文档库 最新最全的文档下载
当前位置:文档库 › glass-USP40美国药典40版玻璃材质要求

glass-USP40美国药典40版玻璃材质要求

glass-USP40美国药典40版玻璃材质要求
glass-USP40美国药典40版玻璃材质要求

Medicine dropper: A measuring device consisting of a transparent or translucent barrel or tube that is generally fitted with a collapsible bulb. It may be packaged with oral liquid articles.

Oral syringe: A measuring device consisting of a plunger and barrel made of transparent or translucent plastic material and a seal on the end. It may be packaged with oral liquid articles. The syringe should deliver a measured amount of a liquid drug product.

TEMPERATURE AND STORAGE DEFINITIONS Freezer: A place in which the temperature is controlled between ?25° and ?10° (?13° and 14° F). It is noted that, in some instances, articles may have a recommended storage condition below ?20° (?4° F). In such cases, the temperature of the stor-age location should be controlled to ±10°.

Refrigerator: A cold place in which the temperature is controlled between 2° and 8° (36° and 46° F).

Cold:Any temperature not exceeding 8° (46° F).

Cool:Any temperature between 8° and 15° (46° and 59° F). [N OTE —An article for which storage in a cool place is directed may, alternatively, be stored and shipped as refrigerated, unless otherwise specified by the individual monograph.]Room temperature (also referred to as Ambient temperature):The temperature prevailing in a working environment.Controlled room temperature:The temperature maintained thermostatically that encompasses the usual and customary working environment of 20°–25° (68°–77° F). The following conditions also apply.

Mean kinetic temperature not to exceed 25°. Excursions between 15° and 30° (59° and 86° F) that are experienced in phar-macies, hospitals, and warehouses, and during shipping are allowed. Provided the mean kinetic temperature does not exceed

25°, transient spikes up to 40° are permitted as long as they do not exceed 24 h. Spikes above 40° may be permitted only if

the manufacturer so instructs.

Articles may be labeled for storage at “controlled room temperature” or at “20°–25°”, or other wording based on the same mean kinetic temperature [see also Good Storage and Distribution Practices for Drug Products á1079?, Quality Management Sys-

tem, Mean Kinetic Temperature (MKT) Calculation ].

An article for which storage at Controlled room temperature is directed may, alternatively, be stored and shipped in a cool

place or refrigerated, unless otherwise specified in the individual monograph or on the label.Warm:Any temperature between 30° and 40° (86° and 104° F).

Excessive heat:Any temperature above 40° (104° F).

Dry place: A place that does not exceed 40% average relative humidity at 20° (68° F) or the equivalent water vapor pressure at other temperatures. The determination may be made by direct measurement at the place. Determination is based on NLT 12 equally spaced measurements that encompass either a season, a year, or, where recorded data demonstrate, the storage period of the article. There may be values of up to 45% relative humidity provided that the average value does not exceed 40% relative humidity. Storage in a Container validated to protect the article from moisture vapor, including storage in bulk, is considered a Dry place .

Protect from freezing:The Container label will bear an appropriate instruction to protect the article from freezing in cases where freezing exposes an article to loss of strength or potency or to destructive alteration of its characteristics. These risks are present in addition to the risk that the Container may break if exposed to freezing temperatures.

Protect from light:Where light subjects an article to loss of strength or potency or to destructive alteration of its characteris-tics, the Container label bears an appropriate instruction to protect the article from light. The article must be packaged in a light-resistant Container .▲USP40

á660? CONTAINERS—GLASS

DESCRIPTION

Glass containers for pharmaceutical use are intended to come into direct contact with pharmaceutical products. Glass used for pharmaceutical containers is either borosilicate (neutral) glass or soda-lime-silica glass. Borosilicate glass contains significant amounts of boric oxide, aluminum oxide, and alkali and/or alkaline earth oxides in the glass network. Borosilicate glass has a high hydrolytic resistance and a high thermal shock resistance due to the chemical composition of the glass itself; it is classified as Type I glass. Soda-lime-silica glass is a silica glass containing alkaline metal oxides, mainly sodium oxide, and alkaline earth oxides, mainly calcium oxide, in the glass network. Soda-lime-silica glass has a moderate hydrolytic resistance due to the

chemical composition of the glass itself; it is classified as Type III glass. Suitable treatment of the inner surface of Type III soda-lime-silica glass containers will raise the hydrolytic resistance from a moderate to a high level, changing the classification of the glass to Type II.

The following recommendations can be made as to the suitability of the glass type for containers for pharmaceutical prod-ucts, based on the tests for hydrolytic resistance. Type I glass containers are suitable for most products for parenteral and non-

534 á659? Packaging and Storage Requirements / Physical Tests USP 40

parenteral uses. Type II glass containers are suitable for most acidic and neutral aqueous products for parenteral and nonpar-enteral uses. Type II glass containers may be used for alkaline parenteral products where stability data demonstrate their suita-bility. Type III glass containers usually are not used for parenteral products or for powders for parenteral use, except where suitable stability test data indicate that Type III glass is satisfactory.

The inner surface of glass containers may be treated to improve hydrolytic resistance. The outer surface of glass containers may be treated to reduce friction or for protection against abrasion or breakage. The outer surface treatment is such that it does not contaminate the inner surface of the container.

Information on chemical composition of glass types, the formation of glass containers, and factors that influence inner sur-face durability of glass containers is provided in Evaluation of the Inner Surface Durability of Glass Containers á1660?. This chapter also contains recommended approaches to evaluate the potential of a drug product to cause the formation of glass particles and delamination.

Glass may be colored to provide protection from light by the addition of small amounts of metal oxides and is tested as described in Spectral Transmission for Colored Glass Containers. A clear and colorless container that is made light resistant by means of an opaque enclosure (see Packaging and Storage Requirements á659?, Light-Resistant) is exempt from the requirements for spectral transmission.

SPECIFIC TESTS

The Glass Grains Test combined with the Surface Glass Test for hydrolytic resistance determines the glass type. The hydrolytic resistance is determined by the quantity of alkali released from the glass under the conditions specified. This quantity of alkali is extremely small in the case of the more resistant glasses, thus calling for particular attention to all details of the tests and the use of apparatus of high quality and precision. Conducting these tests in conjunction with a glass standard reference material (SRM) on a routine basis will help to ensure the accuracy of the method. Reference materials are available for both borosilicate glass (SRM 623) and soda-lime-silica glass (SRM 622) from the National Institute of Standards and Technology. The tests should be conducted in an area relatively free from fumes and excessive dust. Test selection is shown in Table 1 and Table 2.

Table 1. Determination of Glass Types

Container Type Test Reason

I, II, III Glass Grains Test

Distinguishes Type I borosilicate glass from Type

II and III soda-lime-silica glass

The inner surface of glass containers is the contact surface for pharmaceutical preparations, and the quality of this surface is determined by the Surface Glass Test for hydrolytic resistance. The Surface Etching Test may be used to determine whether high hydrolytic resistance is due to chemical composition or to surface treatement. Alternatively, the comparison of data from the Glass Grains Test and the Surface Glass Test may be used in Table 2.

Table 2. Determination of Inner Surface Hydrolytic Resistance

Container Type Test Reason

I, II, III Surface Glass Test

Determines hydrolytic resistance of inner sur-

face; distinguishes between Type I and Type II

containers with high hydrolytic resistance and

Type III containers with moderate hydrolytic

resistance

I, II

Surface Etching Test

or comparison of Glass Grains

Test and Surface Glass Test data

Where it is necessary, determines whether high

hydrolytic resistance is due to inner surface

treatment or to the chemical composition of

the glass containers

Glass containers must comply with their respective specifications for identity and surface hydrolytic resistance to be classified as Type I, II, or III glass. Type I or Type II containers for aqueous parenteral products are tested for extractable arsenic.

Hydrolytic Resistance

APPARATUS

Autoclave:For these tests, use an autoclave capable of maintaining a temperature of 121±1°, equipped with a thermome-ter, or a calibrated thermocouple device, allowing a temperature measurement independent of the autoclave system; a suita-ble recorder; a pressure gauge; a vent cock; and a tray of sufficient capacity to accommodate the number of containers nee-ded to carry out the test above the water level. Clean the autoclave and other apparatus thoroughly with Purified Water before use.

Mortar and pestle:Use a hardened-steel mortar and pestle, made according to the specifications in Figure 1.

USP 40Physical Tests / á660? Containers—Glass 535

Figure 1. Mortar and pestle for pulverizing glass.

Other apparatus:Also required are a set of three square-mesh stainless steel sieves mounted on frames consisting of US Sieve Nos. 25, 40, and 50 (see Particle Size Distribution Estimation by Analytical Sieving á786?, Table 1. Sizes of Standard Sieve

Series in Range of Interest ); a mechanical sieve-shaker or a sieving machine that may be used to sieve the grains; a tempered,

magnetic steel hammer; a permanent magnet; weighing bottles; stoppers; metal foil (e.g., aluminum, stainless steel); a hot air

oven, capable of maintaining 140±5°; a balance, capable of weighing up to 500g with an accuracy of 0.005 g; a desiccator;

and an ultrasonic bath.

REAGENTS

Carbon dioxide-free water:This is Purified Water that has been boiled vigorously for 5 min or more and allowed to cool while protected from absorption of carbon dioxide from the atmosphere, or Purified Water that has a resistivity of not less than 18Mohm-cm.

Methyl red solution:Dissolve 50 mg of methyl red in 1.86 mL of 0.1 M sodium hydroxide and 50 mL of ethanol (96%), and dilute with Purified Water to 100 mL. To test for sensitivity, add 100 mL of carbon dioxide-free water and 0.05 mL of 0.02 M hydrochloric acid to 0.1 mL of the methyl red solution. The resulting solution should be red. NMT 0.1 mL of 0.02 M sodium hydroxide is required to change the color to yellow. A color change from red to yellow corresponds to a change in pH from pH 4.4 (red) to pH 6.0 (yellow).

Glass Grains Test

The Glass Grains Test may be performed either on the canes used for the manufacture of tubing glass containers or on the containers.

SAMPLE PREPARATION

Rinse the containers to be tested with Purified Water, and dry in the oven. Wrap at least three of the glass articles in clean paper, and crush to produce two samples of about 100g each in pieces NMT 30 mm across. Place in the mortar 30–40g of the pieces between 10 and 30 mm across taken from one of the samples, insert the pestle, and strike it heavily with the ham-mer once only. Alternatively, transfer samples into a ball mill-breaker, add the balls, and crush the glass. Transfer the contents of the mortar or ball mill to the coarsest sieve (No. 25) of the set. Repeat the operation until all fragments have been transfer-red to the sieve. Shake the set of sieves for a short time by hand, and remove the glass that remains on sieves No. 25 and No.

40. Submit these portions to further fracture, repeating the operation until about 10g of glass remains on sieve No. 25. Reject this portion and the portion that passes through sieve No. 50. Reassemble the set of sieves, and shake for 5 min. Transfer to a weighing bottle the glass grains that passed through sieve No. 40 and are retained on sieve No. 50. Repeat the crushing and sieving procedure with the second glass sample until two samples of grains are obtained, each of which weighs more than 10g.

Spread each sample on a piece of clean glazed paper, and remove any iron particles by passing the magnet over them.

Transfer each sample into a beaker for cleaning. Add 30 mL of acetone to the grains in each beaker, and scour the grains,

536 á660? Containers—Glass / Physical Tests USP 40

using suitable means such as a rubber-tipped or plastic-coated glass rod. After scouring the grains, allow to settle, and decant as much acetone as possible. Add another 30 mL of acetone, swirl, decant, and add a new portion of acetone. Fill the bath of the ultrasonic vessel with water at room temperature, then place the beaker in the rack, and immerse it until the level of the acetone is at the level of the water; apply the ultrasound for 1 min. Swirl the beaker, allow to settle, and decant the acetone as completely as possible; then repeat the ultrasonic cleaning operation. If a fine turbidity persists, repeat the ultrasonic cleaning and acetone washing until the solution remains clear. Swirl, and decant the acetone. Dry the grains, first by putting the beaker on a warm plate, then by heating at 140° for 20 min in a drying oven. Transfer the dried grains from each beaker into separate weighing bottles, insert the stoppers, and cool in a desiccator.

METHOD

Filling and heating:Weigh 10.00 g of the cleaned and dried grains into two separate conical flasks. Pipet 50 mL of carbon dioxide-free Purified Water into each of the conical flasks (test solutions). Pipet 50 mL of carbon dioxide-free Purified Water into a third conical flask that will serve as a blank. Distribute the grains evenly over the flat bases of the flasks by shaking gen-tly. Close the flasks with neutral glass dishes or aluminum foil rinsed with Purified Water or with inverted beakers so that the inner surfaces of the beakers fit snugly down onto the top rims of the flasks. Place all three flasks in the autoclave containing the water at ambient temperature, and ensure that they are held above the level of the water in the vessel. Carry out the fol-lowing operations:

1.Insert the end of a calibrated thermometric device in a filled container through a hole of approximately the diameter of

the thermocouple and connect it to an external measuring device. If the container is too small to insert a thermocouple, apply a thermocouple in a suitable, similar container. Alternatively, use the internal thermometer of the autoclave.

2.Close the autoclave door or lid securely but leave the vent-cock open.

3.Start automatic recording of the temperature versus time, and heat the autoclave at a regular rate such that steam issues

vigorously from the vent-cock after 20–30 min, and maintain a vigorous evolution of steam for a further 10 min. For auto-claves using a steam generator, it is not necessary to maintain the temperature for 10 min at 100°.

4.Close the vent-cock, and raise the temperature from 100° to 121° at a rate of 1°/min within 20–22 min.

5.Maintain the temperature at 121±1° for 30±1 min from the time when the holding temperature is reached.

6.Cool down to 100° at a rate of 0.5°/min, venting to prevent formation of a vacuum, within 40–44 min.

7.Do not open the autoclave until it has cooled to 95°.

8.Remove the hot samples from the autoclave using appropriate safety precautions, and cool the samples cautiously down

to room temperature within 30 min, avoiding thermal shock.

Titration:To each of the three flasks add 0.05 mL of Methyl red solution. Titrate the blank solution immediately with 0.02 M hydrochloric acid, then titrate the test solutions until the color matches that obtained with the blank solution. Subtract the titration volume for the blank solution from that for the test solutions. Calculate the mean value of the results in mL of 0.02 M hydrochloric acid per g of the sample. Repeat the test if the highest and lowest observed values differ by more than the per-missible range given in Table 3.

Table 3. Permissible Range for Values Obtained

Mean of the Values Obtained for the Consumption of Hydrochloric

Acid Solution per g of Glass Grains (mL/g)Permissible Range of the Values Obtained

NMT 0.1025% of the mean

0.10–0.2020% of the mean

NLT 0.2010% of the mean

N OTE—Where necessary to obtain a sharp endpoint, decant the clear solution into a separate 250-mL flask. Rinse the grains by swirling with three 15-mL portions of carbon dioxide-free water, and add the washings to the main solution. Add 0.05 mL of the Methyl red solution. Titrate, and calculate as before. In this case also add 45 mL of carbon dioxide-free Purified Water and 0.05 mL of Methyl red solution

to the blank solution.

LIMITS

The volume does not exceed the values indicated in Table 4.

Table 4. Test Limits for Glass Grains Test

Filling Volume (mL)

Maximum Volume of 0.02 M HCl per g of Test Glass (mL)

Type I Types II and III

All0.10.85

USP 40Physical Tests / á660? Containers—Glass 537

Surface Glass Test

DETERMINATION OF THE FILLING VOLUME

The filling volume is the volume of Purified Water to be added to the container for the purpose of the test. For vials, bottles,cartridges, and syringes, the filling volume is 90% of the brimful capacity. For ampuls, it is the volume up to the height of the shoulder.

Vials and bottles:Select six dry vials or bottles from the sample lot, or three if their capacity exceeds 100 mL, and remove any dirt or debris. Weigh the empty containers with an accuracy of 0.1 g. Place the containers on a horizontal surface, and fill them with Purified Water to about the rim edge, avoiding overflow and the introduction of air bubbles. Adjust the liquid levels to the brimful line. Weigh the filled containers to obtain the mass of the water expressed to two decimal places, for containers having a nominal volume less than or equal to 30 mL, and expressed to one decimal place, for containers having a nominal volume greater than 30 mL. Calculate the mean value of the brimful capacity in mL, and multiply it by 0.9. This volume, ex-pressed to one decimal place, is the filling volume for the particular container lot.

Cartridges and syringes:Select six dry syringes or cartridges, and seal the small opening (mouth of cartridges; Luer cone or staked needle of syringes), using an inert material. Determine the mean brimful capacity and filling volume according to Vials and Bottles .

Ampuls:Place at least six dry ampuls on a flat, horizontal surface, and fill them with Purified Water from a buret until the water reaches point A, where the body of the ampul starts to decrease to the shoulder of the ampul (see Figure 2). Read the capacities, expressed to two decimal places, and calculate the mean value. This volume, expressed to one decimal place, is the

filling volume for the particular ampul lot. The filling volume may also be determined by weighing.

Figure 2. Filling volumes of ampuls up to point A.

TEST

The determination is carried out on unused containers. The volumes of the test solution necessary for the final determination are shown in Table 5.Table 5. Volume of Test Solution and Number of Titrations

Filling Volume (mL)Volume of Test Liquid for One Ti-

tration

(mL)Number of Titrations

NMT 3

25.01

3–3050.02

30–100100.02

NLT 100100.03

METHOD

Cleaning:Remove any debris or dust. Shortly before the test, rinse each container carefully at least twice with Purified Water,refilled, and allow to stand. Immediately before testing, empty the containers; rinse once with Purified Water, then with car-bon dioxide-free water; and allow to drain. Complete the cleaning procedure from the first rinsing within 20–30 min. Closed ampules may be warmed in a water bath or in an air oven at about 40° for approximately 2 min before opening to avoid container pressure when opening. Do not rinse before testing.

538 á660? Containers—Glass / Physical Tests USP 40

Filling and heating:The containers are filled with carbon dioxide-free water up to the filling volume. Containers in the form of cartridges or prefillable syringes are closed in a suitable manner with material that does not interfere with the test. Each container, including ampuls, shall be loosely capped with an inert material such as a dish of neutral glass or aluminum foil previously rinsed with Purified Water. Place the containers on the tray of the autoclave. Place the tray in an autoclave contain-ing a quantity of water such that the tray remains clear of the water. Close the autoclave, and carry out autoclaving procedure steps 1–8 as described in the Glass Grains Test, except that the temperature is maintained at 121±1° for 60±1 min. If a water bath is used for cooling samples, take care that the water does not make contact with the loose foil caps to avoid contamina-tion of the extraction solution. The extraction solutions are analyzed by titration according to the method described below. Titration:Carry out the titration within 1 h of the removal of the containers from the autoclave. Combine the liquids ob-tained from the containers, and mix. Introduce the prescribed volume (see Table 5) into a conical flask. Transfer the same vol-ume of carbon dioxide-free water, to be used as a blank, into a second similar flask. Add to each flask 0.05 mL of Methyl red solution for each 25 mL of liquid. Titrate the blank with 0.01 M hydrochloric acid. Titrate the test solution with the same acid until the color of the resulting solution is the same as that obtained for the blank. Subtract the value found for the blank titra-tion from that found for the test solution, and express the results in mL of 0.01 M hydrochloric acid per 100 mL of test solu-tion. Express titration values of less than 1.0 mL to two decimal places; express titration values of greater than or equal to 1.0 mL to one decimal place.

LIMITS

The results, or the average of the results if more than one titration is performed, are not greater than the values stated in Table 6.

Table 6. Limit Values for the Surface Glass Test

Filling Volume

(mL)

Maximum Volume of 0.01 M HCl per 100 mL of Test Solution

(mL)

Types I and II Type III

NMT 1 2.020.0

1–2 1.817.6

2–3 1.616.1

3–5 1.313.2

5–10 1.010.2

10–200.808.1

20–500.60 6.1

50–1000.50 4.8

100–2000.40 3.8

200–5000.30 2.9

NLT–5000.20

2.2

Surface Etching Test

The Surface Etching Test is used in addition to the Surface Glass Test when it is necessary to determine whether a container has been surface treated and/or to distinguish between Type I and Type II glass containers. Alternatively, the Glass Grains Test and Surface Glass Test may be used. The Surface Etching Test may be carried out either on unused samples or on samples used in the Surface Glass Test.

METHOD

Vials and bottles:The volumes of test solution required are shown in Table 5. Rinse the containers twice with Purified Water, fill to the brimful point with a mixture of one volume of hydrofluoric acid and nine volumes of hydrochloric acid, and allow to stand for 10 min. Empty the containers, and rinse carefully five times with Purified Water. Immediately before the test, rinse once again with Purified Water. Submit these containers to the same autoclaving and determination procedure as described in the Surface Glass Test. If the results are considerably higher than those obtained from the original surfaces (by a factor of about 5–10), the samples have been surface treated. [Caution—Hydrofluoric acid is extremely aggressive. Even small quantities can cause life threatening injuries.]

Ampuls, cartridges, and syringes:Apply the test method as described in Vials and Bottles. If the ampuls, cartridges, and sy-ringes are not surface treated, the values obtained are slightly lower than those obtained in the previous tests. [N OTE—Ampuls, cartridges, and syringes made from Type I glass tubing are not normally subjected to internal surface treatment.]

USP 40Physical Tests / á660? Containers—Glass 539

DISTINCTION BETWEEN TYPE I AND TYPE II GLASS CONTAINERS

The results obtained from the Surface Etching Test are compared to those obtained from the Surface Glass Test . For Type I glass containers, the values obtained are close to those found in the Surface Glass Test . For Type II glass containers, the values obtained greatly exceed those found in the Surface Glass Test ; and they are similar to, but not greater than, those obtained for Type III glass containers of the same filling volume.

IMPURITIES

Arsenic á211?

Use as the Test Preparation 35 mL of the water from one Type I or Type II glass container, or, in the case of smaller contain-ers, 35 mL of the combined contents of several Type I or Type II glass containers, prepared as directed in the Surface Glass Test .The limit does not exceed 0.1 m g/g.

FUNCTIONALITY

Spectral Transmission for Colored Glass Containers

APPARATUS

A UV-Vis spectrophotometer, equipped with either a photodiode detector or a photomultiplier tube coupled with an inte-

grating sphere

SAMPLE PREPARATION

Break the glass container or cut it with a circular saw fitted with a wet abrasive wheel, such as a carborundum or a bonded

diamond wheel. Select sections representative of the wall thickness, and trim them as suitable for mounting in a spectropho-tometer. After cutting, wash and dry each specimen, taking care to avoid scratching the surfaces. If the specimen is too small to cover the opening in the specimen holder, mask the uncovered portion of the opening with opaque paper or tape, provi-ded that the length of the specimen is greater than that of the slit. Before placing in the holder, wash, dry, and wipe the speci-men with lens tissue. Mount the specimen with the aid of wax, or by other convenient means, taking care to avoid leaving fingerprints or other marks.

METHOD

Place the specimen in the spectrophotometer with its cylindrical axis parallel to the slit and in such a way that the light beam is perpendicular to the surface of the section and the losses due to reflection are at a minimum. Measure the transmis-sion of the specimen with reference to air in the spectral region of 290–450 nm, continuously or at intervals of 20 nm.

LIMITS

The observed spectral transmission for colored glass containers for products for nonparenteral use does not exceed 10% at any wavelength in the range of 290–450 nm, irrespective of the type and capacity of the glass container. The observed spec-tral transmission in colored glass containers for parenteral products does not exceed the limits given in Table 7.Table 7. Limits of Spectral Transmission for Colored Glass Containers for Parenteral Products

Nominal Volume (mL)Maximum Percentage of Spectral Transmission at Any Wave-

length between 290 nm and 450 nm

Flame-Sealed Containers Containers with Closures

NMT 15025

1–24520

2–54015

5–103513

10–203012

NLT 202510

540 á660? Containers—Glass / Physical Tests USP 40

á661? PLASTIC PACKAGING SYSTEMS AND THEIR MATERIALS OF

CONSTRUCTION

INTRODUCTION

Systems are used to package therapeutic products (pharmaceuticals, biologics, dietary supplements and devices). Such sys-tems and their associated materials and components of construction are considered and defined in Packaging and Storage Re-quirements á659?. Such systems may be constructed from plastic materials and components. The plastics used in packaging systems are composed of homologous polymers with a range of molecular weights and contain additives such as antioxidants, stabilizers, lubricants, plasticizers, colorants, and others. The nature and amount of additives in the plastics used for packaging systems are dictated by the type of polymer, the polymer's use, and the process used to convert the polymer into compo-nents, containers, or packaging systems.

Therapeutic products come into direct contact with packaging systems and their plastic materials of construction as the product is manufactured, stored, and administered. Such contact may result in an interaction between the therapeutic prod-ucts and the packaging systems and its materials or components of construction. These interactions must be such that the suitability for use (including its safety and efficacy) of the therapeutic product and the packaging systems is not adversely af-fected by the interaction. Although suitability for use includes several quality aspects of the packaged drug product and its performance, the suitability for use aspect addressed in this chapter is patient safety. Obtaining such a necessary and desirable outcome is facilitated by the use of well-characterized plastic materials of construction in components, containers, and packag-ing systems and by the appropriate testing of packaging systems.

SCOPE

Establishing the suitability of plastic packaging systems for therapeutic products involves multiple tests and testing proce-dures, as briefly outlined below:

?Material screening: Characterization of a packaging system's materials of construction to evaluate ingredients as probable extractables and potential leachables. Such a characterization facilitates the identification of materials that are suitable for use in packaging systems.

?Controlled extraction (simulation) study: Worst-case controlled extraction (simulation) study to determine the extent to which extractables may become probable leachables (for additional information, see Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems á1663?).

?Product assessment: Actual-case measurement of confirmed leachables in the therapeutic product in the pharmaceutical packaging/delivery system intended for the commercial market (for additional information, see Assessment of Drug Product Leachables Associated with Pharmaceutical Packaging/Delivery Systems á1664?).

Additionally, information provided by the vendor(s) of plastic packaging systems and their associated materials or compo-nents of construction can facilitate suitability assessments, as such information may be appropriate additions to or surrogates for the results obtained by performing the tests noted previously.

The process of manufacturing a packaged therapeutic product is complex. Considering the packaging system specifically, packaging systems typically consist of components that are individually manufactured from plastic materials of construction. These individual plastic materials of construction are initially generated from reagents that are reacted to produce a base poly-mer, which is then compounded with various additives to produce a base resin. Individual base resins either are materials of construction themselves or may be combined with additional additives and processing aids to form a plastic material of con-struction. Testing of these plastic materials of construction to establish that they are well characterized and suitable for use, specifically considering safety, in packaging systems is within the scope of this series of chapters and is addressed in Plastic Materials of Construction á661.1?.

Individual plastic materials of construction are combined to form components of the packaging system. The packaging sys-tem is completed by assembling its various components into its final form. Testing of packaging systems to establish that they are suited for their intended uses, specifically considering safety, is within the scope of this series of chapters and is addressed in Plastic Packaging Systems for Pharmaceutical Use á661.2?.

Assembled packaging systems are filled to contain the therapeutic product by various means and at various points in the packaging system manufacturing process, thereby generating the packaged therapeutic product. Testing of packaged thera-peutic products to establish that they are suited for their intended uses is addressed in compendial monographs relevant to the specific therapeutic product and falls outside of the scope of this series of chapters.

For more information on the scope of, applicability of, and other topics related to the á661? suite of general chapters, see Evaluation of Plastic Packaging Systems and Their Materials of Construction with Respect to Their User Safety Impact á1661?

.

USP 40Physical Tests / á661? Containers—Plastics 541

3dmax各种材质全参数

vray 各种材质参数一 来源:李雪娇的日志 玻璃方法一: 标准材质 漫射:玻璃的颜色 高光120 光泽度90 反射20 none换成VR贴图; 折射100 none换成VR贴图;把反射换成折射 玻璃方法二: VR材质; 漫射玻璃的颜色(水玻璃就调纯白) 反射适当;(也可以加个衰减fall off,然后选择非聂耳反射)光泽度0.98 ; 细分5 ; 折射纯白;(100%透明) 细分50 折射率1.517{1.5-1.6之间} 影响阴影勾选 雾色调玻璃颜色

雾的倍增0.1(适当调解) 磨沙玻璃的调法一 在玻璃方法一调法上把发射后面VR贴图里光折度打勾`` 参数改为300 细分10 磨沙玻璃的调法二 在玻璃调法2里 光泽度调为0.85 细分3 木头、木纹地板: 普通光亮的地板: VR材质; 漫射加木纹贴图; 反射v 值40-50 ;(也可以加衰减falloff, 让反射更真实,有个真实的反射过度光泽度0.95; 细分(草渲的时候8` 正式出图12) Bump—木的贴图 磨沙地板: 光泽度是0.9-0.85` 出图细分15

白陶瓷: VR材质: 漫射接近白色; 反射45; 光泽度0.95 ; 细分(草渲的时候8` 正式出图12) 光滑塑料: VR材质; 调颜色``; 反射45; 光泽度0.95; 细分(草渲的时候8` 正式出图12) 不光滑塑料: VR材质`; 调颜色; 反射45 ; 光泽度0.85; 细分(草渲的时候8` 正式出图15)乳胶漆``VR材质` 近白``

不锈钢方法一: 标准材质 慢射:接近于白色 高光120 光泽度90 反射100 none换成VR贴图``` 不锈钢方法二: VR材质; 漫射`白灰色; 反射60-80; 光泽0.95;磨沙0.85 细分(草渲的时候8` 正式出图15); 地砖、瓷砖: VR材质; 漫射导入贴图; 反射40-50 ; 光泽度0.95; 磨沙效果光泽度0.9-0.85;

VR材质参数设置分解

VR材质参数设置 一、各种常用材质的调整 1、亮光木材:漫射:贴图反射:35灰高光:0.8 亚光木材:漫射:贴图反射:35灰高光:0.8 光泽(模糊):0.85 2、镜面不锈钢:漫射:黑色反射:255灰 亚面不锈钢:漫射:黑色反射:200灰光泽(模糊):0.8 拉丝不锈钢:漫射:黑色反射:衰减贴图(黑色部分贴图)光泽(模糊):0.8 3、陶器:漫射:白色反射:255 菲涅耳 4、亚面石材:漫射:贴图反射:100灰高光:0.5 光泽(模糊):0.85 凹凸贴图 5、抛光砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.98 菲涅耳要贴图坐标 普通地砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.9 菲涅耳6、木地板:漫射:平铺贴图反射:70 贴图6x60 光泽(模糊):0.9 凹凸贴图 7、清玻璃:漫射:灰色反射:255 折射255 折射率1.5 磨砂玻璃:漫射:灰色反射:255 高光:0.8 光泽(模糊):0.9 折射255 光泽(模糊):0.9 光折射率1. 绒布: 漫射:衰减贴图置换给贴图降低置换参数要贴图坐标 毛发地毯:先建一个平面1500*2000 然后给澡啵40 Z 140 然后给个VR毛发9、皮革:漫射:贴图反射:50 高光:0.6 光泽(模糊):0.8 凹凸贴图贴图坐标 10、水材质:漫射:黑色反射:255 衰减菲*耳打勾折射:255 折射率1.33 烟雾颜色浅青色厌恶倍增0.01 凹凸贴图:澡波350 凹凸20 11、纱窗:漫射:颜色白色折射:灰白贴图折射率1 接收GI:2 草图阶段设置 1、全局开关面板:关闭3D默认的灯光,关闭“反射/折射”和“光滑效果” 2、图像采样器:“固定比率”,值为1。 3、关闭“抗锯齿过滤器”。 4、发光贴图:预设[非常低],模型细分30,插补采样10 5、灯光缓冲:细分100 6、RQMC采样器:适应数量0.95 噪波阈值:0.5 最小采样值8 全局细分倍增器:0.1 7、灯光和材质的细分值都降低5—8

3DVR材质参数参考表

漫射:相当于物体本身的颜色 反射:黑与白的过度,受颜色的影响很小,越黑反射越小,反之越白反射越大。 折射:透明、半透明 (当光线可以穿透物体时,这个物体肯定时透明的。纸张、塑料、蜡烛等物体在光的照射下背光部分会出现“透光”现象即为半透明。由于透明物体的密度不同,光线射入后会发生偏转现象,这就是折射,比如水中的筷子。而不同密度的物体折射率不同。) 3DVR材质参数参考表 1、白色墙体 a、在漫反射通道中给灰度值为255; b、在反射通道中给灰度值30,目的是使墙体的反射效果更细腻一点更自然一点;设高光光泽度为0.24,设光泽 度为1,细分设为12,让他更细腻和光滑; c、到选项里面去把跟踪反射关避,不勾选。目的是让墙体只有高光,没有反射。 2、木地板 d、在漫反射通道中给一张木地板贴图; e、在反射通道中给一个衰减,目的是使木地板的反射效果更细腻一点更自然一点;设高光光泽度为0.85,目的 是让他有个较大的高光反射;设光泽度为0.85,是为了让他有点模糊的效果;细分设为20,让他更细腻和光滑; f、在衰减中里面层为黑色,在表面成为淡蓝色; g、在贴图中把漫反射里的贴图直接拖到凹凸贴图中去,设值为30,是想让地板有点粗糙的纹理;在环境中给一 个输出,其输出值为2,目的是为了让他更亮一些,还原真实的感觉。 3、木纹 a、在漫反射通道中给一张木纹贴图; b、在反射通道中给一个衰减,目的是使木地板的反射效果更细腻一点更自然一点;设高光光泽度为0.85,目的是让 他有个较大的高光反射;设光泽度为0.85,是为了让他有点模糊的效果;细分设为12,让他更细腻和光滑; c、在衰减中里面层为黑色,在表面成为淡蓝色; d、在贴图中把漫反射里的贴图直接拖到凹凸贴图中去,设值为30,是想让地板有点粗糙的纹理;在环境中给一个输 出,其输出值为2,目的是为了让他更亮一些,还原真实的感觉。 4、镜面石材(特点;表面光滑,有反射、高光较小) a、漫反射通道给一个石材纹理贴图; b、灰度值为40,高光光泽度为0.9,反射光泽度为1,细分为9 5、揉面石材(特点:有模糊,高光较小) a、漫反射通道给一个石材贴图; b、反射灰度为40,高光光泽度锁定,反射光泽度为0.85,细分为25. 6、凹凸表面石材(特点:有凹凸,高光较小)

3dmax9-VR各类材质参数自调

VR材质参数 钢材类 1.不锈钢————————————漫射:黑反射:白光 泽度:1 2.摩擦不锈钢——————————漫射:黑反射:220+白光 泽度:0.7 3.镀金不锈钢——————————漫射:黑反射:金色 4.拉丝不锈钢——————————漫射:黑反射:200+白光 泽度:0.7 反射贴图:拉丝图 瓷器类 5.瓷器————————————漫射:白反射:白光泽度:1 菲涅尔反射:打开 地板类 6.亚面石板————————————漫射贴图:青石板UVW贴图反射:100灰高光光泽度:0.5 反射光泽度:0.8 7.青石板————————————漫射贴图:青石板UVW贴图

反射:100灰高光光泽度:0.5 反射光泽度:0.8 凹凸帖图:青石板凹凸数:200+ 8.平铺凹凸地板—————————漫射贴图:平铺平铺贴图:地砖图砖裂纹理:50+ 9.木地板—————————漫射贴图:平铺平铺贴图:木质图反射:70灰反射光泽度:0.9 凹凸帖图:木质图凹凸数:20+ 凹凸纹理设置:贴图—空置纹理—白 砖类 9.抛光砖——————————漫射贴图:平铺平铺贴图:抛光砖图反射:白高光光泽度:0.8 反射光泽度:0.98 菲涅尔反射:打开 10.普通砖——————————漫射贴图:平铺平铺贴图:抛光砖图反射:白高光光泽度:0.8 反射光泽度:0.9 菲涅尔反射:打开 玻璃类 11.玻璃——————————反射:白菲涅尔反射:打开 折射:白折射率:1.5 12.彩色玻璃——————————反射:白菲涅尔反射:打开

折射:白折射率:1.5 烟雾颜色:自选色彩 12.磨沙玻璃——方法1——————反射:白菲涅尔反射:打开折射:白折射率:1.5 高光光泽度:0.8 反射光泽度:0. 9 折射光泽度:0. 9 12.磨沙玻璃——方法2——————菲涅尔反射:打开凹凸贴图:噪波凹凸数:20 噪波尺寸:3 13.冰花玻璃————————反射:白菲涅尔反射:打开 折射:白折射率:1.5 凹凸贴图:冰花玻璃图凹凸数:80 14.彩绘玻璃————————添加UVW贴图坐标修改,设置2个ID面,ID1—反射:白,折射:白,菲涅尔反射:打开,漫射贴图:彩色图 ID2—反射:白,折射:白,菲涅尔反射:打开,折射贴图:黑色图 布料类 15. 麻布沙发———————漫射贴图:麻布图关联,添加UVW贴图坐标,凹凸贴图:麻布图关联凹凸数:200 16. 绒布沙发———抱枕———漫射贴图:关联衰减,衰减前侧颜色:彩色/白抱枕添加UVW贴图坐标,置换贴图:关联衰减置换数:20 绒布沙发———沙发———漫射贴图:关联衰减,衰减前侧颜色:

各种材料摩擦系数表

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考

固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的 成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及 其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷 工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚 碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。

vr各种材质参数集

vr材质参数设置 一、各种常用材质的调整 1、亮光木材:漫射:贴图反射:35灰高光:0.8 亚光木材:漫射:贴图反射:35灰高光:0.8 光泽(模糊):0.85 2、镜面不锈钢:漫射:黑色反射:255灰 亚面不锈钢:漫射:黑色反射:200灰光泽(模糊):0.8 拉丝不锈钢:漫射:黑色反射:衰减贴图(黑色部分贴图)光泽(模糊):0.8 3、陶器:漫射:白色反射:255 菲涅耳 4、亚面石材:漫射:贴图反射:100灰高光:0.5 光泽(模糊):0.85 凹凸贴图 5、抛光砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.98 菲涅耳要贴图坐标 普通地砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.9 菲涅耳 6、木地板:漫射:平铺贴图反射:70 贴图6x60 光泽(模糊):0.9 凹凸贴图 7、清玻璃:漫射:灰色反射:255 折射255 折射率1.5 磨砂玻璃:漫射:灰色反射:255 高光:0.8 光泽(模糊):0.9 折射255 光泽(模糊):0.9 光折射率1.5 8、普通布料: 漫射:贴图凹凸贴图 绒布: 漫射:衰减贴图置换给贴图降低置换参数要贴图坐标 毛发地毯:先建一个平面 1500*2000 然后给澡啵 40 Z 140 然后给个VR毛发 9、皮革:漫射:贴图反射:50 高光:0.6 光泽(模糊):0.8 凹凸贴图贴图坐标 10、水材质:漫射:黑色反射:255 衰减菲*耳打勾折射:255 折射率1.33 烟雾颜色浅青色厌恶倍增 0.01 凹凸贴图:澡波 350 凹凸 20 11、纱窗:漫射:颜色白色折射:灰白贴图折射率1 接收GI:2 草图设置 1、全局开关面板:关闭3D默认的灯光,关闭“反射/折射”和“光滑效果” 2、图像采样器:“固定比率”,值为1。 3、关闭“抗锯齿过滤器”。 4、发光贴图:预设[非常低],模型细分30,插补采样10 5、灯光缓冲:细分100 6、 RQMC采样器:适应数量0.95 噪波阈值:0.5 最小采样值8 全局细分倍增器:0.1 7、灯光和材质的细分值都降低5—8 出图阶段设置 1、全局开关面板:打开“反射/折射”和“光滑效果” 2、图像采样器:“自适应准蒙特卡洛”。 3、打开“抗锯齿过滤器”,选择“Mitchell-Netravali” 4、发光贴图:预设[中],模型细分50,插补采样30 5、-灯光缓冲:细分1200 6、RQMC采样器:适应数量0.8 噪波阈值:0.005 最小采样15 全局细分倍增器:2 7、灯光和材质的细分值可增加20—50 白色墙面: 白色-245 反射23 高光 0.25 去掉反射[让他只有高光没有反射 铝合金: 漫射 124 反射 86 高光0.7 光泽度0.75 反射细分25 BRDF[各向异性] WARD[沃德] 地板:

VRay常用材质参数设置(精)

调玻璃, vray 是王者。简单,质感高。用 vray 材质,漫反射全黑,反射可以调自己想要的色,并勾上菲涅耳,或者贴衰减。折射全白,或用很浅的自己想要的色。烟雾颜色控制玻璃颜色,勾上影响阴影。光泽度值控制高光与模糊反射。 各种常用材质的调整 1、亮光木材 :漫射:贴图反射:35灰高光:0.8 亚光木材 :漫射:贴图反射:35灰高光:0.8 光泽(模糊 :0.85 2、镜面不锈钢:漫射:黑色反射:255灰 亚面不锈钢:漫射:黑色反射:200灰光泽(模糊 :0.8 拉丝不锈钢:漫射:黑色反射:衰减贴图(黑色部分贴图光泽(模糊 :0.8 3、陶器:漫射:白色反射:255 菲涅耳 4、亚面石材:漫射:贴图反射:100灰高光:0.5 光泽(模糊 :0.85 凹凸贴图 5、抛光砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊 :0.98 菲涅耳 普通地砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊 :0.9 菲涅耳 6、木地板:漫射:平铺贴图反射:70 光泽(模糊 :0.9 凹凸贴图 7、清玻璃:漫射:灰色反射:255 折射 255 折射率 1.5 磨砂玻璃:漫射:灰色反射:255 高光:0.8 光泽(模糊 :0.9 折射 255 光泽(模糊 :0.9 光折射率 1.5 8、普通布料 : 漫射:贴图凹凸贴图 绒布 : 漫射:衰减贴图置换贴图

9、皮革:漫射:贴图反射:50 高光:0.6 光泽(模糊 :0.8 凹凸贴图 10、水材质:漫射:白色反射:255 折射:255 折射率 1.33 烟雾颜色浅青色 凹凸贴图:澡波 11、纱窗:漫射:颜色折射:灰白贴图折射率 1 接收 GI :2 1、墙体乳胶漆:漫射:白色:245,反射 23,高光:0.25,选项中取消跟踪反射(光泽度 凸凹; 10(贴图。 2、清玻璃:漫射为暗清色,反射 :白色,高光:0.9,光泽度:0.95,勾选菲涅尔,折射:白色,点上影响阴影。 3、磨砂玻璃:漫射:白色或贴图,折射:白色,点上影响阴影。凸凹添加 noise, 大小为 5 4、裂纹玻璃:漫射为玻璃色, 反射:160, 高光:0.8, 光泽度:0.95, 勾菲涅尔, 折 射:160, 点上影响阴影。凸凹添加裂纹的图片, 5、白陶瓷:漫射为白色, 反射:falloff (衰减衰减 , 在衰减类型中选菲涅尔, 高光:0.8, 光泽度 :0.95,细分 :15, brdf 中选沃德, 0。 5, 70, 6、大理石地砖:漫射 :地砖贴图,在 bitmap 下设 blur 模糊为 0.5,反射 : falloff(衰 减衰减,在衰减类型中选 fresnel (菲涅尔 ,衰减折射率 2,高光 :0.88,光泽度 :0细分 :20, 将贴图复制到凸凹上。调 uvwmap, 最后将 vraymtl 调为材质包裹器 , 防地面颜色的溢出 , 调全局照明为 0.7 7、水材质:漫射为水贴图, 反射 : 80, 折射 :180, 折射率为 1.33。将贴图复制到凸凹上 (30-40

3dmaxVR灯光参数及材质参数

3DMAXVR参数设置调整 一、Vray的简介: VRay主要用于渲染一些特殊的效果,如次表面散射、光迹追踪、焦散、全局照明等。可用于建筑设计、灯光设计、展示设计、动画渲染等多个领域 VRay渲染器有Basic Package 和Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 以下是Vray的作品欣赏 二、Vray的工作流程 1创建或者打开一个场景 2指定VRay渲染器 3设置材质 4把渲染器选项卡设置成测试阶段的参数: ①把图像采样器改为“固定模式“,把抗锯齿系数调低,并关闭材质反射、折射和默认灯。 ②勾选GI,将“首次反射”调整为lrradiance map模式(发光贴图模式) 调整min rate(最小采样)和max rate(最大采样)为-6,-5, 同时“二次反射”调整为QMC[准蒙特卡洛算法]或light cache[灯光缓冲模式],降低细分。5根据场景布置相应的灯光。 ①开始布光时,从天光开始,然后逐步增加灯光,大体顺序为:天光----阳光----人工装饰光----补光。 ②如环境明暗灯光不理想,可适当调整天光强度或提高暴光方式中的dark multiplier (变暗倍增值),至直合适为止。 ③打开反射、折射调整主要材质

6根据实际的情况再次调整场景的灯光和材质 7渲染并保存光子文件 ①设置保存光子文件 ②调整lrradiance map(光贴图模式),min rate(最小采样)和max rate(最大采样)为-5,-1或-5,-2或更高,同时把[准蒙特卡洛算法] 或[灯光缓冲模式] 的细分值调高,正式跑小图,保存光子文件。 8 正式渲染 1)调高抗鉅尺级别, 2)设置出图的尺寸, 3)调用光子文件渲染出大图 第二课:VRay常用材质的调整 一、VRayMtl材质 VRayMtl(VRay材质)是VRay渲染系统的专用材质。使用这个材质能在场景中得到更好的和正确的照明(能量分布), 更快的渲染, 更方便控制的反射和折射参数。在VRayMtl里你能够应用不同的纹理贴图, 更好的控制反射和折射,添加bump (凹凸贴图)和displacement(位移贴图),促使直接GI(direct GI)计算, 对于材质的着色方式可以选择BRDF(毕奥定向反射分配函数)。详细参数如下: Basic parameters(基本参数) Diffuse (漫射)- 材质的漫反射颜色。你能够在纹理贴图部分(texture maps) 的漫反射贴图通道凹槽里使用一个贴图替换这个倍增器的值。 Reflec t(反射)- 一个反射倍增器(通过颜色来控制反射,折射的值)。你能够在纹理贴图部分(texture maps)的反射贴图通道凹槽里使用一个贴图替换这个倍增器的值。 Glossiness(光泽度)- 这个值表示材质的光泽度大小。值为0.0 意味着得到非常模糊的反射效果。值为1.0,将关掉光泽度(VRay将产生非常明显的完全反射)。注意:打开光泽度(glossiness)将增加渲染时间。 Subdivs(细分)-控制光线的数量,作出有光泽的反射估算。当光泽度(Glossiness)值为1.0时,这个细分值会失去作用(VRay不会发射光线去估算光泽度)。 Fresnel reflection(菲涅尔反射)- 当这个选项给打开时,反射将具有真实世界的玻璃反射。这意味着当角度在光线和表面法线之间角度值接近0度时,反射将衰减(当光线几乎平行于表面时,反射可见性最大。当光线垂直于表面时几乎没反射发生。 Max depth(最大深度)-光线跟踪贴图的最大深度。光线跟踪更大的深度时贴图将返回黑色(左边的黑块)。Use interpolation(使用插值)-当勾选该选项时,VRay能够使用一种类似发光贴图的缓存方式来加速模

3dvr材质参数

一、各种常用材质的调整 1、亮光木材:漫射:贴图反射:35灰高光:0.8 亚光木材:漫射:贴图反射:35灰高光:0.8 光泽(模糊):0.85 2、镜面不锈钢:漫射:黑色反射:255灰 亚面不锈钢:漫射:黑色反射:200灰光泽(模糊):0.8 拉丝不锈钢:漫射:黑色反射:衰减贴图(黑色部分贴图)光泽(模糊):0.8 3、陶器:漫射:白色反射:255 菲涅耳 4、亚面石材:漫射:贴图反射:100灰高光:0.5 光泽(模糊):0.85 凹凸贴图 5、抛光砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.98 菲涅耳要贴图坐标 普通地砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.9 菲涅耳 6、木地板:漫射:平铺贴图反射:70 贴图6x60 光泽(模糊):0.9 凹凸贴图 7、清玻璃:漫射:灰色反射:255 折射255 折射率1.5 磨砂玻璃:漫射:灰色反射:255 高光:0.8 光泽(模糊):0.9 折射255 光泽(模糊):0.9 光折射率1.5 8、普通布料: 漫射:贴图凹凸贴图 绒布: 漫射:衰减贴图置换给贴图降低置换参数要贴图坐标 毛发地毯:先建一个平面1500*2000 然后给澡啵40 Z 140 然后给个VR毛发9、皮革:漫射:贴图反射:50 高光:0.6 光泽(模糊):0.8 凹凸贴图贴图坐标 10、水材质:漫射:黑色反射:255 衰减菲*耳打勾折射:255 折射率1.33 烟雾颜色浅青色厌恶倍增0.01 凹凸贴图:澡波350 凹凸20 11、纱窗:漫射:颜色白色折射:灰白贴图折射率1 接收GI:2 草图设置 1、全局开关面板:关闭3D默认的灯光,关闭“反射/折射”和“光滑效果”

[整理]VR常用材质参数

VR常用材质参数 设计家园2009-05-20 16:59:19 阅读764 评论3 字号:大中小The handsome is who does handsomely! 白色墙面: 白色:漫射245 反射23 高光0.25 去掉反射[让他只有高光没有反射] --------------------------------------- 铝合金: 漫射124 反射86 高光0.7 光泽度0.75 反射细分25 BRDF[各向异性] WARD[沃德] --------------------------------------- 地板: 在漫反射添加地板贴图,将模糊的默认参数1改为0.01 反射贴图里放置FALLOFF[衰减] 在衰减类型里为Fresnel[菲湦耳] 上面色表示为离相机比较近的颜色 亮度为20 饱和度为255 色调为151 下面色表示为离相机比较远的颜色 亮度为60 饱和度为102 色调为150 Fresnel[菲湦耳]参数的折射率为1.1(最高是20值越小衰减越剧烈)

高光:0.45 光泽度:0.45 反射细分:10(反射不强细分不用给很高) 凹凸为10加上贴图, --------------------------------------- 布纹材质: 在漫反射贴图里加上FALLOFF[衰减] 上为贴图在下面设材质为亮度255的色彩,色调自定, 在反射设置反射为16 [在选项里去掉跟踪反射][让他只有高光没有反射] 反射高光光泽度为30.5加上凹凸,其它不变 ---------------------------------------- 木纹材质 漫反射加入木纹贴图,模糊的默认参数1改为0.01,高光0.8 反射贴图里放置FALLOFF[衰减] 在衰减类型里为Fresnel[菲湦耳] 上为近,亮度值为0 远处的亮度值为230 带点蓝色,衰减强度为1.6[默认] 反射高光光泽度为0.8[高光大小] 光泽度为0.85[模糊值] 细分高点给15 加入凹凸贴图,强度10左右

金属 颜色 色彩亮度 漫射 镜面 光泽度 反射 凹凸

金属颜色色彩亮度漫射镜面光泽度反射凹凸 (%) 铝箔180.180.180 有32 90 中65 8 铝箔(钝)180.180.180 有50 45 低35 15 铝220.223.227 有35 25 低40 15 磨亮的铝220.223.227 有35 65 中50 12 黄铜191.173.111 有40 40 中40 20 磨亮的黄铜191.173.111 有40 65 中50 10 镀铬合金150.150.150 无40 40 低25 35 镀铬合金2 220.230.240 有25 30 低50 20 镀铬铝220.230.240 有15 60 中65 10 镀铬塑胶220.230.240 有15 60 低50 10 镀铬钢220.230.240 有15 60 中70 5 纯铬220.230.240 有15 60 低85 5 铜186.110.64 有45 40 中40 10 18K金234.199.135 有45 40 中65 10 24K金218.178.115 有45 40 中65 10 未精练的金255.180.66 有35 40 中45 25 黄金242.192.86 有45 40 中65 10 石墨87.33.77 无42 90 中15 10 铁118.119.120 有35 50 低25 20 铅锡锑合金250.250.250 有30 40 低15 10 银233.233.216 有15 90 中45 15 钠250.250.250 有50 90 低25 10 废白铁罐229.223.206 有30 40 低45 30 不锈钢128.128.126 有40 50 中35 20 磨亮的不锈钢220.220.220 有35 50 低25 35 锡220.223.227 有50 90 低35 20 3D金属材质参数 2008-07-02 10:39 金属颜色/RGB 漫射镜面反射凹凸% 铝箔180,180,180/ 32 / 90 / 65 / 8 铝箔(纯)180,180,180/ 50 /45 / 35 / 15 铝220,223,227/ 35 / 25 / 40 / 15 磨亮的铝220,223,227/ 35 / 65 / 50 / 12 黄铜191,173,111/ 40 / 40 / 40 / 20 磨亮的黄铜194,173,111/ 40 / 65 / 50 / 10 镀铬合金150,150,150/ 40 / 40 / 25 / 35 镀铬合金2 220,230,240/ 25 / 30 / 50 / 20 镀铬铝220,230,240/ 15 / 60 / 70 / 10 镀铬塑胶220,230,240/ 15 / 60 / 85 / 10 镀铬钢220,230,240/ 15 / 60 / 40 / 5 纯铬220,230,240/ 15 / 60 / 65 / 5 铜186,110,64/ 45 / 40 / 65 / 10

VR材质材质设置参数(精)

VR 材质材质设置参数 石材材质 材质分析:石材有镜面、柔面、凹凸面三种1、镜面石材:表面较光滑,有反射,高光较小Diffuse (漫反射)- 石材纹理贴图 Reflect (反射) - 40 Hilight glossiness-0.9 Glossiness (光泽度、平滑度)-1 Subdivs (细分) -9 2、柔面表面较光滑,有模糊,高光较小Diffuse (漫反射)- 石材纹理贴图 Reflect (反射) - 40 Hilight glossiness-关闭 Glossiness (光泽度、平滑度)-0.85 Subdivs (细分) -25 3、凹凸面表面较光滑,有凹凸,高光较小Diffuse (漫反射)- 石材纹理贴图 Reflect (反射) - 40 Hilight glossiness-关闭

Glossiness (光泽度、平滑度)-1 Subdivs (细分) -9 Bump (凹凸贴图) - 15%同漫反射贴图相关联 4、大理石材质 Diffuse (漫反射)- 石材纹理贴图 Reflect (反射) -衰减 Hilight glossiness-0.9 Glossiness (光泽度、平滑度)-0.95 5、瓷质材质 表面光涌带有反射,有很亮的高光 Diffuse (漫反射)- 瓷质贴图(白瓷250) Reflect (反射) -衰减(也可直接设为133,要打开菲涅尔,也有只给40左右) Hilight glossiness-0.85 Glossiness (光泽度、平滑度)-0.95(反射给40只改这里为0.85) Subdivs (细分) -15 最大深度-10 BRDF-WARD (如果不用衰减可以改为PONG ) 各向异性:0.5 旋转值为70,

3dmax材质参数设置

3DMAX材质参数 玻璃的反光率15% 折射率90%~100% 金属一般反射率60%~70% 至于地版和大理石只要有bitmap就可以了 大理石加10%的反光打蜡的地板有5%的反光 这里是一些物质的物理特征,希望能帮到各位。 金属颜色RGB 色彩亮度光亮度慢射镜面光泽度反射 BMP(分形噪声)单位:英寸凹凸% 铝箔 180,180,180 有 0 32 90 中 65 .0002,.00002,.0002 8 铝箔(钝) 180,180,180 有 0 50 45 低 35 .0002,.00002,.0002 15 铝 220,223,227 有 0 35 25 低 40 .0002,.00002,.0002 15 磨亮的铝 220,223,227 有 0 35 65 中 50 .0002,.00002,.0002 12 黄铜 191,173,111 有 0 40 40 中 40 .0002,.00002,.0002 20 磨亮的黄铜 191,173,111 有 0 40 65 中 50 .0002,.00002,.0002 10 镀铬合金 150,150,150 无 0 40 40 低 25 .0002,.00002,.0002 35 镀铬合金2 220,230,240 有 0 25 30 低 50 .0002,.00002,.0002 20 镀铬铝 220,230,240 有 0 15 60 中 65 .0002,.00002,.0002 15 镀铬塑料 220,230,240 有 0 15 60 低 50 .0002,.00002,.0002 15 镀铬钢 220,230,240 有 0 15 60 中 70 .0002,.00002,.0002 5 纯铬 220,230,240 有 0 15 60 低 85 .0002,.00002,.0002 5 铜 186,110,64 有 0 45 50 中 40 .0002,.00002,.0002 10 18K金 234,199,135 有 0 45 50 中 65 .0002,.00002,.0002 10 24K金 218,178,115 有 0 35 50 中 65 .0002,.00002,.0002 10 未精练的金 255,180,66 有 0 35 50 中 45 .0002,.00002,.0002 25 黄金 242,192,86 有 0 45 50 中 65 .0002,.00002,.0002 10 石墨 87,33,77 无 0 42 90 中 15 .0001,.0001,.0001 10 铁 118,119,120 有 0 35 50 低 25 .0002,.00002,.0002 20 铅锡锑合金 250,250,250 有 0 30 40 低 15 .0002,.00002,.0002 10 银 233,233,216 有 0 15 90 中 45 .0002,.00002,.0002 15 钠 250,250,250 有 0 50 90 低 25 .0002,.00002,.0002 10 废白铁罐 229,223,206 有 0 30 40 低 45 .0002,.00002,.0002 30 不锈钢 128,128,126 有 0 40 50 中 35 .0002,.00002,.0002 20 磨亮的不锈钢 220,220,220 有 0 35 50 低 25 .0002,.00002,.0002 35 锡 220,223,227 有 0 50 90 低 35 .0001,.0001,.0001 20 透明材质的折射率 材质折射率 真空 10000 空气 10003 液态二氧化碳 12000 冰 13090 水 13333 丙酮 13600 乙醇 13600 糖溶液(30%) 13800

VRay各种材质参数设置(全)

VR各种材质参数 折射率: 水 1.333油漆:1.2木材:1.2皮革:1.3陶瓷(大理石):1.4 玻璃: 1.5—1.7钻石: 2.4 不锈钢:1.6 一、石材材质 1 2 Glossiness(光泽度、平滑度)-0.85 Subdivs(细分) -25 MHU74 3、凹凸面石材 (面表面较光滑,有凹凸,高光较小) Diffuse (漫反射)- 石材纹理贴图 Reflect(反射) - 40?

Hilight glossiness-关闭 Glossiness(光泽度、平滑度)-1 Subdivs(细分) -9 Bump(凹凸贴图) - 15%同漫反射贴图相关联4、大理石 5 ( 各向异性: 旋转值为70, 环境:OUTPUT,输出量为3.0 二、布料材质

材质分析:常用的分为普通布料、毯子、丝绸三种,主要是根据表面粗糙度而区分别有不同的特点。 1、普通布料 (表面有较小的粗糙,小反射,表面有丝绒感和凹凸感) Diffuse (漫反射)- FALLOFF[衰减],近距衰减即黑色色块为布料贴图,近距衰减 Bump 2 置换贴图。 A、VR 3dsmax这就在当前Source object - 需要增加毛发的源物体 Length - 毛发的长度 Thickness - 毛发的厚度 Gravity - 控制将毛发往Z方向拉下的力度 Bend - 控制毛发的弯曲度(注:有此参数!)

Sides - 目前这参数不可调节.毛发通常作为面对跟踪光线的多边形来渲染;正常是使用插值来创建一个平滑的表现. Knots - 毛发是作为几个连接起来的直段来渲染的,这参数控制直段的数量. Flat normals - 当勾选,毛发的法线在毛发的宽度上不会发生变化.虽然不是非常准确,这与其它毛发解决方案非常相似.同时亦对毛发混淆有帮助,使的图像的取样工 的毛发 .任 没有变化) Selected faces - 仅被选择的面(比如MeshSelect修改器)产生毛发 Material ID - 仅指定材质ID的面产生毛发Generate W-coordinate - 大体上,所有贴图坐标是从基础物体(base object)获取的.但是,W坐标可以修改来表现沿着毛发的偏移.U和V坐标依然从基础物体获取. Channel - W坐标将被修改的通道 选择物体上创建了一个毛发对象.选择毛发在属性面板调节参数.

VR材质参数设置

VR 材质参数设置 一、各种常用材质的调整 1、亮光木材:漫射:贴图反射:35灰高光:0.8 亚光木材:漫射:贴图反射:35 灰高光:0.8 光泽(模糊):0.85 2、镜面不锈钢:漫射:黑色反射:255 灰 亚面不锈钢:漫射:黑色反射:200 灰光泽(模糊):0.8 拉丝不锈钢:漫射:黑色反射:衰减贴图(黑色部分贴图)光泽(模糊):0.8 3、陶器:漫射:白色反射:255 菲涅耳 4、亚面石材:漫射:贴图反射:100 灰高光:0.5 光泽(模糊):0.85 凹凸贴图 5、抛光砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.98 菲涅耳要贴图坐标 普通地砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.9 菲涅耳 6、木地板:漫射:平铺贴图反射:70 贴图6x60 光泽(模糊):0.9 凹凸贴图 7、清玻璃:漫射:灰色反射:255 折射255 折射率1.5 磨砂玻璃:漫射:灰色反射:255 高光:0.8 光泽(模糊):0.9 折射255 光泽(模糊):0.9 光折射率1.5 8、普通布料: 漫射:贴图凹凸贴图 绒布: 漫射:衰减贴图置换给贴图降低置换参数要贴图坐标 毛发地毯:先建一个平面1500*2000然后给澡啵40 Z 140 然后给个VR毛发 9、皮革:漫射:贴图反射:50 高光:0.6 光泽(模糊):0.8 凹凸贴图贴图坐标 10、水材质:漫射:黑色反射:255 衰减菲*耳打勾折射:255 折射率1.33 烟雾颜色浅青色厌恶倍增0.01 凹凸贴图:澡波350 凹凸20 11 、纱窗:漫射:颜色白色折射:灰白贴图折射率1 接收GI :2 草图阶段设置 1、全局开关面板:关闭3D默认的灯光,关闭“反射/折射”和“光滑效果” 2、图像采样器:“固定比率”,值为1。 3、关闭“抗锯齿过滤器”。 4、发光贴图:预设[非常低],模型细分30,插补采样10 5、灯光缓冲:细分100 6 RQM(采样器:适应数量0.95噪波阈值:0.5最小采样值8全局细分倍增器:0.1

3DMAX VR常用材质参数

VR材质参数 乳胶漆:漫射:颜色反射:23 高光:0.25 铝合金:漫射:124~220 反射:150~250高光:0.9光泽度:0.95射细分:16 白塑料材质:漫反:白色[250] 反射:160~180 勾选菲湦耳高光0.65 光泽度0.85 透明塑料材质:漫色:颜色勾选菲湦耳折射:180左右高光:0.5 光泽度:0.9 烟雾颜色:颜色 蓝玻:漫射:蓝色反射:255 勾菲涅耳折射:120~200 木纹:漫射:颜色或图贴反射:衰减 亮光木材:漫射:贴图反射:35灰高光:0.8 亚光木材:漫射:贴图反射:35灰高光:0.8 光泽(模糊):0.85 镜面不锈钢:漫射:黑色反射:170~220灰 亚面不锈钢:漫射:黑色反射:200灰光泽(模糊):0.8 拉丝不锈钢:漫射:黑色反射:衰减贴图(黑色部分贴图)光泽(模糊):0.8 陶器:漫射:颜色反射:衰减高光:0.7~0.9 反射:可有可无 亚面石材:漫射:贴图反射:100灰高光:0.5 光泽(模糊):0.85 凹凸贴图 抛光砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.98 菲涅耳 普通地砖:漫射:平铺贴图反射:255 高光:0.8 光泽(模糊):0.9 菲涅耳 木地板:漫射:平铺贴图反射:70 光泽(模糊):0.9 凹凸贴图 清玻璃:漫射:灰色反射:255 折射255 折射率1.5

磨砂玻璃:漫射:灰色反射:255 高光:0.8 光泽:0.9 折射255 光泽:0.9 光折射率1.5 普通布料: 漫射:贴图凹凸贴图 绒布: 漫射:衰减贴图置换贴图 皮革:漫射:贴图反射:50 高光:0.6 光泽:0.8 凹凸贴图 水材质:漫射:白色反射:255 折射:255 折射率1.33 烟雾颜色浅青色凹凸贴图:澡波 11、纱窗:漫射:颜色折射:灰白贴图折射率1 接收GI:2 12,灰镜:漫射22 反射49 高光0.82 光泽0.99 最大深度4

铁合金封玻璃性能比较

铁封玻璃造粒粉及压缩机接线端子封接工艺的研究 缪锡根周小鹏许礼华刘建莉*缪波何纪生 中澳科创(深圳)新材料有限公司 广东省深圳市光明新区留创园518107 *海南医学院附属医院 海南省海口市570102 摘要 我国是空调设备的生产大国,然而空调设备中的压缩机接线端子所需要的封接玻璃粉基本上从国外进口。为了打破国外封接玻璃粉在中国市场上的垄断地位,本公司在分析、比较国外铁封玻璃粉的基础上,通过参考有关国内外专利文献,以及在国内压缩机端子封接企业的配合与支持下,研制生产了具有独立自主知识产权的FJ-6D系列铁封玻璃粉,达到了压缩机接线端子对铁封玻璃的严格性能要求,为提供大批量、高可靠压缩机接线端子封接用玻璃粉打下了良好基础。 Abstract Although China is a big country of producing air-conditioning equipment,the compressor terminals of the air-conditioning equipment are largely dependent on imported sealing glass granules.In order to alleviate this situation,we have investigated and developed our own sealing glass formulations after analyzing and comparing imported glass granules,referring to national and international patents,and collaborating with domestic companies that produce compressor terminals.The glass granules of the FJ-6D series produced by our company have satisfied the stringent requirements of the compressor terminals,making it possible to massively and reliably produce sealing glass granules for compressor terminals. 关键词 铁封玻璃(sealing glass for ferrous alloys)、造粒粉(spherized granules)、玻璃预制体(glass preforms)、压缩型封接(compression seal) 一、前言 压缩机接线端子是空调压缩机的关键部件,涉及低碳钢金属外壳与合金钢接线柱之间的铁封玻璃封接,以达到耐压、密封、电绝缘和耐用的目的。铁封玻璃粉的配方、造粒、排胶以及封接工艺是压缩机接线端子生产的几个关键节点。基于美国技术的艾默生富塞电气(深圳)有限公司是中国压缩机端子封接的先锋生产商,对国内后续成立的近十家压缩机端子封接厂家起作重要的示范作用。但是这些公司基本上采用美国Elan技术公司和日本NEG公司生产的铁封玻璃粉做压缩机端子封接,事实上国外铁封玻璃粉已垄断了中国市场。受到国内压缩机端子封接行业的推动,国内一些公司[1]、大学[2-4]和研究机构[5-7]相应开展了铁封玻璃粉的研发工作,例如潮州三环(集团)股份有限公司、京东方科技集团有限公司、北京科技大学、中国建筑材料科学研究总院等。但是目前国内研制的铁封玻璃粉还没有大批量生产和应用,这可能与其玻璃粉的性能和可靠性不稳定有关,造成了国内压缩机端子封接公司严重依赖国

相关文档