文档库 最新最全的文档下载
当前位置:文档库 › 大学物理第一章答案

大学物理第一章答案

大学物理第一章答案
大学物理第一章答案

1.5 一质点沿半径为0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:θ= 2 + 4t3.求:

(1)t = 2s时,它的法向加速度和切向加速度;

(2)当切向加速度恰为总加速度大小的一半时,θ为何值?

(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?

[解答](1)角速度为

ω= dθ/dt = 12t2 = 48(rad2s-1),

法向加速度为

an = rω2 = 230.4(m2s-2);

角加速度为

β= dω/dt = 24t = 48(rad2s-2),

切向加速度为

at = rβ= 4.8(m2s-2).

(2)总加速度为a = (at2 + an2)1/2,

当at = a/2时,有4at2 = at2 + an2,即

由此得,

即,

解得.

所以

=3.154(rad).

(3)当at = an时,可得rβ= rω2,

即24t = (12t2)2,

解得t = (1/6)1/3 = 0.55(s).

1.7 一个半径为R = 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A.在重力作用下,物体A从静止开始匀加速地下降,在Δt =

2.0s内下降的距离h = 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.

[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.

由于,所以

at = 2h/Δt2 = 0.2(m2s-2).

物体下降3s末的速度为

v = att = 0.6(m2s-1),

这也是边缘的线速度,因此法向加速度为

= 0.36(m2s-2).

1.8 一升降机以加速度1.22m2s-2上升,当上升速度为

2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m.计算:

(1)螺帽从天花板落到底面所需的时间;

(2)螺帽相对于升降机外固定柱子的下降距离.

[解答]在螺帽从天花板落到底面时,升降机上升的高度为

螺帽做竖直上抛运动,位移为

由题意得h = h1 - h2,所以

解得时间为

= 0.705(s).

算得h2 = -0.716m,即螺帽相对于升降机外固定柱子的下降距离为0.716m.[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程

h = (a + g)t2/2,

由此可计算钉子落下的时间,进而计算下降距离.

第一章质点运动学

1.1 一质点沿直线运动,运动方程为x(t) = 6t2 - 2t3.试求:

(1)第2s内的位移和平均速度;

(2)1s末及2s末的瞬时速度,第2s内的路程;

(3)1s末的瞬时加速度和第2s内的平均加速度.

[解答](1)质点在第1s末的位移大小为

x(1) = 6312 - 2313 = 4(m).

在第2s末的位移大小为

x(2) = 6322 - 2323 = 8(m).

在第2s内的位移大小为

Δx = x(2) –x(1) = 4(m),

经过的时间为Δt = 1s,所以平均速度大小为

=Δx/Δt = 4(m2s-1).

(2)质点的瞬时速度大小为

v(t) = dx/dt = 12t - 6t2,

因此v(1) = 1231 - 6312 = 6(m2s-1),

v(2) = 1232 - 6322 = 0,

质点在第2s内的路程等于其位移的大小,即Δs = Δx = 4m.

(3)质点的瞬时加速度大小为

a(t) = dv/dt = 12 - 12t,

因此1s末的瞬时加速度为

a(1) = 12 - 1231 = 0,

第2s内的平均加速度为

= [v(2) - v(1)]/Δt = [0 –6]/1 = -6(m2s-2).

[注意]第几秒内的平均速度和平均加速度的时间间隔都是1秒.

1.2 一质点作匀加速直线运动,在t = 10s内走过路程s = 30m,而其速度增为n = 5倍.试证加速度为.

并由上述数据求出量值.

[证明]依题意得vt = nvo,

根据速度公式vt = vo + at,得

a = (n –1)vo/t,(1)

根据速度与位移的关系式vt2 = vo2 + 2as,得

a = (n2 –1)vo2/2s,(2)

(1)平方之后除以(2)式证得

计算得加速度为

= 0.4(m2s-2).

1.3一人乘摩托车跳越一个大矿坑,他以与水平成2

2.5°的夹角的初速度65m2s-1从西边起跳,准确地落在坑的东边.已知东边比西边低70m,忽略空气阻力,且取g = 10m2s-2.问:(1)矿坑有多宽?他飞越的时间多长?

(2)他在东边落地时的速度?速度与水平面的夹角?

[解答]方法一:分步法.(1)夹角用θ表示,人和车(他)在竖直方向首先做竖直上抛运动,初速度的大小为

vy0 = v0sinθ= 24.87(m2s-1).

取向上的方向为正,根据匀变速直线运动的速度公式

vt - v0 = at,

这里的v0就是vy0,a = -g;当他达到最高点时,vt = 0,所以上升到最高点的时间为t1 = vy0/g = 2.49(s).

再根据匀变速直线运动的速度和位移的关系式

vt2 - v02 = 2as,

可得上升的最大高度为

h1 = vy02/2g = 30.94(m).

他从最高点开始再做自由落体运动,下落的高度为

h2 = h1 + h = 100.94(m).

根据自由落体运动公式s = gt2/2,得下落的时间为

= 4.49(s).

因此他飞越的时间为

t = t1 + t2 = 6.98(s).

他飞越的水平速度为

vx0 = v0cosθ= 60.05(m2s-1),

所以矿坑的宽度为

x = vx0t = 419.19(m).

(2)根据自由落体速度公式可得他落地的竖直速度大小为

vy = gt = 69.8(m2s-1),

落地速度为

v = (vx2 + vy2)1/2 = 92.08(m2s-1),

与水平方向的夹角为

φ= arctan(vy/vx) = 49.30?,

方向斜向下.

方法二:一步法.取向上的方向为正,他在竖直方向的位移为y = vy0t - gt2/2,移项得时间的一元二次方程

解得

这里y = -70m,根号项就是他落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为

t = 6.98(s).

由此可以求解其他问题.

1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即dv/dt = -kv2,k为常数.

(1)试证在关闭发动机后,船在t时刻的速度大小为;

(2)试证在时间t内,船行驶的距离为.

[证明](1)分离变量得,

积分,

可得.

(2)公式可化为,

由于v = dx/dt,所以

积分.

因此.证毕.

[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.

由于a = d2x/dt2,

而dx/dt = v,

所以 a = dv/dt,

分离变量得方程

解方程即可求解.

在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则

dv/dt = -kvn.

(1)如果n = 1,则得

积分得

lnv = -kt + C.

当t = 0时,v = v0,所以C = lnv0,因此

lnv/v0 = -kt,

得速度为

v = v0e-kt.

而dv = v0e-ktdt,积分得

当t = 0时,x = 0,所以C` = v0/k,因此

(2)如果n≠1,则得,积分得

当t = 0时,v = v0,所以,因此

如果n = 2,就是本题的结果.

如果n≠2,可得

读者不妨自证.

1.5 一质点沿半径为0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:θ= 2 + 4t3.求:

(1)t = 2s时,它的法向加速度和切向加速度;

(2)当切向加速度恰为总加速度大小的一半时,θ为何值?

(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?

[解答](1)角速度为

ω= dθ/dt = 12t2 = 48(rad2s-1),

法向加速度为

an = rω2 = 230.4(m2s-2);

角加速度为

β= dω/dt = 24t = 48(rad2s-2),

切向加速度为

at = rβ= 4.8(m2s-2).

(2)总加速度为a = (at2 + an2)1/2,

当at = a/2时,有4at2 = at2 + an2,即

由此得,

即,

解得.

所以

=3.154(rad).

(3)当at = an时,可得rβ= rω2,

即24t = (12t2)2,

解得t = (1/6)1/3 = 0.55(s).

1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m2s-1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m2s-2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?

[解答]建立水平和垂直坐标系,飞机的初速度的大小为

v0x = v0cosθ,

v0y = v0sinθ.

加速度的大小为

ax = acosα,

ay = asinα.

运动方程为

即,

令y = 0,解得飞机回到原来高度时的时间为

t = 0(舍去);(s).

将t代入x的方程求得x = 9000m.

[注意]选择不同的坐标系,例如x方向沿着a的方向或者沿着v0的方向,也能求出相

同的结果.

1.7 一个半径为R = 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A.在重力作用下,物体A从静止开始匀加速地下降,在Δt =

2.0s内下降的距离h = 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.

[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.

由于,所以

at = 2h/Δt2 = 0.2(m2s-2).

物体下降3s末的速度为

v = att = 0.6(m2s-1),

这也是边缘的线速度,因此法向加速度为

= 0.36(m2s-2).

1.8 一升降机以加速度1.22m2s-2上升,当上升速度为

2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m.计算:

(1)螺帽从天花板落到底面所需的时间;

(2)螺帽相对于升降机外固定柱子的下降距离.

[解答]在螺帽从天花板落到底面时,升降机上升的高度为

螺帽做竖直上抛运动,位移为

由题意得h = h1 - h2,所以

解得时间为

= 0.705(s).

算得h2 = -0.716m,即螺帽相对于升降机外固定柱子的下降距离为0.716m.[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程

h = (a + g)t2/2,

由此可计算钉子落下的时间,进而计算下降距离.

1.9有一架飞机从A处向东飞到B处,然后又向西飞回到A处.已知气流相对于地面的速度为u,AB之间的距离为l,飞机相对于空气的速率v保持不变.

(1)如果u = 0(空气静止),试证来回飞行的时间为;

(2)如果气流的速度向东,证明来回飞行的总时间为;

(3)如果气流的速度向北,证明来回飞行的总时间为.

[证明](1)飞机飞行来回的速率为v,路程为2l,所以飞行时间为t0 = 2l/v.

(2)飞机向东飞行顺风的速率为v + u,向西飞行逆风的速率为v - u,所以飞行时间为.

(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为,所以飞行时间为

.证毕.

1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v2.今在车后放一长方形物体,问车速v1为多大时此物体刚好不会被雨水淋湿?

[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tanα= l/h.

方法一:利用直角三角形.根据直角三角形得

v1 = v2sinθ+ v3sinα,

其中v3 = v⊥/cosα,而v⊥= v2cosθ,

因此v1 = v2sinθ+ v2cosθsinα/cosα,

即.证毕.

方法二:利用正弦定理.根据正弦定理可得

所以

即.

方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t时间内,雨滴的位移为

l = (v1 –v2sinθ)t,

h = v2cosθ?t.

两式消去时间t即得所求.证毕.

2.12 质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x 处的速度大小v = [2k(1/x –1/x0)/m]1/2.

[证明]当物体在直线上运动时,根据牛顿第二定律得方程

利用v = dx/dt,可得

因此方程变为

积分得

利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此

即.证毕.

[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mvdv = f(x)dx,积分即可求解.

如果f(x) = -k/xn,则得

(1)当n = 1时,可得

利用初始条件x = x0时,v = 0,所以C = lnx0,因此,

即.

(2)如果n≠1,可得

利用初始条件x = x0时,v = 0,所以,

因此,

即.

当n = 2时,即证明了本题的结果.

2.13 一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:

(1)小球速率随时间的变化关系v(t);

(2)小球上升到最大高度所花的时间T.

[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程

分离变量得

积分得

当t = 0时,v = v0,所以

因此

小球速率随时间的变化关系为

(2)当小球运动到最高点时v = 0,所需要的时间为

[讨论](1)如果还要求位置与时间的关系,可用如下步骤.

由于v = dx/dt,所以

积分得

当t = 0时,x = 0,所以

因此

(2)如果小球以v0的初速度向下做直线运动,取向下的方向为正,则微分方程变为,

用同样的步骤可以解得小球速率随时间的变化关系为

这个公式可将上面公式中的g改为-g得出.由此可见:不论小球初速度如何,其最终速率趋于常数vm = mg/k.

2.14 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R.一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk.设物体在某时刻经A点时速率为v0,求此后时刻t物体的速率以及从A点开始所经过的路程.

[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即

N = mv2/R.

物体所受的摩擦力为

f = -μkN,

负号表示力的方向与速度的方向相反.

根据牛顿第二定律得

即.

积分得

当t = 0时,v = v0,所以

因此.

解得.

由于

积分得

当t = 0时,x = x0,所以C = 0,因此

2.15 如图所示,一半径为R的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.

[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为

F = mgtgθ.

珠子做圆周运动的半径为

r = Rsinθ.

根据向心力公式得

F = mgtgθ= mω2Rsinθ,

可得

解得.

2.16 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx,而位移x = Acosωt,其中k,A和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得

dI = Fdt = -kAcosωtdt,

积分得冲量为

方法二:利用动量定理.小球的速度为

v = dx/dt = -ωAsinωt,

设小球的质量为m,其初动量为

p1 = mv1 = 0,

末动量为

p2 = mv2 = -mωA,

小球获得的冲量为

I = p2 –p1 = -mωA,

可以证明k =mω2,因此

I = -kA/ω.

2.17 一个质量m = 50g,以速率的v = 20m2s-1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?

[解答]小球动量的大小为

p = mv,

但是末动量与初动量互相垂直,根据动量的增量的定义

得,

由此可作矢量三角形,可得

因此向心力给予小球的的冲量大小为

= 1.41(N2s).

[注意]质点向心力大小为F = mv2/R,方向是指向圆心的,其方向在不断地发生改变,所以不能直接用下式计算冲量

假设小球被轻绳拉着以角速度ω= v/R运动,拉力的大小就是向心力

F = mv2/R = mωv,

其分量大小分别为

Fx = Fcosθ= Fcosωt,

Fy = Fsinθ= Fsinωt,

给小球的冲量大小为

dIx = Fxdt = Fcosωtdt,

dIy = Fydt = Fsinωtdt,

积分得

合冲量为

所前面计算结果相同,但过程要复杂一些.

2.18用棒打击质量0.3kg,速率等于20m2s-1的水平飞来的球,球飞到竖直上方10m的高

度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s,求球受到的平均冲力?

[解答]球上升初速度为

= 14(m2s-1),

其速度的增量为

= 24.4(m2s-1).

棒给球冲量为

I = mΔv = 7.3(N2s),

对球的作用力为(不计重力)

F = I/t = 366.2(N).

2.19 如图所示,3个物体A、B、C,每个质量都为M,B和C靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m的细绳,首先放松.B的另一侧则连有另一细绳跨过桌边的定滑轮而与A相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A和B起动后,经多长时间C也开始运动?C开始运动时的速度是多少?(取g = 10m2s-2)[解答]物体A受到重力和细绳的拉力,可列方程

Mg –T = Ma,

物体B在没有拉物体C之前在拉力T作用下做加速运动,加速度大小为a,可列方程T = Ma,

联立方程可得

a = g/2 = 5(m2s-2).

根据运动学公式

s = v0t + at2/2,

可得B拉C之前的运动时间

= 0.4(s).

此时B的速度大小为

v = at = 2(m2s-1).

物体A跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A和B拉动C运动是一个碰撞过程,它们的动量守恒,可得

2Mv = 3Mv`,

因此C开始运动的速度为

v` = 2v/3 = 1.33(m2s-1).

2.22 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R.设马对雪橇的拉力总是平行于路面.雪橇的质量为m,它与路面的滑动摩擦因数为μk.当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?

[解答]取弧长增加的方向为正方向,弧位移的大小为

ds = Rdθ.

重力的大小为

G = mg,

方向竖直向下,与位移元的夹角为π+ θ,所做的功元为

积分得重力所做的功为

摩擦力的大小为

f = μkN = μkmgcosθ,

方向与弧位移的方向相反,所做的功元为

积分得摩擦力所做的功为

要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即,或者.

拉力的功元为

拉力所做的功为

由此可见:重力和摩擦力都做负功,拉力做正功.

2.23 一质量为m的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r的圆周运动.设质点最初的速率是v0,当它运动1周时,其速率变为v0/2,求:(1)摩擦力所做的功;

(2)滑动摩擦因数;

(3)在静止以前质点运动了多少圈?

[解答] (1)质点的初动能为

E1 = mv02/2,

末动能为

E2 = mv2/2 = mv02/8,

动能的增量为

ΔEk = E2 –E1 = -3mv02/8,

这就是摩擦力所做的功W.

(2)由于

dW = -fds = -μkNds = -μkmgrdθ,

积分得

由于W = ΔE,可得滑动摩擦因数为

(3)在自然坐标中,质点的切向加速度为

at = f/m = -μkg,

根据公式vt2 –vo2 = 2ats,可得质点运动的弧长为

圈数为n = s/2πr = 4/3.

[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量

-fs = ΔE k,

可得s = -ΔE k/f,

由此也能计算弧长和圈数。

2.24 如图所示,物体A的质量m = 0.5kg,静止于光滑斜面上.它与固定在斜面底B端的弹簧M相距s = 3m.弹簧的倔强系数k = 400N2m-1.斜面倾角为45°.求当物体A由静止下滑时,能使弹簧长度产生的最大压缩量是多大?

[解答]取弹簧自然伸长处为重力势能和弹性势能的零势点,由于物体A和弹簧组成的系统只有保守力做功,所以机械能守恒,当弹簧压缩量最大时,可得方程

整理和一元二次方程

解得

= 0.24(m)(取正根).

2.29 如图所示,有一个在竖直平面上摆动的单摆.问:

(1)摆球对悬挂点的角动量守恒吗?

(2)求出t时刻小球对悬挂点的角动量的方向,对于不同的时刻,角动量的方向会改变吗?

(3)计算摆球在θ角时对悬挂点角动量的变化率.

[解答](1)由于单摆速度的大小在不断发生改变,而方向与弧相切,因此动量矩l不变;由于角动量L = mvl,所以角动量不守恒.

(2)当单摆逆时针运动时,角动量的方向垂直纸面向外;当单摆顺时针运动时,角动量的方向垂直纸面向里,因此,在不同的时刻,角动量的方向会改变.

(3)质点对固定点的角动量的变化率等于质点所受合外力对同一点的力矩,因此角动量的变化率为

2.31我国第一颗人造地于卫星的质量为173kg,其近地点高度为439km,远地点高度为2 384km,求它的轨道总能量.

[解答]地球半径R0 = 6371km,因此

r1 = R0 + h1,r2 = R0 + h2.

根据万有引力定律,在地球表面有

因此

根据上题的结果可得卫星的轨道总能量为

= -4.423109(J).

2.38 质量为m,半径为R的均匀圆盘在水平面上绕中心轴转动,如图所示.盘与水平面的摩擦因数为μ,圆盘从初角速度为ω0到停止转动,共转了多少圈?

[解答]圆盘对水平面的压力为

N = mg,

压在水平面上的面积为

S = πR2,

压强为

p = N/S = mg/πR2.

当圆盘滑动时,在盘上取一半径为r、对应角为dθ面积元,其面积为

dS = rdθdr,

对水平面的压力为

dN = pdS = prdrdθ,

所受的摩擦力为

df = μdN = μprdrdθ,

其方向与半径垂直,摩擦力产生的力矩为

dM = rdf = μpr2drdθ,

总力矩为

圆盘的转动惯量为

I = mR2/2,

角加速度大小为

负号表示其方向与角速度的方向相反.

根据转动公式ω2 = ω02 + 2βθ,当圆盘停止下来时ω= 0,所以圆盘转过的角度为,

转过的圈数为

[注意]在圆盘上取一个细圆环,其面积为ds = 2πrdr,这样计算力矩等更简单。

4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:

(1)此简谐振动的表达式;

(2)t = T/4时物体的位置、速度和加速度;

(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.

[解答](1)设物体的简谐振动方程为

x = Acos(ωt + φ),

其中A = 0.12m,角频率ω= 2π/T = π.

当t = 0时,x = 0.06m,所以

cosφ= 0.5,

因此

φ= ±π/3.

物体的速度为

v = dx/dt = -ωAsin(ωt + φ).

当t = 0时,

v = -ωAsinφ,

由于v > 0,所以sinφ< 0,因此

φ= -π/3.

简谐振动的表达式为

x = 0.12cos(πt –π/3).

(2)当t = T/4时物体的位置为

x = 0.12cos(π/2 –π/3)

= 0.12cosπ/6 = 0.104(m).

速度为

v = -πAsin(π/2 –π/3)

= -0.12πsinπ/6 = -0.188(m2s-1).

加速度为

a = dv/dt = -ω2Acos(ωt + φ)

= -π2Acos(πt - π/3)

= -0.12π2cosπ/6 = -1.03(m2s-2).

(3)方法一:求时间差.当x = -0.06m时,可得

cos(πt1 - π/3) = -0.5,

因此

πt1 - π/3 = ±2π/3.

由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此

πt1 - π/3 = 2π/3,

得t1 = 1s.

当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此

cos(πt2 - π/3) = 0,

可得πt2 - π/3 = -π/2或3π/2等.

由于t2 > 0,所以

πt2 - π/3 = 3π/2,

可得t2 = 11/6 = 1.83(s).

所需要的时间为

Δt = t2 - t1 = 0.83(s).

方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m,即从起点向x轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此

cos(πt - π/3) = 0,

可得πt - π/3 = π/2,

解得t = 5/6 = 0.83(s).

[注意]根据振动方程

x = Acos(ωt + φ),

当t = 0时,可得

φ= ±arccos(x0/A),(-π< φ<= π),

初位相的取值由速度决定.

由于

v = dx/dt = -ωAsin(ωt + φ),

当t = 0时,

v = -ωAsinφ,

当v > 0时,sinφ< 0,因此

φ= -arccos(x0/A);

当v < 0时,sinφ> 0,因此

φ= arccos(x0/A)π/3.

可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ= 0;当初位置x0 = -A时,φ= π.

5.8 一简谐波沿x轴正向传播,波长λ= 4m,周期T = 4s,已知x = 0处的质点的振动曲线如图所示.

(1)写出时x = 0处质点的振动方程;

(2)写出波的表达式;

(3)画出t = 1s时刻的波形曲线.

[解答]波速为u = λ/T = 1(m2s-1).

(1)设x = 0处的质点的振动方程为

y = Acos(ωt + φ),

其中A = 1m,ω= 2π/T = π/2.

当t = 0时,y = 0.5,因此

cosφ= 0.5,

φ= ±π/3.

在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此

φ= π/3.

振动方程为

y = cos(πt/2 + π/3).

(2)波的表达式为

(3)t = 1s时刻的波形方程为

波形曲线如图所示.

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理 简明教程 第二版 课后习题 答案 赵进芳

大学物理 简明教程 习题 解答 答案 习题一 1-1 |r ?|与r ?有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时, 有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先 计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。 解:此沟的宽度为 m 345m 10 60sin 302sin 220=??==g R θv 1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,229t y -=得 2=x m ,7=y m s t 1=故时质点的位置矢量为 j i r 72+=(m ) 由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为 m/s 2d d ==t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为 j i 82-=v (m/s ) 质点在任意时刻的加速度为 0d d ==t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2 。

大学物理课程教学基本要求

大学物理课程教学基本 要求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它 的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他 自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世 界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社 会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。 一、课程的地位、作用和任务 以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门 重要的通识性必修基础课。该课程所教授的基本概念、基本理论和基本方法是 构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备 的。 大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的 世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意 识等方面,具有其他课程不能替代的重要作用。 通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基 本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。在大 学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和 解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知 识、能力、素质的协调发展。 二、教学内容基本要求(详见附表)

大学物理课程的教学内容分为A、B两类。其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。 1.力学 (A:7条,建议学时数14学时;B:5条) 2.振动和波 (A:9条,建议学时数14学时;B:4条) 3.热学 (A:10条,建议学时数14学时;B:4条) 4.电磁学 (A:20条,建议学时数40学时;B:8条) 5.光学 (A:14条,建议学时数18学时;B:9条) 6.狭义相对论力学基础 (A:4条,建议学时数6学时;B:3条) 7.量子物理基础 (A:10条,建议学时数20学时;B:4条) 8.分子与固体 (B:5条) 9.核物理与粒子物理 (B:6条)

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 ?r = 位移的方向沿东北方向,与 方向一致。 1-4 现有一矢量R是时间t的函数,问 与 在一般情况下是否相等?为什么? 解 与 在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导, 表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m?s-1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = - 18 m?s-1; 用同样的方法可以求得第四秒末的速度,为 v4 = - 48 m?s-1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = - 24 m?s-2; 用同样的方法可以求得第四秒末的加速度,为 v4 = - 36 m?s-2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。

大学物理(上)练习题及答案详解

大学物理学(上)练习题 第一编 力 学 第一章 质点的运动 1.一质点在平面上作一般曲线运动,其瞬时速度为,v 瞬时速率为v ,平均速率为,v 平均 速度为v ,它们之间如下的关系中必定正确的是 (A) v v ≠,v v ≠; (B) v v =,v v ≠; (C) v v =,v v =; (C) v v ≠,v v = [ ] 2.一质点的运动方程为2 6x t t =-(SI),则在t 由0到4s 的时间间隔内,质点位移的大小为 ,质点走过的路程为 。 3.一质点沿x 轴作直线运动,在t 时刻的坐标为23 4.52x t t =-(SI )。试求:质点在 (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内运动的路程。 4.灯距地面的高度为1h ,若身高为2h 的人在灯下以匀速率 v 沿水平直线行走,如图所示,则他的头顶在地上的影子M 点沿地 面移动的速率M v = 。 5.质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式 (1) dv a dt =, (2)dr v dt =, (3)ds v dt =, (4)||t dv a dt =. (A )只有(1)、(4)是对的; (B )只有(2)、(4)是对的; (C )只有(2)是对的; (D )只有(3)是对的. [ ] 6.对于沿曲线运动的物体,以下几种说法中哪一种是正确的。 (A )切向加速度必不为零; (B )法向加速度必不为零(拐点处除外); (C )由于速度沿切线方向;法向分速度必为零,因此法向加速度必为零; (D )若物体作匀速率运动,其总加速度必为零; (E )若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ ] 7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2 v ct =(c 为常数),则从 0t =到t 时刻质点走过的路程()s t = ;t 时刻质点的切向加速度t a = ;t 时刻质点 的法向加速度n a = 。 2 h M 1h

大学物理课后习题答案第一章

第一章 质点运动学 1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度; (2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度. [解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m). 在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m), 经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1), v (2) = 12×2 - 6×22 = 0 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0, 第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). [注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒. 1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得 a = (n – 1)v o /t , (1) 根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:. 计算得加速度为:= 0.4(m·s -2). 1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长? (2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法. (1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为 v y 0 = v 0sin θ = 24.87(m·s -1). 取向上的方向为正,根据匀变速直线运动的速度公式 v t - v 0 = at , 这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为 t 1 = v y 0/g = 2.49(s). 再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m). 人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), v a 2 2(1)(1)n s a n t -= +2 2(1)(1)n s a n t -= +2 2(51)30 (51)10 a -= +2 22h t g =70m 22.5o 图1.3

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

大学物理习题答案解析第一章

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故 t s t ΔΔΔΔ≠ r ,即|v |≠v . 但由于|d r |=d s ,故 t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可

大学物理第一章习题解答

习题解答 (注:无选择题,书本已给出) 习题一 1-6 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-6图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中 dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-7 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求 出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度

v =2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 22 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v == 其二,可能是将 22d d d d t r t r 与误作速度与加速度的模。在1-1题中已说明t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速度的模,它只是加速度在径向分量中 的一部分???? ??? ???? ??-=2 22d d d d t r t r a θ径。 或者概括性地说,前一种方法只考虑了位矢r 在径向(即量值)方面随时间的变化率,而没有考虑位矢r 及速度v 的方向随间的变化率对速度、加速 度的贡献。 1-8 一质点在xOy 平面上运动,运动方程为 x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)

《大学物理学》第一章-牛顿力学-自学练习题

第一章 牛顿力学 自学练习题 一、选择题 1.关于惯性有下列四种说法中,正确的为: ( ) (A )物体在恒力的作用下,不可能作曲线运动; (B )物体在变力的作用下,不可能作曲线运动; (C )物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动; (D )物体在不垂直于速度方向的力的作用下,不可能作圆周运动。 【提示:平抛运动知A 错;圆周运动就是在变力作用下的,知B 错;加速或减速圆周运动,力不指向圆心,知D 错】 2.如图,质量为m 的小球,放在光滑的木板和光滑的墙壁之间, 并保持平衡,设木板和墙壁之间的夹角为α,当α增大时,小球对 木板的压力将: ( ) (A ) 增加;(B )减少;(C )不变; (D )先是增加,后又减少,压力增减的分界角为=45°。 【提示:画一下受力分析图,m 小球受到竖直向下的重力、水平向右的弹力和垂直于木板向左上的支持力三力平衡】 2-1.如图,质量为m 的物体用平行于斜面的细线连结并置于光滑的斜面上,若斜面向左方作加速运动,当物体脱离斜面时,它的加速度大小为: ( ) (A )sin g θ; (B )cos g θ; (C )tan g θ; (D )cot g θ。 【提示:画一下受力分析图,物体m 受到竖直向下的重力mg 、 垂直于斜面向右上的支持力和细线拉力T 的作用。当支持力为零, 有水平向右的惯性力ma 与重力、拉力三力平衡, 建立平衡方程:sin T mg θ =,cos T ma θ=,有cot a g θ=】 2-2.用水平力N F v 把一个物体压在靠在粗糙竖直墙面上保持静止,当N F v 逐渐增大时,物体 所受的静摩擦力f F v 的大小: ( ) (A )不为零,但保持不变; (B )随N F v 成正比地增大; m α θ m m a m g cos T θ

大学物理基础教程习题解答1,2,4,5答案

思 考 题 1.1 答:这个质点的速度j t i v )8.94(3-+=;加速度j a 8.9-=; j dt t i dt r d )8.94(3-+=。dt t ds 2)8.94(9-+=;它的速率2)8.94(9t v -+=。 1.2答:t 时刻的速度j t i t v 5cos 505sin 50+-=;速率v=50,;加速度 )5sin 5(cos 250j t i t a +-=;该质点作匀速圆周运动。 1.3(B ) 1.4(D ) 1.5(B )、(D ) 1.6(C ) 1.7答:质量大的物体转动惯量不一定比质量小的转动惯量大。因为计算转动惯量的三个要素是总质量;质量分布;转轴的位置。所以仅以质量的大小不能说明转动惯量的大小。 1.8答:刚体的动量矩等于刚体对该轴的转动惯量与角速度的乘积。作前滚翻运动动作时应曲卷肢体使转动惯量变小,根据动量矩守恒定律,则能增加前滚翻的角速度。 1.9答:相对论中的高速和低速的区分是相对光速而言的,接近光速的速度为高速,远小于光速的速度为低速。在相对论中质量与速度的关系为2 0) (1c v m m -= ,0m 为静止质 量,m 是物体相对参照系以速度v 运动时的质量,c 为光速。高速列车的行驶速度远小于光速,由上式可计算出高速列车达到正常行驶速度时,其质量没有显著的变化。 习 题 1.1解:(1)速度表达式为:)1ln(bt dt dx v --== μ (2)t=0时, v=0. t=120s 时,3 1091.6?=v m/s (3)加速度表达式为:) 1(bt b dt dv a -== μ

川师大学物理第一章习题解

川师大学物理第一章习题解

————————————————————————————————作者:————————————————————————————————日期:

第一章 质点运动学 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102 =g 。 解:此沟的宽度为m 345m 10 60sin 302sin 220=? ?== g R θv 1–4 一质点在xoy 平面内运动,运动方程为t x 2=,2 29t y -=,位移的单位为m ,试写出s t 1=时 质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,2 29t y -=得2=x m ,7=y m s t 1=故时质点的位置矢量为j i r 72+=(m ) 由质点的运动方程为t x 2=,2 29t y -=得质点在任意时刻的速度为 m/s 2d d == t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s ) 质点在任意时刻的加速度为0d d == t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。 1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323 +=θ,θ以rad 计,t 以s 计。则当 t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________; 法向加速度为__________。 解: t =2s 时,质点的角位置为 =?+?=23223 θ22rad 由t t 323 +=θ得任意时刻的角速度大小为 36d d 2+==t t θω t =2s 时角速度为 =+?=3262 ω27rad/s 任意时刻的角速度大小为 t t 12d d == ω α t =2s 时角加速度为 212?=α=24rad/s 2 t =2s 时切向加速度为 =??==2120.1t αR a 24m/s 2 t =2s 时法向加速度为 =?==2 2n 270.1ωR a 729m/s 2; 1–8 一个质点作圆周运动时,下列说法中正确的是[ ]。 A .切向加速度一定改变,法向加速度也改变 B .切向加速度可能不变,法向加速度一定改变 C .切向加速度可能不变,法向加速度不变 D .切向加速度一定改变,法向加速度不变 解:无论质点是作匀速圆周运动或是作变速圆周运动,法向加速度a n 都是变化的,因此至少其方向在不断变化。而切向加速度a t 是否变化,要视具体情况而定。质点作匀速圆周运动时,其切向加速度为零,保持不变;当质点作匀变速圆周运动时,a t 值为不为零的恒量,但方向变化;当质点作一般的变速圆周运动时,a t 值为不为零变量,方向同样发生变化。由此可见,应选(B )。 1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 2 2bt at +=(其中a 、b 为常量),则 该质点作[ ]。 A .匀速直线运动 B .变速直线运动 C .抛物线运动 D .一般曲线运动 解:由j i r 2 2bt at +=可计算出质点的速度为j i bt at 22+=v ,加速度为j i b a 22+=a 。因质点的 速度变化,加速度的大小和方向都不变,故质点应作变速直线运动。故选(B )。

相关文档