长度,cm; Ф——孔隙度,%。

实验二 给水度 孔隙度 持水度测定实验

实验二 给水度、孔隙度、持水度测定实验 一、实验目的 1.加深理解松散岩石的孔隙度、给水度和持水度的概念。 2.熟练掌握实验室测定孔隙度、给水度和持水度的方法。 3.熟悉给水度仪并对仪器进行标定。 4.测定三种松散岩石试样的孔隙度、给水度和持水度。 二、实验原理 给水度就是饱水岩石在重力作用下,能从岩石中自由流出来的水的体积与整个岩石体积之比。在数值上相当于岩石饱和容水度(简称容水度)与最大分子水容度(持水度)之差。其计算公式为32V V =μ。 孔隙度是指某一体积岩石(包括孔隙在内)中孔隙体积所占的比例。其计算公式为 31V V n =。 持水度是指饱水岩石在重力作用下释水后,岩石中保持的水的体积与岩石体积之比。其计算公式为μ-=n S r 。 式中:—水充满砂样孔隙的体积(进水量体积)(); 1V 3 cm 2V —重力作用下,饱水砂中自由流出的水体积(退水量体积)(); 3 cm 3V —饱水砂样的总体积(试样体积)() 3cm 给水度、孔隙度和持水度的测定有两种方法:体积法和差值法。体积法适用于碎石、砾和砂等粗粒岩土。差值法适用于砂、粉砂和粘性土等细粒岩土。 本实验要求掌握体积法测定砂的给水度、孔隙度和持水度。 体积法(1) 一、仪器设备 1.给水度仪(图2—1)。 2.十二指肠减压器,或大号吸耳球,用以抽吸气体。 3.量筒(25ml )和胶头滴管。 4.松散岩石试样:砾石(粒径为5~10mm ,大小均匀,磨圆好);砂(粒径为0.45mm~0.6mm );砂砾混合样(指把上述砂样完全充填进砾石样的孔隙中得到的一种新试样)。

图2-1 给水度仪图 图2-2 胶头滴管调整三通管液面示意图 二、实验室准备工作 1—装样筛;2—筛板;3—试样筒;4—透水石;5—固定连接板;6—试样筒底部漏斗;7—弹簧夹;8—硬塑料管;9—滴定管;10—三通管 1—H 为三通管液面到透水石底面的距离; 2—三通管液面 1.标定透水石的负压值 透水石是用一定直径的砂质颗粒均匀胶结成的多孔板。透水石的负压值是指在气、液、固三相介质界面上形成的弯液面产生的附加表面压强。标定方法如下: 首先,饱和透水石并使试样筒底部漏斗充满水(最好用去气水,即通过加热或蒸馏的方法去掉水中部分气体后的水)。具体做法是:将试样筒与底部漏斗一起从开关a 处卸下(见图2-1),浸没于水中并倒置,将漏斗管口与十二指肠减压器抽气管连接,抽气使透水石饱水,底部漏斗全充满水。用弹簧夹在水中封闭底部漏斗管,倒转试样筒,将装有水(可以不满)的试样筒放回支架。同时打开a 、b 两开关,在两管口同时流水的情况下连接塑料管。关闭a 、b 开关,倒去试样筒中剩余的水,将A 滴定管液面调至零刻度,并与透水石底面水

孔隙度测定

一.孔隙度定义: 岩石的总体积V b ,是由孔隙的体积V p 及固体颗粒体积(基质体积)V s 两部分组成。孔隙度(?)是指岩石中孔隙体积V p 与岩石总体积V b 的比值。表达式为 ?=V p V b ×100% 它是说明储集层储集能力的相对大小的基本参数。 二.孔隙度的分类 1.岩石的绝对孔隙度(?a ) 岩石的绝对孔隙度(?a )指掩饰的总孔隙体积(V a )与岩石外表体积(V b )之比,即 ?a =V a V b ×100% 2.岩石的有效孔隙度(?e ) 有效孔隙度是指岩石中有效孔隙的体积(V e )与岩石外表体积(V b )之比,即: ?e =V e V b ×100% 计算储量和评价油气层特性时一般之有效孔隙度。 3.岩石的流动孔隙度(?f ) 微毛细管孔隙虽然彼此连通,但未必都能让流体流过。例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f )与岩石外表体积(V b )之比,即: ?f =V f b ×100% 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。在油气田开发中,流动孔隙度具有一定的实用价值。 三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度 三.孔隙度分级标准 四.双重介质岩石空孔隙度 双重孔隙介质储层具有两种孔隙系统。第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。 总孔隙度?t 、裂缝孔隙度?f 和岩石原生孔隙度?p 之间有如下关系: ?p =?p +?f

岩石物理分析

第一篇地震岩石物理学及在储层预测的应用 Seismic Rock physics Theory and the Application in Reservor Discrimination 摘要 储层预测研究主要在于弄清储层构造特征、岩性特征及储层参数,进而减少勘探开发风险。储层参数包括孔隙度、渗透率、流体类型等,而地震资料提供的是地震波旅行时和振幅信息,再通过反演可得到弹性参数。地震岩石物理学则为储层参数和弹性参数之间搭建桥梁。横波速度是重要的地球物理参数在近些年发展起来的叠前地震储层弹性参数反演及流体检测方面起着重要的作用。地震横波速度估计技术是根据地震岩石物理建立的目标岩石模量计算模式,利用计算出的模量重建纵波曲线,与实测曲线建立迭代格式修正岩石模量,实现横波速度等关键参数估计。在方法实现上利用了Xu-White模型为初始模型。流体因子是识别储层流体的重要参数,常规流体因子多是基于单相介质理论提出的,而从双相介质岩石物理理论出发可以更好的研究孔隙流体对介质岩石弹性性质的影响,为敏感流体因子的构建提供更好的指导。本文采用了Gassmann流体因子,并分析了其敏感性。 关键词:等效介质模量,孔隙度,横波速度估算,Xu-White模型,Gassmann流体因子。

Seismic Rock physics Theory and the Application in Reservor Discrimination Abstract The study of reservoir prediction is mainly to investigate the characteristics of reservoir structure,lithologic features and reservoir parameters,aim to reduce the risk of exploration. Reservoir parameters include porosity,permeability,fluid type,etc,But seismic data only reflects on seismic traveltime,amplitude information,and elastic parameters which can be obtained throuth seismic inversion.Seismic rock physics builds bridges for reservoir parameters elastic.S-wave velocity, an important geophysical parameter,plays an important role in pre-stack seismic reservoir elastic parameter inversion and fluid detection witch developed in recent years.The seismic shear wave velocity estimation technique is based on the rock mass calculation model established by the seismic rock physics, reconstructs the longitudinal wave curve with the calculated modulus, establishes the iterative pattern with the measured curve to correct the rock modulus, and obtain the key parameters such as the shear wave velocity.The Xu-White model was used as the initial model in the method implementation. Fluid factor is an important parameter to identify reservoir fluid. Conventional fluid factors are mostly based on the theory of single-phase medium. From the theory of biphasic medium rock physics, it can be better to study the effect of pore fluid on the elastic properties of fluid The construction of fluid factors provides better guidance. In this paper, the Gassmann fluid factor is used and its sensitivity is analyzed. Key word:Equivalent medium modulus, porosity,Shear wave velocity estimation, Xu-White model, Gassmann fluid factor

岩石孔隙度测定

中国石油大学(油层物理)实验报告 实验日期 成绩: 班级 学号: 姓名: 教师: 同组者 实验一 岩石孔隙度的测定 一. 实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二.实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心 杯岩样的固相(颗粒)体积越小,则岩 心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体 积越大,平衡压力越高。根据平衡压力的大小就可测得岩样的固相体积。 %100?=-f s f V V V φ 测定岩石骨架体积可以用①气体膨胀法 )12(211)(V V Vo P V P Vs Vo Po +-=+- ②气体孔隙度仪 三.实验流程

(a)流程图 仪器有下列部件组成: 1气源阀:供给孔隙度仪调节器低于1000Pa的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 2调节阀:将1000Pa的气体压力准确地调节到指定压力(小于1000Pa)。 3供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系 的平衡压力。 5样品阀:能使标准室内的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 图1-1 QKY-Ⅱ型气体孔隙度仪流程图及外观图 四.实验步骤 1.将钢圆盘从小到大编号为1、2、3、4; 2.用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表 中; 3.打开样品阀及放空阀,确保岩心室气体为大气压; 4.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。 5.关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压 力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6..开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7.开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心 室向外推出,取出钢圆盘。 8.用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢 圆盘装入岩心室中,重复步骤2-5,记下平衡压力。

岩石物理学复习提纲2017

岩石物理学复习提纲 2017 一、试卷题型 ?基本概念以填充和名词解释形式考查 一、填充题: 例: 1、岩石物理学主要从()和()上研究岩石特性与其() 性质间相互关系。 2、矿物一般是由无机作用形成的,()和()都是有机作用的 产物,故均非矿物。 二、名词解释: 例: 1、岩石物理学: 2、离子导电岩石:

一、试卷题型 ?简述题与综合题: 三、简述题,主要考查对岩石物理中一些问题的理解 例: 1、简述岩石物理学研究中存在的问题 2、用定性或定量方式列举三个主要岩石特性因素是怎样影响岩石地震 特性的 3、岩石物理模型中公式的定义,物理量的含义,公式等 一、试卷题型 ?简述题与综合题: 四、综合题,与简述题的差别为,一般在综合题中会加入简单的计算, 同时考查对知识的综合应用。 例: 1、阿尔奇公式的基本形式和物理意义,写出各个参量的含意;已知一 些参数后求岩石的电阻率孔隙度和饱和度; 2、 Gassmann方程中需要哪些参数,与空间平均方式建立岩石物理 模型有什么关系,基质体积模量,孔隙内混合流体的体积模量用什么模型计算,已知体积模量怎样计算速度,反之。

一、试卷题型 ?图示说明题和公式推导或证明 五、图示说明题,用图示的方式说明弹性波在固液介质中的传播规律并用文字回答基本规律; 例1:在一个液-固介质的分界面上,上层液体介质的波阻抗为Z 1=Vp 1ρ1,下层固体介质的波阻抗为Z 2=Vp 2ρ2,且V 2>V 1。当一个波以α角入射到界面时,在界面上会发生什么现象?用射线、箭头和角度方式图示,并回答问题。 一、试卷题型 ?图示说明题和公式推导或证明 例2:图示岩石基本特性与速度的关系(定性关系)。

中国石油大学(华东)岩石孔隙度的测定实验

岩石孔隙度的测定 一、实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握气测孔隙度的流程和操作步骤。 二、实验原理 岩石的体积分为几何体积、骨架体积和孔隙体积,我们可以根据其中两个数值求解剩余一个。孔隙度是孔隙体积与几何体积之比,反映了岩石中孔隙的发育程度,表征储集层储集流体的能力。储层的孔隙度越大,可容纳流体的量就越大,储集性能就越好。 根据玻义尔定律,在恒定温度下,岩心体积一定,放入岩心室岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 100%f s f V V V φ-= ? 三、实验流程与设备 (a )流程图

(b )控制面板 图1 QKY-Ⅱ型气体孔隙度仪 仪器由下列部件组成: (1)气源阀:供给孔隙度仪调节器低于1000kPa 的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 (2)调节阀:将1000kPa 的气体压力准确地调节到指定压力(小于1000kPa )。 (3)供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 (4)压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 (5)样品阀:能使标准室内的气体连接到岩心室。 (6)放空阀:使岩心室中的初始压力为大气压,也可使平衡后岩心室与标准室的气体放入大气。 四、实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值(本次试验为560kPa )。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.打开放空阀,逆时针转动T 形转柄,将岩心杯向外推出,取出钢圆盘; 6.用同样的方法将3号、4号、全部(1~4号)及任意三种组合的钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力; 8.将上述数据填入原始记录表。 五、数据处理与计算 1.计算各个钢圆盘的体积f V ; 以2号圆盘的体积计算为例:22311 3.14 2.5 1.9629.63144 f V d L cm π==???=

岩石物理分析技术在储层预测中的应用

岩石物理分析技术在储层预测中的应用 引言 岩石物理分析基础 应用及效果分析 合成地震记录有明显的改善 结论 1、在AVO研究工作中,泊松比是弹性波反演的主要参数之一,通常采用纵横波速度曲线来求取。 【泊松比:泊松比是指材料在单向受拉或受压时,横向正应变与轴向正应变绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。】 2、Gassmann理论为基础的经验公式,其应用的前提条件是: 1)孔隙流体与孔隙壁接触很好; 2)速度不随频率的变化而变化; 3)剪切模量不受流体影响。 3、在实际测井资料分析研究中,由于测井资料容易受到泥浆、井径扩径等非地层因素的影响,同时由于受泥浆滤液浸入的影响,声波和密度的测量代表地层冲洗带的响应状态。 4、通过对工区内岩石物性特性分析研究,可以得到地层的泥质含量、孔隙度、渗透率、含油饱和度、束缚水饱和度等储层物性参数。 如果已知组成地层各分量及各流体分量的体积模量和剪切模量就能够根据Gassmann理论或者Wood理论确定地层的有效体积模量Κ和有效剪切模量μ.Gassmann理论的有效体积模量Κ和有效剪切模量μ为: 式中Κ为岩石的体积模量,Κ s 为颗粒的体积模量,Κ d 为干岩石骨架的体积 模量,Κ f 为流体的体积模量,μ为岩石的剪切模量,μ d 为干岩石的剪切模量, ρ为流体的颗粒密度;ρ f 为岩石的颗粒密度,φ为孔隙度. Κ f 由Wood公式求出: 式中f i 是体积因子,Κ i 是体积模量,ρ i 矿物的体积密度. 地层的体积密度是岩石密度的体积加权,并且与岩石的孔隙度密切相关,通过下式得到:

其中ρ为地层的体积密度,ρ 0为地层岩石的骨架密度,ρ f 为孔隙中流体的 密度,φ岩石的孔隙度。 纵横波的重构是根据Xu-White模型,压缩波速度是介质密度和弹性模量的函数,可表示为: 横波通过固相弹性介质的速度是: 式中V c 为压缩波速度,Κ为地层的有效体积弹性模量,μ为地层的有效切 变弹性模量,ρ为地层的体积密度,V s 为横波速度。 通过测井曲线的重构,做出各井标准层的测井响应频率直方图或频率交会图,同关键井的标准砂岩或泥岩层作对比,地层的物性参数及含油情况等能够得到很好的反映,并能够真正反映地层的沉积环境,消除由于环境影响对测井的影响. 5、下图为一实际测井资料,在井的563-572m是油层、622-627.8m为气层。 X井曲线校正对比图: X井合成记录对比情况:

地球化学岩石测量规程

岩石地球化学测量规程 1.引言 根据ZT/DKY-S-2003的要求,为更好的执行ZT/DKY7.5-1C—2003,结合地质矿产行业相关标准的规定,制定本要求。 2.目的和范围 2.1 目的 本要求的目的是规范地球化学勘查岩石测量野外工作的技术要求,保证岩石测量的质量,使其完全满足地质勘查工作需要。 2.2 范围 适用于地质矿产勘查项目中地球化学岩石测量工作及其它专项地球化学勘查项目的岩石测量工作。 3.职责 3.1 本要求的责任部门是生产技术部和各勘查室及项目组。 3.2 生产技术部负责各地质勘查项目中地球化学岩石测量工作进行中和工作结束后对工作质量的检查验收。 3.3 各勘查室根据工作进程负责安排地球化学岩石测量工作,并对工作进行定期的检查和指导。 3.4 项目组成员具体负责地球化学岩石测量工作的实施。 4.管理内容与要求 4.1适用范围 4.1.1为系统地了解不同地层和岩浆岩中元素的含量(或近似丰度),为区域化探异常解释和评价提供资料,同时,也为基础地质研究提供地球化学资料。 4.1.2为在异常查证和矿产普查中,应用岩石地球化学测量,解决矿源层、赋矿层、矿体剥蚀程度、寻找隐伏矿床等提供资料。 4.1.3在区域化探中不适宜采用水系沉积物、土壤、岩屑等方法的地区利用岩石地球

的测量进行区域化探扫面。 4.2采样密度 仅在利用岩石地球化学测量进行区域化探扫面时,其采样密度要求为: 1:20万化探扫面:1个点/1-2km2 1:5万化探扫面:4-12个点/ km2 用作其他目的的岩石测量不作密度要求。 4.3采样布局 4.3.1用作区域化探扫面的岩石测量布局原则同水系沉积物测量。 4.3.2为了解不同地层、岩浆岩中元素丰度值的岩石测量按不同地质构造单元(或沉积相)来布置。对不同时代的沉积岩、变质岩和岩浆岩进行系统采样。 地层以系(或组)为统计单元,每个采样单元应有30件以上样品;岩浆岩以期或主要岩类为采样单元,每个主要岩类至少有7-10件样品,变质岩区以变质建造或分布面积大的主要岩类为采样单元,每个主要岩类样品数一般不少于5件。 4.4采样方法 4.4.1区域化探扫面的岩石测量采样方法和要求: a)沉积岩(含火山岩)样品的采集。主要选取各地质时代研究程度高、代表性好、岩性出露齐全的区域地质调查标准剖面进行,在标准剖面不能满足要求时,可布 置部分辅助剖面或点采少量样品;岩浆岩样品的采集。主要选取各岩类(不同时 代)面积较大的和有代表性的岩体取样,采样剖面应穿过岩体的不同岩性单元; 变质岩样品的采集,应依变质岩的不同类型区别对待,深变质体的采样可参照岩 浆岩类的取样方法,采样要着重考虑变质建造、岩类及其面形分布特征。浅变质 体的采样,可参照沉积岩的采样方法进行。 b)采集岩石样品时,每个样品在采样点周围10-20米范围内,多处采集(3处以上)同一岩性的新鲜岩石碎块(直径应小于30mm)组合成一个样品,重量300克以 上。按岩石测量记录卡的格式记录有关内容,并应附有采样点的地形地质示意图。

油层物理实验报告岩石孔隙度测定

中国石油大学《油层物理》实验报告 实验日期:成绩: 班级:石工11-1班学号:姓名:李悦静教师: 同组者:徐睿智 实验一岩石孔隙度测定 一、实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 测定岩石骨架体积可以用①气体膨胀法 ②气体孔隙度仪 三.实验流程 图1 实验流程图 图2 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1. 将钢圆盘从小到大编号为1、2、3、4; 2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中; 3. 打开样品阀及放空阀,确保岩心室气体为大气压; 4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。 5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。 8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入岩心室中,重复步骤2-5,记下平衡压力。 9. 将待测岩样装入岩心室,按上述方法测定装岩样后的平衡压力。 10. 将上述数据填入原始记录表。 五、实验数据处理 表 1 岩石孔隙度测定原始记录表

岩石物理学及岩石性质

岩石物理学及岩石性质 一、矿物 1.1矿物 矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。 1.2矿物的主要物理特性 1.2.1光学特性 (1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。一般来说矿物的颜色是矿物对入射光吸收色的补色。 (2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。 (3)光泽:光泽是矿物表面对入射光所射的总光量。根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。 (4)透明度:透明度与矿物对矿物透射光的多少有关。 1.2.2力学性质 (1)硬度: 矿物的硬度是指矿物的坚硬程度。一般采用摩氏硬度法鉴别矿物硬度。即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。 (2)解理与断口: 矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。因此,断口具有了非晶质体的基本含义。解理与晶质体内质点间距有明显的关系,

解理常出现在质点密度较大的方向上。 (3)延展性: 矿物的延展性,也可以称为矿物的韧性。其特征是表现为矿物能被拉成长丝和辗成薄片的特性。这是自然金属元素具有的基本特性。 1.3重要矿物 (1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。 图1金刚石 (2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。 方铅矿PbS。闪锌矿ZnS。黄铁矿FeS2(见图2) 图2黄铁矿 (3)氧化物及氢氧化物类矿物:本类矿物分布相当广泛,共约180多种,包括重要的造盐矿物如石英及Fe、Al、Mn、Cr、Ti、Sn、U、Th等的氧化物或氢

孔隙度测定

一.孔隙度定义: 岩石的总体积V b,是由孔隙的体积V p及固体颗粒体积(基质体积)V s两部分组成。孔隙度(?)是指岩石中孔隙体积V p与岩石总体积V b的比值。表达式为 ?=V p V b ×100% 它是说明储集层储集能力的相对大小的基本参数。 二.孔隙度的分类 1.岩石的绝对孔隙度(?a) 岩石的绝对孔隙度(?a)指掩饰的总孔隙体积(V a)与岩石外表体积(V b)之比,即 ?a=V a V b ×100% 2.岩石的有效孔隙度(?e) 有效孔隙度是指岩石中有效孔隙的体积(V e)与岩石外表体积(V b)之比,即: ?e=V e V b ×100% 计算储量和评价油气层特性时一般之有效孔隙度。 3.岩石的流动孔隙度(?f)

微毛细管孔隙虽然彼此连通,但未必都能让流体流过。例如对于喉道半径极小的孔隙来说,通常的开采压差难以使流体流过;亲水岩石孔壁表面附着的水膜使得孔隙通道大大缩小。所以流动孔隙度是指含油岩石中,可流动的孔隙体积(V f)与岩石外表体积(V b)之比,即: ×100% ?f=V f V b 流动孔隙度与有效孔隙度不同,它既排除了死孔隙,又排除了微毛细管孔隙体积。流动孔隙度不是一个定值,它随地层中的压力梯度和液体的物理化学性质而变化。在油气田开发中,流动孔隙度具有一定的实用价值。 三者的关系为:绝对孔隙度>有效孔隙度>流动孔隙度 三.孔隙度分级标准 四.双重介质岩石空孔隙度 双重孔隙介质储层具有两种孔隙系统。第一类是岩石颗粒之间的孔隙空间构成的粒间孔隙构成的孔隙度,称为原生孔隙度;第二类是裂缝和空洞的空隙空间形成的系统构成的孔隙度,称为次生孔隙度。 总孔隙度?t、裂缝孔隙度?f和岩石原生孔隙度?p之间有如下关系: ?p=?p+?f 式中?f=裂缝空隙体积/岩石总体积 ?p=基质孔隙体积/岩石总体积 五.孔隙度的影响因素 A 颗粒的排列方式:等径颗粒理想排列的孔隙度计算公式:

岩石物理学重点归纳

第一章绪论 一、岩石物理学 1、定义:是专门研究岩石的各种物理性质及其产生机制的一门学科。 2、研究方法:观察、实验、归纳、总结 3、主要困难:岩石是混合物; 多尺度系统; 观测条件偏离实际条件 二、研究尺度 1、有关岩石研究的尺度问题: 矿物的组成、性质、含量; 矿物的分布、胶结情况; 矿物间的孔隙度及孔隙流体等。 推论:岩石的物理性质与测量的尺度有关 2、分类: 矿物尺度:研究各个矿物的性质、矿物与矿物之间相互的接触几何等 岩石尺度:研究由多个矿物组成的岩石,在此尺度下,矿物的性质被平均掉了,取而代之的是岩石的性质 岩体尺度:研究不仅包括了完整的岩石,而其还包括了岩石的组合,包括岩石的节理等间断面 地质尺度:为各级尺度性质的高度且复杂的综合。而地质现象是由矿物、岩石、岩体和构造运动的总体所决定的。 第二章基础知识和基础概念 第一节矿物学和岩石学基础 1、矿物:在地质作用下形成的天然单质或化合物,具有相对固定的化学成分、物理性质和结晶构造,是岩石和矿石的基本组成部分。 2、矿物的特点:天然产出、无机作用形成、均匀的固体(具有确定的或在一定范围内变化的化学成分和分子结构,其均匀性表现在不能用物理的方法把其分成在化学上互不相同的物质,这是矿物与岩石的根本区别。) 3、粘土:是一种颗粒非常细的天然沉积物或软岩石,由直径小于0.05mm的颗粒组成。 4、骨架:泛指岩石中除泥质之外的固体部分 第二节多空介质及其描述 一、比面 1、定义:单位体积的岩石内,骨架(或叫颗粒)的总表面积; 或单位体积的岩石内,总孔隙的内表面积。 S=A/Vb 2、实质:反映了单位外表体积岩石中所饱和的流体与岩石骨架接触面积的大小。 反映了岩石骨架的分散程度,比面越大,骨架分散程度越大,颗粒也 越细,渗流阻力越大。 3、影响因素:颗粒大小、形状、排列方式、胶结物含量

实验一:岩石的孔隙度的测定

中国石油大学油层物理实验报告 实验一:岩石孔隙度的测定 一:实验目的 1. 巩固岩石孔隙度的概念,掌握其测定原理; 2. 掌握空隙的的流程和操作步骤; 二:实验原理 据波义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固体体 积越小,则岩心室中气体所占体积越大,与标准室联通后吗,平衡压力越低;反之,当放入岩心室的岩样体积越大,平衡压力越大; 绘制标准块的体积与平衡压力的标准曲线,测定待测岩样的平衡压力,根据标准曲线反求岩样固体体积。按下式计算孔隙度: = 100% 三:实验流程与设备 平衡关系式:()()1021100V V V P V P V V P s s +-=+- 源 放空阀 流程图

(b)控制面板 QKY-Ⅱ型气体孔隙度仪 仪器由下列部件组成: ①气源阀:供给孔隙度仪调节器低于1000kP,但供气阀开启时,调节器通 过常泄, 保持压力恒定。 ②调节阀:将1000kP的气体压力准确的调节到指定的压力(小于1000kP)。 ③供气阀:链接经调解阀调压后的气体到标准室和压力传感器。 ④压力传感器:测量体系中气体压力,用来指示准确标准室中的压力,并 指示体系中 的平衡压力。 ⑤样品阀:能使标准室的气体连接到岩心室。 ⑥放空阀:使岩心室中的初始压力为大气压力,也可使平衡后岩心室与标 准室的气体 放入大气。 四:实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径和长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中。 2.将2号刚圆盘放入岩心杯,并把岩心杯放入夹持器中,顺时针转动T型转柄,使之密封,打开样品阀及放空阀,确保岩心室气体为大气压力。 3.关样品阀及放空阀,开气源阀及供气阀。调节调压阀,将标准室气体压力调至某一值,如560 kP,。待压力稳定后,关闭供气阀,并记录标准室气体压力。

岩石孔隙度的测定实验

*中国石油大学油层物理实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 实验一 岩石孔隙度的测定 一. 实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握测量岩石孔隙度的流程和实验步骤。 二. 实验原理 根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固 相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: %100?-= f s f V V V φ 三. 实验流程 图一 实验流程图 四. 实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.打开样品阀及放空阀,确保岩心室气体为大气压; 3.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。

4.关闭样品阀及放空阀,打开气源阀和供气阀。调节调压阀,将标准室气体压力调至560kPa 。待压力稳定后,关闭供气阀,并记录标准室气体原始压力P 1; 5.打开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力P 2; 6.打开放空阀,逆时针转动T 形转柄,将岩心杯向外推出,取出钢圆盘; 7.用同样方法将3号、4号及全部(1~4号)及14、134、23的组合钢圆盘装入岩心杯中,重复步骤3~5,记录平衡压力P 2; 8.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力P 2; 9.将上述数据填入原始记录表,将调压阀调至最低端,关闭气源阀。 10.整理实验台,将所有物品放回原处。 五. 实验数据处理 1.气体孔隙度测定原始数据 2.计算各个钢圆盘体积和岩样外表体积 计算公式:L D V f 24 1 π= 以 2 号钢圆盘为例说明: 3222680.9972.1)500.2(4 1 41cm L D V f =???== ππ 3.处理后的数据统计

中国石油大学-渗流物理-实验报告岩石孔隙度的测定

中国石油大学 渗流物理 实验报告 实验日期: 2016.10.11 成绩: 班级: 石工1405 学号: 1402010518 姓名: 闻海楠 教师: 同组者: 陈晓栋 岩石孔隙度的测定 一、实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握气测孔隙度的流程和操作步骤。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占的体积越大,与标准室连通后,平衡压力就越低;反之,当放入岩心室内的岩样体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力后,根据标准曲线反求岩样的固相体积。按下式计算岩样的孔隙度: %100f f ?-=V V V s φ 三、实验流程 图1 孔隙度测定流程图 四、实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T 形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体压力为大气压;

3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.发开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘; 6.用同样的方法将3号、4号及全部(1-4)钢圆盘装入岩心杯中,重复步骤2—5,记录平衡压力。 7.自由组合钢圆盘,测定3次,要求数据尽量远离上述数据。 8.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 9.将上述数据填入原始记录表。 五、数据处理与计算 表1 气体孔隙度测定原始记录 实验仪器编号: 10号

岩石地球化学找矿

岩石地球化学找矿:是用岩石地球化学测量了解岩石中元素分布,总结元素分散与集中地规律,研究其与成岩成矿作用的联系,并通过发现异常与解释评价来进行找矿的。也可根据所发现的区域异常,评价各时代的地层及侵入体的含矿性。 成矿热液:沿着构造通道自深处向上进入上层围岩,由于物理化学条件的改变,促使金属组分从溶液中析出,在成矿有利部位,大量沉淀聚集,形成了矿体。同时成矿溶液还对矿体围岩产生影响,一方面是改变围岩的矿物组成和结构构造,产生近矿围岩蚀变现象,另一方面使成矿有关组分带入和围岩某些组分释出,改变围岩的元素分布,特别是改变围岩中微量元素的分布,形成原生晕。 成晕元素的迁移方式:渗透迁移,扩散迁移。气相迁移 引起含矿溶液物理化学条件的因素:1.含矿溶液进入开阔断裂带,外部压力降低,挥发物质气化逸出,造成有关物质沉淀。2.。热液随远离岩浆而冷却。3.热液与围岩相互作用,改变了溶液的成分或Ph值和Eh值。4,在近地表处氧化使络合物分解。5,与下渗的地下水相遇而起化学反应。 影响元素迁移的因素:含矿溶液的性质,构造,围岩性质, 岩石地球化学测量的应用:矿产的普查评价阶段,对有矿化,蚀变或物探,化探异常的找矿远景地段,进行岩石地球化学找矿工作,可寻找盲矿体,并对矿化蚀变带或物化探异常区的找矿远景作出评价。在普查找矿阶段,岩石地球化学找矿可用以评价地质体(岩体,地层,断裂带,蚀变岩等)的含矿性。 区域地质研究的主要方面:地层的划分与对比。沉积环境的分析。侵入体的划分,对比和成因分析。变质岩原岩类别的判断。 水系沉积物地球化学找矿的应用:了解水系沉积物中元素的分布,总结其分散,集中的规律,研究其与附近基岩中地质体的联系,通过发现异常与解释评价异常来进行找矿。 分散流和次生晕的共同点:首先:具有共同的物质来源,即都是矿体及其原生晕在表生作用下,与矿石组分有关的元素,迁移分散所形成。其次:形成作用基本相同,在形成过程中,即可有与物理风化作用有关的机械分散,又可有化学风化作用下的水成分散,而且都是以机械分散为主。第三:都是表生作用下形成的因而都受气候因素所控制。 分散流的形成有特殊之处:第一:形成分散流的物质不仅是来自地表的矿体与原生晕,也可以来自地下的盲矿体及原生晕,甚至还可以来自次生晕,进一步迁移,分散,在水系沉积物中形成分散流。第二:形成作用方面,虽然分散流,次生晕都可有机械分散和水成分散,但分散流的机械分散并不像次生晕那样由于气候变化所造成,而主要是由于水动力的冲刷,搬运,矿石物质进入水系,并在水系内进一步分散而形成分散流。第三:气候对分散流形成的控制,不仅如同次生晕那样反应在年平均温度,年降雨量方面,而且还反映在季节性气温变化和降雨量上,因为季节性气温和降雨量变化,对形成分散流物质的冲刷搬运影响很大。水系沉积地球化学找矿:适合在地形切割剧烈,水系发育的山区进行,而在地形平坦,水系不发育的地区,起应用效果受到限制,水系沉积地球化学找矿不仅能找到有成矿远景的地区,为成矿预测及基础地质研究提供资料,而且方法简单,效率高,用于大规模扫面,有利于迅速查明广大地区矿产资源远景,对找矿来说可起到战略侦察的重要作用。 化探野外工作:一个完整的化探工作包括踏勘,实验,工作设计,采样,样品加工处理,分析,资料整理,异常解释评价与验证直到提交报告的全过程,是一个有组织,有计划,有步聚调查研究的过程,涉及很多人员协同工作,不但是技术工作,也是组织管理工作。 地球化学异常的评价方法:等级评价。类比评价异常。地质,物探,化探综合评价异常。利用单矿物中微量元素区分矿与非矿。

相关文档
相关文档 最新文档