文档库 最新最全的文档下载
当前位置:文档库 › 北科大数理方程 第4章习题四答案

北科大数理方程 第4章习题四答案

北科大数理方程 第4章习题四答案
北科大数理方程 第4章习题四答案

研究生数理方程期末试题-10-11-1-A-答案

北京交通大学硕士研究生2010-2011学年第一学期 《数学物理方程》期末试题(A 卷) (参考答案) 学院__________ 专业___________ 学号 __________ 姓名____________ 1、( 10分)试证明:圆锥形枢轴的纵振动方程为: 玫[I h .丿&」V h .丿& 其中E是圆锥体的杨氏模量,「是质量密度,h是圆锥的高(如下图所示) 【提示:已知振动过程中,在x处受力大小为ES ,S为x处截面面积。】 ex 【证明】在圆锥体中任取一小段,截面园的半径分别是r1和r2,如图所示。于是,我们有 2、::u(x dx,t) 2 u(x,t) — 2 u2(x,t) E( D) E( * ) ( A )dx 于 x x t r1 = (h「x)tan : r2= (h _(x dx)) tan : 上式化简后可写成

2 2 ::U(X,t) 2 ::u(x,t) 2, ;u (x,t) E[(h -x) 卜亠 & -(h -'X) 〔x J - - (h -'X)dx 2 从而有 E ::[(^x)2;:U(x ,t)H-(^x)2::u2(x,t) .x :X :t 或成 2 ::[(1「)2汽("]“2(1「)小叩) .x h ::x h ;:t 其中a^E ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片, 它的一边y=b 处于较高温度U ,其它三边y=0. x = 0和x = a 则处于冷却介质中,因而保持较低的温度 u o 。试求该截面上的稳定温度 分布u(x,y),即求解以下定解问题: u|y 卫二 %, u|y 生二 U, 0 x a. 【提示:可以令u(x, y)二u 0 v(x, y),然后再用分离变量方法求解。】 【解】令u(x, y) v(x, y),则原定解问题变为 Wl x£=0, V=0, 0cy

数理方程第二次作业参考答案

第二次作业 1.化下列方程为标准形式: 0=+yy xx yu u 解:根据题意可得y c b a ===,0,1,则有y ac b -=-=?2。 (1)当0=y 时,0=?,方程为抛物型方程,标准形式为0=xx u ; (2)当0>y 时,0?,方程为双曲型方程,对应的特征方程为 022=+ydx dy 解得两条特征线为 C x y =±--2 选取变换y x y x -+=--=2,2ηξ,带入原方程可得 () ()ηξξηηξu u u ---=21 2.确定下列方程的通解: 023=+-yy xy xx u u u 解:根据题意可得2,23,1=-==c b a ,04 12>=-=?ac b ,方程为双曲型方程,对应的特征方程为 02322=++dx dxdy dy 解得两条特征线为

212C x y C x y =+=+ 选取变换x y x y 2,+=+=ηξ,可把原方程化简为 0=ξηu 此方程的通解是 ()()ηξg f u += 其中是g f ,关于ηξ,的任意二次可微的连续函数, 所以原方程的通解为 ()()y x g y x f u +++=2 作业中出现的问题: 第一题: 1.有的同学以为特征线就是通解,这也太荒谬了。 2.有的同学没有讨论0=y 时候的情况。 3.作变量代换的时候有的同学设的变量很复杂,不可取。另外化简的时候没有化到最简,方程中还包含y x ,。此外有的同学认为书上最简形式的椭圆、双曲方程就是本题的结果,这是完全错误的。还有计算问题也出现了很多。 第二题: 1.到0=ξηu 这一步都没有什么大问题,主要是后面求这个积分出现了问题,一方面有的同学最后结果中后面还带着积分号,另一方面有很多同学都没有讨论g f ,和性质。

数理方程期末考试试题

2013-2014学年度第二学期数理方程(B )期末考试试题 考后回忆版本 一、求下列偏微分方程的通解),(y x u u =(16分) (1)y x y x u 22=???(2)xy x u y x u y =??+???2二、求下列固有之问题的解。要求明确指出固有值及其所对应的固有函数(10分) ?????=′+∞<<<=+′+′′.0)2(,)0()20(,022y y x y x y x y x λ三、求第一象限}0,0|),{(2 >>∈=y x R y x D 的第一边值问题的Green 函数。(12分) 四、用积分变换法求解下列方程。(12分)???=>+∞<<<=).21(),0(,)(),0(. 1)1,(,0)0,()0,10(,4x x u x x x u t u t u t x u u t xx tt δ?七、用分离变量法求解下列方程。(15分) ?????=<++=++=++0|)1(,1 222222z y x zz yy xx u z y x z u u u 八、求解下列定解问题。(5分) ?????==>+∞<

研究生数理方程期末试题10111A答案

《数学物理方程》期末试题(A 卷) (参考答案) 学院 专业 学号 姓名 1、 (10分)试证明:圆锥形枢轴的纵振动方程为: 其中E 是圆锥体的杨氏模量,ρ是质量密度,h 是圆锥的高(如下图所示): 【提示:已知振动过程中,在x 处受力大小为u ES x ??,S 为x 处截面面积。】 【证明】在圆锥体中任取一小段,截面园的半径分别是1r 和2r ,如图所示。于是,我们有 上式化简后可写成 从而有 或成 其中2 E a ρ = ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片,它的一边y b =处于较高温度U ,其它三边0y =, 0x =和x a =则处于冷却介质中,因而保持较低的温度0u 。试求该截面上的稳定温度 分布(,)u x y ,即求解以下定解问题: 【提示:可以令0(,)(,)u x y u v x y =+,然后再用分离变量方法求解。】 【解】令0(,)(,)u x y u v x y =+,则原定解问题变为 分离变量:

代入方程得到关于X 和Y 的常微分方程以及关于X 的定解条件: 可以判定,特征值 特征函数 利用特征值n λ可以求得 于是求得特征解 形式解为 由边界条件,有 得到 解得 最后得到原定解问题的解是 3、 (20分)试用行波法求解下列二维半无界问题 【解】方程两端对x 求积分,得 也即 对y 求积分,得 也即 由初始条件得 也即 再取0x =,于是又有 从而得 于是 将这里的()g x 和()h y 代入(,)u x y 的表达式中,即得 4、 (20分)用积分变换法及性质,求解无界弦的自由振动问题: 【提示:可利用逆Fourier 积分变换公式:11 ,||sin []20, ||x at a t F a a x at ωω-?

数理方程第二版 课后习题答案教学教材

数理方程第二版课后 习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕 3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。 证:设,为定义在区间上的向量函数,因为

在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是 因为,故,从而 为常向量,于是,,即具有固定方向。证毕

6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与 不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念 1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,, ,于是切线的方程为:

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

北京科技大学参考书目

北京科技大学参考书目│ ├────────────────────────────────────────┤ │070205凝聚态物理: 226量子力学:《量子力学》上册科学出版社曾谨言│ │《量子力学教程》高等教育出版社周世勋 │ │228统计物理:《热力学与统计物理》高等教育出版社汪志成 │ │《统计物理学》高等教育出版社熊吟涛 │ │332固体物理:《固体物理学》上、下册上海科技出版社方俊鑫、陆栋│ │《固体物理学》高等教育出版社黄昆、韩汝琦 │ │《固体物理导论》科学出版社基特尔(杨顺华译) │ │333金属物理:《金属物理》冶金工业出版社余宗森、田中卓 │ │同等学力加试:原子物理《原子物理学》高等教育出版社杨福家 │

│《原子物理学》高等教育出版社褚圣林 │ │理论力学《理论力学》高等教育出版社胡慧玲 │ │ │ │071200科学技术史: 219物理化学:《物理化学》冶金工业出版社蔡文娟1994 │ │254考古学通论:《中国考古学通论》河南大学出版社孙英民.李友谋主编2002年│ │《中国考古学:实践、理论、方法》中州古籍出版社张忠培1992年 │ │262科学技术哲学:《西方科学哲学》南京大学出版社夏基松、沈斐凤1987年│ │《科学哲学教程》山西科学出版社郭贵春2000年 │ │267文物保护学:《岩土文物建筑的保护》中国建筑工业出版社黄克忠1998年│ │《文物保存环境概论》科学出版社郭宏2001年9月 │ │《文物保护材料学》西北大学出版社王薏贞1995年 │

│334金属学及热处理:《金属学》冶金工业出版社宋维锡 │ │337金属腐蚀学:《金属腐蚀学》冶金工业出版社朱日彰 │ │395科学技术史:《科学史》广西师范大学丹皮尔2001 │ │《历史上的科学》科学出版社贝尔纳着伍况甫译1983 │ │《20世纪科学技术简史(第二版)》科学出版社李佩珊、许良英1999 │ │同等学力加试:科技文献导读无 │ │科学社会学《科学的社会功能》商务印书馆贝尔纳1982 │ │ │ │080104工程力学: 212弹性力学:《弹性力学》人民教育出版社徐 芝纶主编│ │213工程地质学:《工程地质学》地质出版社胡广韬.杨文元主编 │ │250炸药化学:《爆炸化学》国防工业出版社张熙和.云主惠主编 │

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

数理方程试卷及答案2

长沙理工大学考试试卷 ………………………………………………………………………………………………………………… 试卷编号 拟题教研室(或教师)签名 教研室主任签名 ………………………………………………………………………………………………………………… 课程名称(含档次) 数学物理方程与特殊函数 课程代号 专 业 层次(本、专) 本 科 考试方式(开、闭卷) 闭卷 一.判断题:(本题总分25分,每小题5分) 1.二阶线性偏微分方程062242=+++-y x yy xy xx u u u u u 属于椭圆型; ( ) 2.定解问题的适定性包括解的稳定性、解的唯一性和解的存在性; ( ) 3.如果格林函数),(0M M G 已知,且它在Γ+Ω上具有一阶连续偏导数,又若狄利克雷 问题???=Ω∈=?Γ ).,,(|,),,(0z y x f u z y x u 在Γ+Ω上具有一阶连续偏导数的解存在,那么其解可 表示为=)(0M u dS n G z y x f ??Γ??-) ,,(; ( ) 4.设)(x P n 为n 次Legendre 多项式,则0)()(1 1 1050358?-=dx x P x P ; ( ) 5.设)(x J n 为n 阶Bessel 函数,则 [])()(021ax xJ a ax xJ dx d =. ( ) 二.解答题:(本题总分65分) 1.(本小题15分)设有一根长为l 的均匀细杆,它的表面是绝热的,如果它的端点温度为1),0(u t u =,2),(u t l u =,而初始温度为0T ,写出此定解问题. 2.(本小题20分)利用固有函数法求解下面的定解问题 ???????====><<+=. 0),(,0),0(,0)0,(,0)0,(),0,0(cos sin 2t l u t u x u x u t l x l x t A u a u x x t xx tt πω 其中ω,A 是常数. 3.(本小题15分)求出方程xy u u yy xx =+的一个特解. 第 1 页(共 2 页)

矢量分析与数理方程总复习题

矢量分析与场论,数理方程与特殊函数总复习题 矢量和矢性函数 1、 求下列两个矢量的加法、减法、标量积(点乘)和矢量积(叉乘) k j i A 32++= k j i B 654++= 2、 求下列两个矢性函数的加法、减法、标量积(点乘)和矢量积(叉乘) ()k t j t i t t A ++=sin cos , ()k t j e i t t B t 2++= 3、设k t j i t A 23+-=,k j i B 22+-=,k j t i C -+=3,求() C B A ?? 4、如果 ()k t j t i t t A ++=sin cos ,()k t j e i t t B t 2++= 求 ()dt t A d 和 ()dt t B d 5、如果 ()j i e ???sin cos += ① 求 ()()? ??d e d e =1 , ② 证明 ()?e ⊥()?1e . 6、如果 ()j i e ???cos sin 1+-= 证明 ()()?? ?e d e d -=1 7、求不定积分 ()? ??d e , ()? ??d e 1 。 8、计算不定积分 () ? +???d e 122 . 9、求矢量 k j i r -+=22的单位矢量 0r 。 方向导数和梯度 1、求 k j i l 22++= 的方向余弦 2、写出矢径 k z j y i x r ++=的单位矢径0r ,用方向余弦表示0r 3、求矢性函数 () k z j xy i x z y x l 4232,,+-= 的方向余弦 4、求函数2 2 2 z y x u ++=在() 1,0,1M 处沿k j i l 22++=的方向导数 5、求数量场 z y z x u 2 322+= 在点 () 1,0,2-M 处沿 k z j xy i x l 4232+-= 方向的方向导数 6、求下列数量场的梯度 ① 2 2 2 z y x r ++=, ② ??? ? ? ?++=2 221 1z y x r , ③ 223z xy z x u +-= ③ 3 2 z y x u =, ④ xz yz xy u ++=, ⑥ z y x xy z y x u 623322 2 2 --++++=.

2012、11、10、09年电子科技大学研究生数理方程期末试卷

2012、11、10、09年电子科技大学研究生数理方程期末试卷

电子科技大学研究生试卷 (考试时间: 14点 至 16 点 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2012年 12 月 28 日 成绩 考核方式: (学生填写) 1.把方程 22222320u u u x x y y ???++=????化为标准型,指出其 类型,求出其通解. (10分) 2. 设定解问题:(10分) 2000(),0,0,,0(),(),0. tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ?ψ====?-=<<>?? ==>??==≤≤?? 将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。 学 号 姓 学 院 教 座位 ……………………密……………封……………线……………以……………

第 1页 3. 长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ?,求杆内温度分布 (,)u x t . (20分) 4.求下面的定解问题:(10分) 22 009,(,0)18,sin 18 t tt xx t t t u u x e x R t u x x u x ==?-=∈>??=++=+??.

第2页 5.求22 cos()a e x d ?τ??+∞-?.(10分) 6. 222 23()(22)(25) s s F s s s s s ++=++++,求Laplace 逆变换1 (())L F s -.(10分)

天津大学研究生课程-数理方程试题

一. 判断题(每题2分). 1. 2u u x y x y x ??+=???是非线性偏微分方程.( ) 2. 绝对可积函数一定可做Fourier 积分变化.( ) 3. ()(1) 1.n n F x n Legendre F =是次正交多项式, 则 ( ) 4. (,)0xy f x y =的解是调和函数.( ) 5. **12u u 已知,是线性偏微分方程(,)xx yy u u f x y +=的解,则**12u u -是0u ?= 的解.( ) 二. 填空题(每题2分). 1. ()sin t xx yy u u u xt -+= 是____________型偏微分方程. 2. 内部无热源的半径为R 的圆形薄板,内部稳态温度分布,当边界上温度为()t φ时,试建立方程的定解问题________________________. 3. 2x 的Legendre 正交多项式的分解形式为__________________. 4.某无界弦做自由振动,此弦的初始位移为()x φ,初始速度为()a x φ-,则弦振动规律为______________________________. 5. []()____________.at m L e t s = 三.求解定解问题(12分) 200sin ; 0,0;0. t xx x x x x l t u a u A t u u u ω===-====

四.用积分变换方法求解以下微分方程(每题12分,共24分) (1) 001,0,0; 1,1. xy x y u x y u y u ===>>=+= (2) 00230, 1.t t t y y y e y y =='''+-='== 五.某半无界弦的端点是自由的,初始位移为零,初始速度为cos x ,求弦的自由振动规律。(12分)

电子科大版数理方程课后习题答案

一 准备(Preliminaries ) A 单摆的数学模型: 牛顿第二定律: F = m a a —物体加速度;F —合外力;m —物体质量 虎克定律: (1) f = –k x ; f —弹力;k —弹性系数; x —弹簧伸长 (2) p = Y ux ; Y —杨氏模量; ux —弹性体相对伸长 付里叶热传导定律: Q —热量;T —温度;κ—热导率 牛顿冷却定律: q = k (u |S – u 0) q —热流密度; u 0—外界温度;u|S —物体温度 B 几个有用的积分公式 2 ()()()2 2 2 (cos sin )cos Re( )sin Im( ) cos sin sin sin cos cos b i x x b a a b i x x b a a b i x x b a a b x x x b b a a a b b b a a a b b b a a a cx e e x i x dx i e e xdx i e e xdx i e x e e xdx x x x x xdx x x x x xdx e dx αβααβααβααααββαββαββαβα αββββ βββββ β+++-+=+=+=+= - =- + = - =??????+∞-∞ ? C 函数的Fourier 展开 θ θ sin 22mg dt d mL -=dT Q dx κ =-

{}(21)()sin 2n n X x x L π+??=??? ? 是正交函数系 二 练习(Exercise) P22 ex 2.1 竖直方向合力为零: (1)()cos ()()cos () (2)cos ()cos ()1 T x dx x dx gds T x x x dx x αρααα+++=+≈≈ {}???? ??=x L n x X n πsin )(10(,)()sin ()(,)sin 2n n L n n f x t f t x L L n f t f x t xdx L π π∞ ===∑?

2015北科大数理方程总复习

1已知)(z f ),(y x u =),(y x iv +,写出柯西—黎曼条件表达式 2计算)1(i Ln w += 3计算积分dz z I n )(α-= ? ,回路 包围点α (n 为整数) 42 3)(2--=z z z z f ,以0=z 为展开中心(a )在环域21<z 内展开成洛朗级数。 5已知π=Γ)2 1 (,计算)5.2,5.3(B 6已知1 1)(4-= z z f ,计算)1(Re ±sf ,)(Re i sf ±。 7计算积分?+∞+=032)1(x dx I ?+∞∞-+=32) 1(21x dx 8计算积分?+∞∞-++=dx x x x I ) 1)(1(12 9求22)(ωλ++p p (λ为一复常数,ω是正数)的原函数。 10求81 3692)(423-+-+=p p p p p f 的原函数。 11已知质量为m ,劲度系数为k 的弹簧振子在外力)(t f 作用下的振动方程是: )()()(t f t kx t x m =+ ,设位移)(t x 的初始条件:0)0(=x ,0)0(=x ,求解此初值问题。 12写出阶跃函数)(x H 的表达式,并求出它的导数)(x H ' 13用傅里叶变换求解具有阻尼的经典谐振子(质量1=m )的受迫振动方程: )()(4)(2)(t F t x t x t x =++ )(∞<<-∞t ,其中)(t F 是已知函数。 13已知高斯方程[]0)1()1(=+'-+++''-aby y c x b a y x x ,设它在正则奇点0=x 邻域的解为s n n n x c x y +∞=∑=0)()0(0≠c ,写出系数递推关系。 14已知库默尔方程0)(=-'-+''ay y x c y x ,设它在正则奇点0=x 邻域的解为 s n n n x c x y +∞ =∑=0)()0(0≠c ,写出系数递推关系。 15判断弦振动方程),(),(),(22222t x f x t x u a t t x u +??=??的类型。 16判断热传导方程),(),(),(2 22t x f x t x u a t t x u +??=??的类型。 17求解本征值问题???===+''0 )(,0)0(0 X X X X λ。 18求解本征值问题? ??='='=+''0)(,0)0(0 X X X X λ 19(1)一维无源导热问题???===)(),(),(2x u t x u a t x u t xx t ?τ ),(τ>∞<<-∞t x ,

数理方程期末试题B答案

数理方程期末试题B答 案 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷 (B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3.设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为 零,又没有外力作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ, 并由此求出波动方程的通解。 5. 用分离变量法解下列定解问题

[ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n πsin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得 以及 设0ρβλn n =为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7.证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。

数学物理方法期末考试试题典型汇总

一、 Mathematical methods for physics 二、 单项选择题(每小题2分) 1.齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A) 3,2,1 sin =n nx B) ,2,1,0 cos =n nx C) 2,1,0 )2 1 sin(=+n x n D) 2,1,0 )2 1 cos(=+n x n 2.描述无源空间静电势满足的方程是________。 A) 波动方程 B)热传导方程 C) Poisson 方程 D)Laplace 方程 3.半径为R 的圆形膜,边缘固定,其定解问题是??? ? ? ????====?-??===)(| ),(|0|0),(),(0t 02 22 2ρψρ?ρρρt t R u u u t u a t t u 其解的形式为∑∞ == 1 0)()(),(m m m k J t T t u ρρ,下列哪一个结论是错误的______。 A) )()()()(2 2 2 2t T k a t T dt d t T m m m m -=满足方程 B )圆形膜固有振动模式是)sin(0t ak m 和)cos(0 t ak m C )0 m k 是零阶Bessel 函数的第m 个零点。 D ))()(00ρρm m k J R =满足方程0)(2 202=+'+''R k R R m ρρρ 4.)(5x P 是下列哪一个方程的解_________。 A )0202)1(2=+'-''-y y x y x B )0252)1(2=+'-''-y y x y x C )0302)1(2=+'-''-y y x y x D )052)1(2=+'-''-y y x y x 5.根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(120x J x J x J '=- B ))()()(111x J x x J x xJ '=+

北京科技大学操作系统习题3

操作系统试题精选(2) 1.填空(10分)。 ①操作系统是计算机系统中的一个(),它管理和控制计算机系统中的()。 ②进程是一个程序对某个数据集的()。 ③缓冲区由()和()组成。 2.(10分)描述操作系统中使用公用缓冲池时的数据块插入缓冲队列的输入过程。 3.(10分)程序段main(argc,argv){......}中包含了过程调用copy(old,new),过程copy(old,new)又进一步调用库函数write()。库函数write()则调用系统调用write()来完成相应的写操作。画出UNIX系统中该程序执行时的用户栈和核必栈的参数变化图。 4.(10分)比较段式管理和页式管理的特点。 5.(10分)文件系统采用多重索引结构搜索文件内容。设块长为512字节,每个块号长3字节,如果不考虑逻辑块号在物理块中所占的位置,分别求二级索引和三级索引时可寻址的文件最大长度。 6.(每小题5分,共30分) 名词术语解释 ①进程状态 ②快表 ③目录项 ④系统调用 ⑤设备驱动程序 ⑥微内核 7.填空(每小题1分,共10分) ①如果系统中有n个进程,则在等待队列中进程的个数最多可为()个。 ②在操作系统中,不可中断执行的操作称为()。 ③如果系统中所有作业是同时到达的,则使作业平均周转时间最短的作业调度算法是()。 ④如果信号量的当前值为-4,则表示系统中在该信号量上有()个等待进程。 ⑤在有m个进程的系统中出现死锁时,死锁进程的个数k应该满足的条件是()。

⑥不让死锁发生的策略可以分为静态和动态的两种,死锁避免属于()。 ⑦在操作系统中,一种用空间换取时间的资源转换技术是()。 ⑧为实现CPU与外部设备的并行工作,系统引入了()硬件机制。 ⑨中断优先级是由硬件规定的,若要调整中断的响应次序可通过()。 ⑩若使当前运行进程总是优先级最高的进程,应选择()进程调度算法。 8.问答题(每小题15分,共30分) ①消息缓冲通信技术是一种高级通信机制,由Hansen首先提出。 a 试叙述高级通信机制与低级通信机制P、V原语操作的主要区别。 b 请给出消息缓冲机制(有界缓冲)的基本原理。 c 消息缓冲通信机制(有界缓冲)中提供发送原语Send(receiver,a),调用参数a表示发送消息的内存区首地址,试设计相应的数据结构,并用P、V原语操作实现Send原语。 ②在虚拟段式存储系统中,引入了段的动态连接。 a 试说明为什么引入段的动态连接。 b 请给出动态连接的一种实现方法。 9.(共10分)在实现文件系时,为加快文件目录的检索速度,可利用“文件控制块分解法”。假设目录文件存放在磁盘上,每个盘块512字节。文件控制块占64字节。其中文件名占8字节。通常将文件控制块分解成两部分,第一部分占10字节(包括文件名和文件内部号),第二部分占56字节(包括文件内部号和文件其他描述信息)。 ①假设某一目录文件共有254个文件控制块,试分别给出采用分解法前和分解法后,查找该目录文件的某一个文件控制块的平均访问磁盘次数。 ②一般地,若目录文件分解前占用n个盘块,分解后改用m个盘块存放文件名和文件内部号部分,请组出访问磁盘次数减少的条件。 10.(共10分)设系统中有三种类型的资源(A,B,C)和五个进程(P1,P2,P3,P4,P5),A资源的数量为17,B资源的数量为5,C资源的数量为20。在T0时刻系统状态如表1和表2所示。 系统采用银行家算法实施死锁避免策略。 ①T0时刻是否为安全状态?若是,请给出安全序列。 ②在T0时刻若进程P2请求资源(0,3,4),是否能实施资源分配?为什么? ③在②的基础上,若进程P4请求资源(2,0,1),是否能实施资源分配?为什么?

2021年研究生数理方程期末试题

北京交通大学研究生研究生-第一学期《数学物理方程》期末试题(A卷) (参照答案) 学院专业学号姓名 题号一二三四五六七总分分值10 15 15 20 15 15 10 100 得分 阅卷人 1、(10分)试证明:圆锥形枢轴纵振动方程为: 222 2 11 x u x u E x h x h t ρ ?? ??? ???? -=- ?? ? ? ??? ???? ?? ?? 其中E是圆锥体杨氏模量,ρ是质量密度,h是圆锥高(如下图所示): 【提示:已知振动过程中,在x处受力大小为 u ES x ? ? ,S为x处截面面积。】 【证明】在圆锥体中任取一小段,截面园半径分别是 1 r和 2 r,如图所示。于是,咱们有 2 222 2112 1 2 (,)(,)(,) ()()()d ()tan ((d))tan u x dx t u x t u x t E r E r r x x x t r h x r h x x ππρπ α α ?+?? -= ??? =- =-+

上式化简后可写成 22 22 d 2 (,)(,)(,)[()|()|]()d x x x x x u x t u x t u x t E h x h x h x x x x t ρ=+=???---=-??? 从而有 2 222 (,)(,)[()]()u x t u x t E h x h x x x t ρ???-=-??? 或成 22222 (,)(,)[(1)](1)x u x t x u x t a x h x h t ???-=-??? 其中2 E a ρ = ,证明完毕。 2、 (20分)考虑横截面为矩形散热片,它一边y b =处在较高温度U ,其他三边0y =, 0x =和x a =则处在冷却介质中,因而保持较低温度0u 。试求该截面上稳定温度分布 (,)u x y ,即求解如下定解问题: 2222000000,0,0;|,|,0;|,|,0. x x a y y b u u x a y b x y u u u u y b u u u U x a ====???+=<<<

数理方程中与贝塞尔函数有关的问题

数理方程中与贝塞尔函数有关的问题 据百度百科介绍: 贝塞尔(1784——1846)是德国天文学家,数学家,天体测量学的奠基人。20岁时发表了有关彗星轨道测量的论文。1810年任新建的柯尼斯堡天文台台长,直至逝世。1812年当选为柏林科学院院士。贝塞尔的主要贡献在天文学,以《天文学基础》(1818)为标志发展了实验天文学 ,还编制基本星表 ,测定恒星视差, 预言伴星的存在,导出用于天文计算的贝塞尔公式,较精确地计算出岁差常数等几个天文常数值,还编制大气折射表和大气折射公式,以修正其对天文观测的影响。他在数学研究中提出了贝塞尔函数,讨论了该函数的一系列性质及其求值方法,为解决物理学和天文学的有关问题提供了重要工具。此外,他在大地测量学方面也做出一定贡献,提出贝塞尔地球椭球体等观点。(图片来自维基百科) 一、贝塞尔方程与贝塞尔函数 二、贝塞尔方程与欧拉方程比较 三、贝塞尔函数与伽马函数 四、贝塞尔函数与几个常用函数的台劳级数比较 右图来自网页“维基百科——自由的百科全书”中贝塞尔函数介绍。贝塞尔函数的一个实例:一个紧绷的鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加 一、贝塞尔方程与贝塞尔函数 Bessel 方程是二阶线性变系数齐次常微分方程 0)(222 22 =-++y v x dx dy x dx y d x 其中,v 是常数,称为Bessel 方程的阶(不一定是整数),可取任何实或复数。该方程的解 无法用初等函数表现。数理方程教科书采用第一类Bessel 函数和第二类Bessel 函数的线性组合表示方程的标准解函数。贝塞尔函数也被称为圆柱函数或圆柱谐波。通常所说的贝塞尔函数是指第一类Bessel 函数 m v m m v x m v m x J 20)2 ()1(!)1()(+∞ =∑++-=Γ 贝塞尔方程是在圆柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的(在圆柱域问题中得到的是整阶形式;在球域问题中得到的是半奇数阶形式),因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导问题;圆形(或环形)薄膜的振动模态分析问题;在其他一些领域,贝塞尔函数也相当有用。如在信号处理中的调频合成(FM synthesis )或凯泽窗(Kaiser window )的定义中,都要用到贝塞尔函数。 在教科书中Bessel 方程来源 1. 在圆柱坐标系下解二维热传导方程; ?? ? ????=+=<+=><++=2222 222222,0),,()0,,(0,),(R y x u R y x y x y x u t R y x u u a u yy xx t ? 用分离变量法,令u (x ,y ,t ) = V (x ,y )T (t ),代入方程整得

相关文档
相关文档 最新文档