文档库 最新最全的文档下载
当前位置:文档库 › 剪切力

剪切力

剪切力

剪切力(shearing force):剪切力是由两层组织相邻表面间的滑行而产生的进行性的相对移动所引起的,是摩擦力与压力同时作用的结果,与体为有密切关系。常见于不正确半坐卧位时(病人平卧床头抬高而膝部不给予支撑物时)。老人因皮肤生理、免疫改变使其屏障作用、血管功能等减退,易罹剪切力。

当抬高床头的时候,病人骨架向下滑动,而骶骨皮肤与原位停留的床上物相贴,摩擦、牵拉,深部筋膜与骨骼向下滑动,而浅筋膜与真皮附着,这就产生了牵张而至筋膜下以及肌肉内穿出供应皮肤的血管牵拉、痉挛活撕脱,结果大大损害了皮肤下的血供,形成剪切性溃疡。在临床可见的压疮特征:口小底大和形成潜行的伤口下多与剪切力有关,所以剪切力造成的严重伤害早期不易被发现。指南小组强调对于瘫痪特别是截瘫、痴呆、体质虚弱等患者需要特别注意检查尾骶部,左右股骨大转子区因为剪切力造成严重的剪切伤通常发生于此部位

剪切力的计算方法

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部力,而只是给出了主要的受力和力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

材料力学基本概念

变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应

剪切力测试仪操作规程

仅供参考[整理] 安全管理文书 剪切力测试仪操作规程 日期:__________________ 单位:__________________ 第1 页共4 页

剪切力测试仪操作规程 1工作台和型材夹块调整 松开销紧手柄和手杆可进行工作台的高低调整,用工作台夹紧型材。切100毫米的测试料放置工作台上,使型材平放并正好在工作台前端内顶住,然后用滑块夹住型材。调整工作台的高低,使推块正好摆在型材的上部合成部分并与穿条的上线几乎齐平。 2技术参数 a)承受压力:01000公斤,最大承受力为1000公斤。 b)电压:220V10%,50/60Hz c)5-数字显示期 3前面板控制功能 l、2、4号指示灯,一般操作时不用(校准时使用) 3号指示灯灭:受载时,不储存最高值。 3号指示灯亮:受载时,储存最高值 上下箭头:3号指示灯开关 !:一般操作时不用,校准时用 -:一般操作时不用,校准时用 +:一般操作时不用,校准时用 E:显示0位设置 4操作说明 4.1打开电源开,用箭头键设置设备为储存最高数值(3号指示灯亮)。 4.2把推座向隔热型材12毫米。 4.3安E修正回复弹簧。 第 2 页共 4 页

4.4操作时设备显示型材的受力情况,压力增加直到型材滑动为止,之后压力会减少,但最大的数值会显示,按E显示0位设置。 5注意事项 设备最大的测试范围是1000公斤力,当到达最大受力时,显示器会闪烁,此时应立即停止操作。 6维护 6.1测试完后,清理杂物。 6.2定时润滑和防锈机器。 第 3 页共 4 页

仅供参考[整理] 安全管理文书 整理范文,仅供参考! 日期:__________________ 单位:__________________ 第4 页共4 页

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

抗剪强度得试验方法

第三节抗剪强度得试验方法 一、直接剪切试验 适用范围:室内测定土的抗剪强度,是最常用和最简便的方法 仪器:直剪仪 直剪仪分类:分应变控制式和应力控制式两种 应变控制式直剪仪的试验方法简介:通过杠杆对土样施加垂直压力p后,由推动座匀速推进对下盒施加剪应力,使试样沿上下盒水平接触面产生剪切变形,直至剪破。通常取四个试样,分别在不同σ下进行剪切,求得相应的τf。绘制τf -σ曲线。 【讨论】直剪试验为何要取四个原状土样? 破坏强度τf的判定: 较密实的粘土及密砂土的τ-△l曲线具有明显峰值,如图中曲线1,其峰值即为破坏强度τf;对软粘土和松砂,其τ-△l曲线常不出现峰值,如图中曲线2,此时可按以剪切位移相对稳定值b点的剪应力作为抗剪强度τf。 按排水条件分: 快剪(不排水剪) 固结快剪(固结不排水剪) 慢剪(排水剪) 1、快剪(不排水剪) 这种试验方法要求在剪切过程中土的含水量不变,因此,无论加垂直压力或水平剪力,都必须迅速进行,不让孔隙水排出。 适用范围:加荷速率快,排水条件差,如斜坡的稳定性、厚度很大的饱和粘土地基等。

2、固结快剪(固结不排水剪) 试样在垂直压力下排水固结稳定后,迅速施加水平剪力,以保持土样的含水量在剪切前后基本不变。 试用范围:一般建筑物地基的稳定性,施工期间具有一定的固结作用。 3、慢剪(排水剪) 土样的上、下两面均为透水石,以利排水,土样在垂直压力作用下,待充分排水固结达稳定后,再缓慢施加水平剪力,使剪力作用也充分排水固结,直至土样破坏。 适用范围:加荷速率慢,排水条件好,施工期长,如透水性较好的低塑性土以及再软弱饱和土层上的高填方分层控制填筑等等。 直剪仪特点:构造简单,试样的制备和安装方便,且操作容易掌握,至今仍被工程单 位广泛采用,。 【讨论】直剪仪的不足: ①剪切破坏面固定为上下盒之间的水平面不符合实际情况,也即剪切面不一定是试样抗剪能力最弱的面; ②试验中不能严格控制排水条件,不能量测土样的孔隙水压力的变化; ③由于上下盒的错动,剪切面上的剪应力分布不均匀,而且受剪切面面积愈来愈小。 ④试验时上下盒之间的缝隙中易嵌入砂粒,使试验结果偏大。 ***以下为试验过程 1、取样要求:用环刀取,环刀面积不小于30cm 2,环刀高度不小于2cm ,同一土样至少切取4个试样。 2、试验方法 (1)快剪(q ):试样在垂直压力施加后立即进行快速剪切,试验全过程都不许有排水现象产生。 (2)固结快剪(cq ):试样在垂直压力下经过一定程度的排水固结后,再进行快速剪切。 (3)慢剪(s ):试样在垂直压力排水固结后慢慢的进行剪切,剪切过程中孔隙水可自由排出。 试验结果:一般情况下,快剪所得的?值最小,慢剪所得的?值最大,固结快剪居中。 3、指标计算 直接剪切试验的结果用总应力法按库仑公式?στtg c f +=,计算抗剪强度指标。

剪切力的计算方法

第3章剪切和挤压的实用计算 3.1剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴 线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件 的变形主要表现为沿着与外力作用线平行的剪切面(m - n面)发生相对错动(图3- 1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构 件。构件剪切面上的内力可用截面法求得。将构件沿剪切面m-n假想地截开,保留一 部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力F Q (图3-1C)的作用。F Q称为剪力,根据平衡方程',=0,可求得F Q二F。剪切破坏时,构件将沿剪切面(如图3-la所示的m-n面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2剪切和挤压的强度计算3.2.1剪切强度计算

剪切试验试件的受力情况应模拟零件的实际工作情况进行。图 试验装置的简图,试件的受力情况如图 3-2b 所示,这是模拟某种销钉联接的工作情 形。当载荷F 增大至破坏载荷 F b 时,试件在剪切面 m - m 及n - n 处被剪断。这种具 有两个剪切面的情况,称为双剪切。由图 3-2c 可求得剪切面上的剪力为 F Q 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法 确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。 在这种计算方法中, 假设应力在剪切面内是均匀分布的。若以 A 表示销钉横截面面积,则应力为 F Q A ?与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础 的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到F b 时的切应力称剪切极限应力, 记为-b 。对于上述剪切试验, 剪切极限 应力为 _ Fb ■b - 2A 3-2a 为一种剪切 (3-1) bj

(完整版)材料力学基本概念和公式

第一章 绪论 第一节 材料力学的任务 1、组成机械与结构的各组成部分,统称为构件。 2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。 3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。 第二节 材料力学的基本假设 1、连续性假设:材料无空隙地充满整个构件。 2、均匀性假设:构件内每一处的力学性能都相同 3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。木材是各向异性材料。 第三节 内力 1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。 2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。 3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。 4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M 第四节 应力 1、一点的应力: 一点处内力的集(中程)度。 全应力0lim A F p A ?→?=?;正应力σ;切应力τ;p =2、应力单位:Pa (1Pa=1N/m 2,1MPa=1×106 Pa ,1GPa=1×109 Pa ) 第五节 变形与应变 1、变形:构件尺寸与形状的变化称为变形。除特别声明的以外,材料力学所研究的对象均为变形体。 2、弹性变形:外力解除后能消失的变形成为弹性变形。 3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。 4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。对构件进行受力分析时可忽略其变形。 5、线应变:l l ?=ε。线应变是无量纲量,在同一点不同方向线应变一般不同。

剪切力测试仪操作规程示范文本

剪切力测试仪操作规程示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

剪切力测试仪操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 工作台和型材夹块调整 松开销紧手柄和手杆可进行工作台的高低调整,用工 作台夹紧型材。切100毫米的测试料放置工作台上,使型 材平放并正好在工作台前端内顶住,然后用滑块夹住型 材。调整工作台的高低,使推块正好摆在型材的上部合成 部分并与穿条的上线几乎齐平。 2 技术参数 a) 承受压力:0—1000公斤,最大承受力为1000公 斤。 b) 电压:220V±10%,50/60Hz c) 5-数字显示期 3 前面板控制功能

l、2、4号指示灯,一般操作时不用(校准时使用) 3号指示灯灭:受载时,不储存最高值。 3号指示灯亮:受载时,储存最高值 上下箭头:3号指示灯开关 !:一般操作时不用,校准时用 -:一般操作时不用,校准时用 +:一般操作时不用,校准时用 E:显示0位设置 4 操作说明 4.1打开电源开,用箭头键设置设备为储存最高数值(3号指示灯亮)。 4.2把推座向隔热型材1—2毫米。 4.3安E修正回复弹簧。 4.4操作时设备显示型材的受力情况,压力增加直到型材滑动为止,之后压力会减少,但最大的数值会显示,按E

材料力学-切应力计算

第四章弹性杆横截面上的切应力分析 § 4-3梁横力弯曲时横截面上的切应力 梁受横弯曲时,虽然横截面上既有正应力,又有切应力。但一般情况下,切应力 对梁的强度和变形的影响属于次要因素,因此对由剪力引起的切应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面 上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图4-15所示的矩形截面梁,横截面上作用剪力F Q。现分析距中性轴z为y的横线aa1 上的剪应力分布情况。根据剪应力成对定理,横线aa1两端的剪应力必与截面两侧边相切, 即与剪力F Q的方向一致。由于对称的关系,横线aa i中点处的剪应力也必与F Q的方向相同。 根据这三点剪应力的方向,可以设想aa i线上各点切应力的方向皆平行于剪力F Q。又因截面高度h大于宽度b,切应力的数值沿横线aa i不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的切应力方向均平行于剪hj力F Q。 2)切应力沿截面宽度均匀分布。 图4-15 图4-16 基于上述假定得到的解,与精确解相比有足够的精确度。从图4-16a的横弯梁中截出dx 微段,其左右截面上的内力如图4-16b所示。梁的横截面尺寸如图4-16c所示,现欲求距中性 轴z为y的横线aa1处的切应力。过aa1用平行于中性层的纵截面aa2C1自dx微段中截出 一微块(图4-16d)。根据切应力成对定理,微块的纵截面上存在均匀分布的剪应力。微块左右侧面上正应力的合力分别为N1和N2,其中

y 1dA 。 A * 由微块沿x 方向的平衡条件 这样,式(4-32)可写成 N 1 I dA A * My 1 dA Ms ; z A * I z (4-29) N 2 II dA (M dM)y 1dA A * A * I z (M dM)。 * ^n^Sz (4-30) 式中,A 为微块的侧面面积, (ii )为面积 A 中距中性轴为 y i 处的正应力, 将式 N 1 N 2 (4-29)和式(4-30)代入式 dM * nr S z bdx 0 4-31),得 bdx 0 dM S ; dx bI z (4-31) 因 F Q , dx ,故求得横截面上距中性轴为 y 处横线上各点的剪应力 * F Q S Z bn (4-32) 式(4-32)也适用于其它截面形式的梁。式中, F Q 为截面上的剪力; I z 为整个截面 对中性轴z 的惯性矩;b 为横截面在所求应力点处的宽度; S y 为面积A *对中性轴的静矩。 对于矩形截面梁(图4-17),可取dA bdy i ,于是 * S z y i dA A 2(h y 2) 电( h! y 2) 上式表明,沿截面高度剪应力 4-17 )。 按抛物线规律变化(图 在截面上、下边缘处,y= ± h , =0;在中性轴上,y=0, 2 切应力值最大,其值为 ■ 1 1 r 尸蛰 T *17 A" y 图 4-17 * S z 0,得

材料力学剪切力概念

材料力学剪切力的概念 材料力学的定义很清楚:“剪切”是在一对(1)相距很近、(2)大小相同、(3)指向相反的横向外力(即垂直于作用面的力)作用下,材料的横截面沿该外力作用方向发生的相对错动变形现象。能够使材料产生剪切变形的力称为剪力或剪切力。发生剪切变形的截面称为剪切面。 判断是否“剪切”的关键是材料的横截面是否发生相对错动。因此,菜刀切菜不是剪切现象(因蔬菜的横截面没有发生相对错动),而用剪刀剪指甲则是(指甲的横截面发生相对错动。注:用指甲剪剪指甲不是一种剪切现象,虽然它同样能把指甲剪下来。为什么?)。 至于“剪切力”的来源,当然是压力造成的。也可以说,剪切力是一种特殊形式的压力。 流变学是针对物体的流动和变形所展开的研究科目。涂料配方中颜料的选择,流变性能是一项极其重要的指标。简单的说,颜料添加入涂料基料中将不可避免的改变涂料的流变特性。 反映流变性能最常用的指标就是涂料体系的粘度。当涂料体系流动的时候,通过粘度,我们很容易了解到流体发生的变化。如果是在任意小的外力下都可以流动的流体,同时所加的剪切应力的大小(单位面积上流体所受的力)和流体的速度梯度(D)(也被称之为剪切速率,即流体受力以后两层流体间的速度随位置的变化率)成正比,

我们称之为牛顿流体。 从本质上讲,黏度是流体抗拒流动的一种性质,是流体分子间相互吸引而产生的阻碍分子间相对运动能力的量度,即流体流动的内部阻力。而牛顿流体中切应力和速度梯度D的比值是固定不变的。此项比值被称为液体黏度系数,简称黏度。然而有另一种流体,背离了上述的比例关系,被称为非牛顿流体。非牛顿流体分为塑性流体,触变性流体,假塑性流体,膨胀性流体等不同类型。 当一种流体受到外力作用时,并不立即开始流动。只有在所加外力大到某一程度时才开始流动。流体开始流动所需的最小切应力被称为屈服值。此类流体被称为属于非牛顿流体的塑性流体。黏度已不能独立于所受切应力之外而保持不变。而是随着剪切速率的变化呈现复杂的变化。大体上说,随着剪切速率的上升,黏度往往会下降。通常的解释是剪切力破坏了涂料体系的内部结构。在绝大多数情况下,一旦剪切力消失,涂料体系的结构将恢复。此种流体特性在涂料工业中有非常大的现实意义,能导入此种特性的助剂称为触变剂。此类流体称为触变性流体。 当剪切应力到达一定值时,液体突然开始流动,在低中剪切力作用下基本呈现牛顿流体特性,在高剪切力作用下,粘度随剪切速率增加而下降的流体被称为假塑性流体。粘度随剪切速率增加而增加的流体被称为膨胀性流体,也称剪切变稠流体。在剪切力作用下,流体将很快变得不能移动,形成近似刚性结构。流变性能对于涂料生产的分散阶段,涂料仓储阶段和施工阶段都具有非常重大的意义。

剪切应力计算

拉伸、压缩与剪切 1 基本概念及知识要点 1.1 基本概念 轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。 以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。 1.2 轴向拉压的内力、应力及变形 1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴力 F N ,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件轴 力沿杆长的变化。 2.轴力在横截面上均匀分布,引起了正应力,其值为 F A σ= N 正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa 、Pa 。 3.强度条件 强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是 []F A σσ= ≤N 可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。 4.胡克定律 线弹性范围内,杆的变形量与杆截面上的轴力F N 、杆的长度l 成正比,与截面尺寸A 成反比;或描述为线弹性范围内,应力应变成正比,即 F l l E E A σε?= =N 式中的E 称为材料的弹性模量,EA 称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。 1.3 材料在拉压时的力学性能 材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有: E —材料抵抗弹性变形能力的指标;b s σσ,—材料的强度指标; ψδ, —材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。

JESD22-B117A Solder Ball Shear(锡球剪切力测试标准)

JEDEC STANDARD Solder Ball Shear JESD22-B117A (Revision of JESD22-B117, July 2000) OCTOBER 2006 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

NOTICE JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approved by the JEDEC legal counsel. JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally. JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications. The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard. No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met. Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or call (703) 907-7559 or https://www.wendangku.net/doc/014220814.html, Published by ?JEDEC Solid State Technology Association 2006 2500 Wilson Boulevard Arlington, VA 22201-3834 This document may be downloaded free of charge; however JEDEC retains the copyright on this material. By downloading this file the individual agrees not to charge for or resell the resulting material. PRICE: Please refer to the current Catalog of JEDEC Engineering Standards and Publications online at https://www.wendangku.net/doc/014220814.html, Printed in the U.S.A. All rights reserved

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

胶黏剂拉伸剪切强度测试标准

胶黏剂拉伸剪切强度的测定方法 一实验原理 试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为MPa 二实验装置及试样 1)试验机。使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1 %试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。 试验机应保证试样夹持器的移动速度在(5 ± 1) mm/min内保持稳定。 2)量具。测量试样搭接面长度和宽度的量具精度不低于0.05 mm。 3)夹具。胶接试样的夹具应能保证胶接的试样符合要求。在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法。但不能用于仲裁试验。 4)试样标准试样的搭接长度是(土)mm金属片的厚度是土mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。 5)建议使用LY12-CZ铝合金、1Cr18Ni9Ti不锈钢、45碳钢、T2铜等金属材料。 6)常规试验,试样数量不应少于5个。仲裁试验试样数量不应少于10个。 对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度。两者中选择前者较好。 测试时金属片所受的应力不要超过其屈服强度 d s,金属片的厚度S可按式(11-12 )计算: 3=(L ? T)/ d S(11- 12 ) 式中:3――金属片厚度; L ――试样搭接长度; T——胶粘剂拉伸剪切强度; d S――金属材料屈服强度(MPa。

三、试样制备 1)试样可用不带槽或带槽的平板制备,也可单片制备。 2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。 3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。 4 )制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。 5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。 四、试验条件 试样的停放时间和试验环境应符合下列要求: 1)试样制备后到试验的最短时间为16 h,最长时间为30 d。 2)试验应在温度为(23± 2)C、相对湿度为(45~55)%的环境中进行。 3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于h ;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于16 h。 五、实验步骤 1)用量具测量试样搭接面的长度和宽度,精确到0.05 mm。 2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为(50 ± 1)mm 3)开动试验机,在(5 ± 1) mm/min内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。 六、试验结果 对金属搭接的胶粘剂拉伸剪切强度T按式(11-13 )计算,单位为MPa> T = F / (b ? l )(11- 13) 式中:F――试样剪切破坏的最大负荷;

剪切力的计算方法

第3章剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件 m-面)发生相对错动(图3-1b)。的变形主要表现为沿着与外力作用线平行的剪切面(n 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m-假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F(图3-1c)的作用。Q F称为剪力,根据平衡方程∑=0 F Q=。 Y,可求得F 剪切破坏时,构件将沿剪切面(如图3-la所示的n m-面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算

剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为 A F b b 2= τ

材料力学概念

材料力学 材料力学研究材料在各种外力作用下产生的应变、应力、强度、刚度和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。 材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。 材料力学(mechanics of materials)主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 材料力学是工程设计的基础之一,即结构构件或机器零件的强度、刚度和稳定性分析的基础。在工程设计中,要求构件或零件在给定外力作用下,具有足够的强度、刚度和稳定性。构件或零件在外力作用下,不发生破坏,也不发生塑性变形,则称其具有足够的强度;若弹性变形不超过一定限度,则称其具有足够的刚度;若在特定外力(如细长杆承受轴向压力)作用下,其平衡和变形形式无突然转变,则称其具有足够的稳定性。 在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:不发生断裂,即具有足够的强度;弹性变形应不超出允许的范围,即具有足够的刚度;在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。对强度、刚度和稳定性这三方面的要求,有时统称为“强度要求”,而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。 在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。 在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。 材料在机构中会受到拉伸、压缩、弯曲、扭转及其组合等变形。根据胡克定律(Hooke's law),在弹性限度内,物体的应力与应变成线性关系。 典型的实验包括: 简单拉伸压缩实验 冲击破坏实验 稳定性 微小形变测量 材料弹性测量 材料力学的任务 1. 研究材料在外力作用下破坏的规律; 2. 为受力构件提供强度,刚度和稳定性计算的理论基础条件; 3. 解决结构设计安全可靠与经济合理的矛盾。 材料力学基本假设 1、连续性假设——组成固体的物质内毫无空隙地充满了固体的体积: 2、均匀性假设--在固体内任何部分力学性能完全一样: 3、各向同性假设——材料沿各个不同方向力学性能均相同:

剪切力测试仪操作规程标准范本

操作规程编号:LX-FS-A56463 剪切力测试仪操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

剪切力测试仪操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 工作台和型材夹块调整 松开销紧手柄和手杆可进行工作台的高低调整,用工作台夹紧型材。切100毫米的测试料放置工作台上,使型材平放并正好在工作台前端内顶住,然后用滑块夹住型材。调整工作台的高低,使推块正好摆在型材的上部合成部分并与穿条的上线几乎齐平。 2 技术参数 a) 承受压力:0—1000公斤,最大承受力为1000公斤。 b) 电压:220V±10%,50/60Hz c) 5-数字显示期

相关文档