文档库 最新最全的文档下载
当前位置:文档库 › 抛物线专题复习讲义及练习

抛物线专题复习讲义及练习

抛物线专题复习讲义及练习
抛物线专题复习讲义及练习

抛物线专题复习讲义及练习

★知识梳理★

1.抛物线的标准方程、类型及其几何性质 (0>p ):

①)0(22≠=p px y 的焦半径PF )0(22≠=p py x 的焦半径PF

② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.

③ AB 为抛物线px y 22

=的焦点弦,则=B A x x 4

2p ,=B A y y 2

p -,||AB =p x x B A ++

★重难点突破★

重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质

难点: 与焦点有关的计算与论证

重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识

问题1:抛物线y=42

x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.

1617 B. 16

15

C.87

D. 0

点拨:抛物线的标准方程为y x 412

=

,准线方程为16

1

-=y ,由定义知,点M 到准线的距离

为1,所以点M 的纵坐标是

16

15 2.求标准方程要注意焦点位置和开口方向

问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有 点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条

3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切

点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的距离为

AB BB AA 2

1

)''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相切 ★热点考点题型探析★

考点1 抛物线的定义

题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换

[例1 ]已知点P 在抛物线y 2

= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为

【解题思路】将点P 到焦点的距离转化为点P 到准线的距离

[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为3

【名师指引】灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关 【新题导练】

1.已知抛物线2

2(0)y px p =>的焦点为F ,点11

1222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+

B . 3

21y y y =+

C .2312x x x =+ D. 2312y y y =+

[解析]C 由抛物线定义,2132()()(),222

p p p

x x x +

=+++即:2312x x x =+. 2. 已知点),4,3(A F 是抛物线x y 82

=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )

A. )0,0(

B. )62,3(

C. )4,2(

D. )62,3(-

[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C 考点2 抛物线的标准方程 题型:求抛物线的标准方程

[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上 【解题思路】以方程的观点看待问题,并注意开口方向的讨论. [解析] (1)设所求的抛物线的方程为2

2y px =-或2

2(0)x py p =>, ∵过点(-3,2) ∴229)3(24?=--=p p 或 ∴2934

p p =

=或 ∴抛物线方程为2

43y x =-

或29

2

x y =, 前者的准线方程是1,3x =

后者的准线方程为98

y =- (2)令0x =得2y =-,令0y =得4x =,

∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,

42p

=, ∴8p =,此时抛物线方程2

16y x =;焦点为(0,-2)时22

p

= ∴4p =,此时抛物线方程2

8x y =-.

∴所求抛物线方程为216y x =或2

8x y =-,对应的准线方程分别是4,2x y =-=. 【名师指引】对开口方向要特别小心,考虑问题要全面 【新题导练】

3.若抛物线2

2y px =的焦点与双曲线2

213

x y -=的右焦点重合,则p 的值 [解析]

4132

=?+=p p

4. 对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上; ③抛物线上横坐标为1的点到焦点的距离等于6;

④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2

=10x 的条件是____________.(要求填写合适条件的序号)

[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.

5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程

[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)2

3,22(p

-

,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质

题型:有关焦半径和焦点弦的计算与论证 [例3 ]设A 、B 为抛物线px y 22

=上的点,且ο90=∠AOB (O 为原点),则直线AB 必过的定

点坐标为__________.

【解题思路】由特殊入手,先探求定点位置

[解析]设直线OA 方程为kx y =,由???==px

y kx y 22解出A 点坐标为)2,2(2k p

k p ??

???

=-=px

y x k y 212解出B 点坐标为)2,2(2

pk pk -,直线AB 方程为2

21)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p

【名师指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k

1

-

换k 而得。 【新题导练】

6. 若直线10ax y -+=经过抛物线2

4y x =的焦点,则实数a = [解析]-1

7.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,

则=∠11FB A ( ) A. ο45 B. ο60 C. ο90 D. ο

120 [解析]C 基础巩固训练

1.过抛物线x y 42

=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于

)(422R a a a ∈++,则这样的直线( )

A.有且仅有一条

B.有且仅有两条

C.1条或2条

D.不存在 [解析]C 44)1(52||2

2

≥++=++=++=a a a p x x AB B A ,而通径的长为4.

2.在平面直角坐标系xOy 中,若抛物线2

4x y =上的点P 到该抛物线焦点的距离为5,则点P 的纵坐标为 ( )

A. 3

B. 4

C. 5

D. 6

[解析] B 利用抛物线的定义,点P 到准线1-=y 的距离为5,故点P 的纵坐标为4.

3.两个正数a 、b 的等差中项是92

,一个等比中项是,b a >则抛物线2

()y b a x =-的焦点坐标为( )

A .1(0,)4-

B .1(0,)4

C .1(,0)2-

D .1(,0)4

- [解析] D. 1,4,5-=-==a b b a

4. 如果1P ,2P ,…,8P 是抛物线2

4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21*∈N n x x x n Λ成等差数列且45921=+++x x x Λ,则||5F P =( ).

A .5

B .6

C . 7

D .9

[解析]B 根据抛物线的定义,可知12

i

i i p

PF x x =+=+(1i =,2,……,n ),)(,,,21*∈N n x x x n ΛΘ成等差数列且45921=+++x x x Λ,55=x ,||5F P =6

5、抛物线,42

F x y 的焦点为=准线为l ,l 与x 轴相交于点E ,过F 且倾斜角等于60°的

直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥l ,垂足为B ,则四边形ABEF 的面积等于( )

A .33

B .34

C .36

D .38

[解析] C. 过A 作x 轴的垂线交x 轴于点H ,设),(n m A ,则

1,1-=-=+==m OF OH FH m AB AF ,32,3)1(21==∴-=+∴n m m m

四边形ABEF 的面积==?++32)]13(2[2

136

6、设O 是坐标原点,F 是抛物线2

4y x =的焦点,A 是抛物线上的一点,FA uu u r

与x 轴正向

的夹角为60o

,则OA u u u r 为 .

[解析]21.

过A 作AD x ⊥轴于D ,令FD m =,则m FA 2=即m m 22=+,解得2=m .

)32,3(A ∴21)32(322=+=∴OA

综合提高训练

7.在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标 [解析]解法1:设抛物线上的点)4,(2

x x P ,

点P 到直线的距离17

|544|2

+-=x x d 1717417|

4)21

(4|2≥+-=x , 当且仅当21

=

x 时取等号,故所求的点为),(12

1

解法2:当平行于直线45y x =-且与抛物线相切的直线与抛物线的公共点为所求,设该直线方程为b x y +=4,代入抛物线方程得0442

=--b x x , 由01616=+=?b 得21

,1=

-=x b ,故所求的点为),(12

1

9. 设抛物线2

2y px =(0p >)的焦点为 F ,经过点 F 的直线交抛物线于A 、B 两点.点 C 在抛物线的准线上,且BC ∥X 轴.证明直线AC 经过原点O . 证明:因为抛物线2

2y px =(0p >)的焦点为,02p F ??

???

,所以经过点F 的直线AB 的方程可设为2

p x my =+

,代人抛物线方程得22

20y pmy p --=. 若记()11,A x y ,()22,B x y ,则21,y y 是该方程的两个根,所以212y y p =-.

因为BC ∥X 轴,且点C 在准线2p x =-

上,所以点C 的坐标为2,2p y ??- ???

, 故直线CO 的斜率为21

112.2

y y p k p y x =

==- 即k 也是直线OA 的斜率,所以直线AC 经过原点O .

10.椭圆12222=+b

y a x 上有一点M (-4,59)在抛物线px y 22

=(p>0)的准线l 上,抛物

线的焦点也是椭圆焦点. (1)求椭圆方程;

(2)若点N 在抛物线上,过N 作准线l 的垂线,垂足为Q 距离,求|MN|+|NQ|的最小值.

解:(1)∵12222=+b

y a x 上的点M 在抛物线px

y 22

=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点.

∴c=-4,p=8……① ∵M (-4,

5

9

)在椭圆上 ∴

125811622=+b

a ……② ∵2

2

2

c b a +=……③ ∴由①②③解得:a=5、b=3

∴椭圆为

19

252

2=+y x 由p=8得抛物线为x y 162

= 设椭圆焦点为F (4,0), 由椭圆定义得|NQ|=|NF| ∴|MN|+|NQ|≥|MN|+|NF|=|MF|

=5

41

)05

9

()44(2

2

=

-+--,即为所求的最小值. 参考例题:

1、已知抛物线C 的一个焦点为F (2

1,0),对应于这个焦点的准线方程为x =-2

1. (1)写出抛物线C 的方程;

(2)过F 点的直线与曲线C 交于A 、B 两点,O 点为坐标原点,求△AOB 重心G 的轨迹方程;

解:(1)抛物线方程为:y 2=2x . (4分) (2)①当直线不垂直于x 轴时,设方程为y =k (x -2

1),代入y 2=2x , 得:k 2x 2-(k 2+2)x +

04

2

=k . 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=222

k

k +,y 1+y 2=k (x 1+x 2-1)=k 2.

设△AOB 的重心为G (x ,y )则???

????=++=+=++=k y y y k k x x x 32

3032

30212

221, 消去k 得y 2=9

232

-x 为所求, (6分)

②当直线垂直于x 轴时,A (21

,1),B (2

1,-1), (8分)

△AOB 的重心G (3

1,0)也满足上述方程.

综合①②得,所求的轨迹方程为y 2=9

23

2

-x , (9分)

抛物线专题练习

一、选择题(本大题共10小题,每小题5分,共50分) 1.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为

( )

A .(1, 0)

B .(2, 0)

C .(3, 0)

D .(-1, 0)

2.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )

A .x 2+ y 2-x -2 y -4

1

=0 B .x 2+ y 2+x -2 y +1=0 C .x 2+ y 2-x -2 y +1=0 D .x 2+ y 2-x -2 y +4

1

=0

3.抛物线2

x y =上一点到直线042=--y x 的距离最短的点的坐标是 ( )

A .(1,1)

B .(

4

1

,21) C .)49,23( D .(2,4)

4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )

A .6m

B . 26m

C .4.5m

D .9m

5.平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是 ( )

A . y 2=-2x

B . y 2=-4x

C .y 2=-8x

D .y 2=-16x

6.抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是

( )

A . y 2=-2x

B . y 2=-4x

C . y 2=2x

D . y 2=-4x 或y 2=-36x

7.过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=

( )

A .8

B .10

C .6

D .4

8.把与抛物线y 2=4x 关于原点对称的曲线按向量a )3,2(-=平移,所得的曲线的方程是( )

A .)2(4)3(2

--=-x y B .)2(4)3(2

+-=-x y C .)2(4)3(2

--=+x y D . )2(4)3(2

+-=+x y

9.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有 ( )

A .0条

B .1条

C .2条

D .3条

10.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则

q

p 1

1+等于 ( )

A .2a

B .

a 21 C .4a D . a

4 二、填空题

11.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .

12.抛物线y =2x 2的一组斜率为k 的平行弦的中点的轨迹方程是 . 13.P 是抛物线y 2=4x 上一动点,以P 为圆心,作与抛物线准线相切的圆,则这个圆一定经过一个定点Q ,点Q 的坐标是 .

14.抛物线的焦点为椭圆14

92

2=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .

一.选择题(本大题共10小题,每小题5分,共50分)

二.填空题(本大题共4小题,每小题6分,共24分) 11.2 12.4

k

x = 13.(1,0) 14.x y 542-= 三、解答题

15.已知动圆M 与直线y =2相切,且与定圆C :1)3(2

2

=++y x 外切,求动圆圆心M 的

轨迹方程.[解析]:设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到C (0,-3)的距离与到直

线y =3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为y x 122

-=.16.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.(12分)

[解析]:设抛物线方程为)0(22

>-=p py x ,则焦点F (0,2

p

-),由题意可得 ??

???=-+=5

)23(62

22p m p m ,解之得???==462p m 或???=-=462p m , 故所求的抛物线方程为y x 82

-=,62±的值为m

17.动直线y =a ,与抛物线x y 2

1

2

=相交于A 点,动点B 的坐标是)3,0(a ,求线段AB 中点M 的轨迹的方程.(12分)

[解析]:设M 的坐标为(x ,y ),A (2

2a ,a ),又B )3,0(a 得 ?

??==a y a x 22

消去a ,得轨迹方程为4

2y x =,即x y 42

=

19.如图,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=,|AN|=3,且

|BN|=6.建立适当的坐标系,求曲线段C 的方程.(14分)

[解析]:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.由题

意可知:曲线C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A 、B 分别为C 的端点.

设曲线段C 的方程为)0,(),0(22

>≤≤>=y x x x p px y B A ,

其中B A x x ,分别为A 、B 的横坐标,MN p =. 所以,)0,2

(),0,2(p

N p M -

. 由17=AM ,3=AN 得 172)2(2=++A A px p

x ①

92)2

(2=+-A A px p

x ②

联立①②解得p x A 4

=.将其代入①式并由p>0解得???==14A x p ,或???==22A

x p .

因为△AMN 为锐角三角形,所以

A x p

>2,故舍去???==2

2A x p . ∴p=4,1=A x .

由点B 在曲线段C 上,得42

=-=p BN x B .综上得曲线段C 的方程为

)0,41(82>≤≤=y x x y .

20.已知抛物线)0(22

>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤.

(Ⅰ)求a 的取值范围;

(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ?面积的最大值.(14分) [解析]:(Ⅰ)直线l 的方程为a x y -=,将px y a x y 22

=-=代入,

得 0)(222=++-a x p a x . 设直线l 与抛物线两个不同交点的坐标为),(11y x A 、

),(22y x B ,

则 ?????=+=+>-+.

),(2,

04)(42212122a x x p a x x a p a 又a x y a x y -=-=2211,,

∴221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=.

0)2(8,2||0>+≤

2p a p -≤<-

(Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为),(33y x ,则由中点坐标公式,得

p a x x x +=+=

2

2

13, p a x a x y y y =-+-=+=2)()(22121

3.

∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ?为等腰直角三角形, ∴ p QM QN 2||||=

=, ∴|

|||2

1

QN AB S NAB ?=?||2

2

AB p =

p p 222?≤ 22p =

即NAB ?面积最大值为22p

(完整)高二文科数学——抛物线练习题

高二文科数学——抛物线练习题 【知识回顾】 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。 (1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02 p PF x = +;当焦点F 在y 轴上时,02 p PF y = +。此公式叫做焦半径公式。 (2)设AB 是过抛物线2 2y px =的焦点F 的一条弦,则12||AB x x p =++。 一、选择题(每小题4分,共40分。答案填在答题表里) 1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2= 21y C . y 2=4x 或x 2=2 1 y D . y 2=4x 或x 2=4y 2.抛物线y = -2x 2的准线方程是( ) A .x = - 21 B .x =21 C . y =81 D . y = -8 1 3.动圆M 经过点A (3,0)且与直线l :x = -3相切,则动圆圆心M 的轨迹方程是 A . x y 122= B . x y 62= C . x y 32= D .x y 242= 4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y 5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A .x y 162= B .y x 82-= C . x y 162=或y x 82-= D . x y 162=或y x 82= 6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( ) A .x 2= -4y B .x 2=4y C .y 2=4x D .y 2= -4x 7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( ) A .4± B .2- C . 2-或4- D .2± 8.设AB 是抛物线py x 22 =的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( ) A . ?45 B . ?60 C . ?90 D .?120 9.抛物线y =x 2上的点到直线2x -y =4的距离最短的点的坐标是( ) A .(41, 21) B .(1,1) C .(4 9 ,23) D .(2,4) 10.设F 为抛物线y x 42 =的焦点,点P 在抛物线上运动,点)3,2(A 为定点,使||||PA PF +为最小值时点P 的坐标是 ( ) A .?? ? ??41,1 B .)1,2(- C .)1,2( D .)0,0( 二、填空题(每小题4分,共16分。答案填在试卷指定的横线上) 11.抛物线y 2= -8x 的焦点到准线的距离是 12.抛物线)0(12 <=m x m y 的焦点坐标是 13.过抛物线x y 42 =的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,若621=+x x ,则 ||AB 的值是 14.设AB 是抛物线x y 22 -=的过焦点的弦,4=AB ,则线段AB 中点C 到直线1x =的距离为 【附加题】 (12广东文)(12分)在平面直角坐标系xoy 中,已知椭圆22 122:1(0)x y C a b a b +=>>的左焦 点1(10)F -,,且在(01)P ,在1C 上。 (1)求1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2 2:4C y x =相切,求直线l 的方程

选修1-1:抛物线(新人教A版)

2.3.1抛物线的定义和标准方程 教教学学目目标标:: 根据课程标准的要求,本节教材的特点及所教学生的认知情况,把教学目标拟定如下: 1、 知知识识目目标标::理理解解抛物线的的定定义义;;明明确确焦焦点点、、准线的的概概念念;;了了解解用用抛物线的定定义义推推导导开口向右的抛物线的标准方程的推导过程进一步得出开口向左、向上、向下的抛物线的标准方程,并熟练掌握抛物线的四种标准方程及其所对应的开口方向、焦点坐标、准线方程之间的关系; 2、能力目标:让学生感知数学知识与实际生活的普遍联系,培养学生类比、数形结合的数学思想方法,提高学生的学习能力,同时培养学生运动、变化的辨证唯物主义观点; 3情感目标:培养学生不怕困难、勇于探索的优良作风,增强学生审美体验,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。 教学重点和难点: 重点:抛物线的定义;根据具体条件求出抛物线的标准方程;根据抛物线的标准 方程求出焦点坐标、准线方程。 难点:抛物线的标准方程的推导。 关键:创设具体的抛抛物物线线的直观情景,结合建立坐标系的一般原则,从“对称美”和“简洁美”出发作必要的点拨。 教学方法 启发、探索 教学手段 运用多媒体和实物辅助教学 教教具具准准备备 三三角角板板

教学过程: 一、新课引入: 1、实例引入:观察生活中的几个实例(1)截面图;(2)卫星接收天线(观 察其轴截面);(3)太阳灶(观察其轴截面);(4)探照灯(观察其 轴截面);(5)投球时球的运行轨迹(播放动画演示其轨迹) 2、复习引入:在平面内到一定点的距离和到一条定直线距离的比是常数e 的 点的轨迹, 当0〈e < 1时是什么图形?(椭圆) 当e > 1时是什么图形?(双曲线) 当e = 1时它又是什么图形呢?(让学生大胆猜想,猜想后用几何画板演示动画,让学生认真观察动点所满足的条件,让学生对抛物线由感性认识上升到理性认识) 教师指出:画出的曲线叫抛物线。 (类比:使学生看到曲线上任一点到定点和到定直线的距离之比等于常数是圆锥曲线的一个共同的本质属性,明确抛物线与椭圆、双曲线之间的联系) 二、新课讲授: (一)定义:(提问学生,由学生归纳出抛物线定义) 平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹叫做抛物线。定点叫做抛物线的焦点,定直线叫做抛物线的准线。 概念理解: 平面内有—— (1) 一定点F——焦点 (2) 一条不过此点(给出的定点)的定直线l ——准线 探究:若定点F在定直线l 上,那么动点的轨迹是什么图形? (是过F点与直线l 垂直的一条直线——直线MF,不是抛物线)

高考数学抛物线大题专练30题(含详解)经典收藏版

目录 目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11

抛物线大题专练(一) 1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为; (1)求抛物线C的方程; (2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同), 求当∠MAB为钝角时,点A的纵坐标y1的取值范围. 2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切 线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N. (1)求抛物线的方程; (2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.

抛物线基础训练题2015.10.19

抛物线基础训练题 一.选择题训练部分 1.抛物线y 2=ax(a≠0)的焦点到其准线的距离是( ) A . |a|4 B .|a|2 C .|a| D .-a 2 2.抛物线y =2ax 2 (a ≠0)的焦点是( ) A.(2 a ,0) B.(2 a ,0)或(-2 a ,0) C.(0,18a ) D.(0,18a )或(0,-18a ) 3.抛物线y 2=2px(p>0)上一点M 到焦点的距离是a(a>p 2 ),则点M 的横坐标是( ) A .a +p 2 B .a -p 2 C .a +p D .a -p 42[ x+3 2+ y-1 2]=|x -y +3|表示的曲线是( ) A .圆 B .椭圆 C .直线 D .抛物线 5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ) A . 172 B .3 C . 5 D .92 6.若抛物线y 2 =2px (p>0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物 线焦点F 的距离的关系是( ) A .成等差数列 B .既成等差数列又成等比数列 C .成等比数列 D .既不成等比数列也不成等差数列 7.设斜率为2的直线l 过抛物线y 2 =ax(a≠0)的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2=±4x B .y 2=±8x C .y 2=4x D .y 2=8x 8.设直线l 1:y =2x ,直线l 2经过点P(2,1),抛物线C :y 2=4x ,已知l 1、l 2与C 共有 三个交点,则满足条件的直线l 2的条数为( ) A .1 B .2 C .3 D .4 9.已知x 轴上一点(),0,M m 抛物线216y x =上任意一点,N 满足,MN m ≥则m 的取值范 围是( ) A .(),0-∞ B .(],8-∞ C .[]0,8 D .()0,8 10.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|等于( ) A .9 B .6 C .4 D .3 11.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的 距离为d 2,则d 1+d 2的最小值是( ) A. 125 B.65 C .2 D.55 12.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( ) A .5 6 B .6 5 C .10 2 D .5 2 13.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( ) A .2或-1 B .-1 C .2 D .1± 5 14.过抛物线y 2=ax (a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若PF 与FQ 的长 分别为p 、q ,则1p +1 q 等于( ) A .2a B .12a C .4a D .4a 15.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF|等于( ) A .4 3 B .8 C .8 3 D .16 16.F 为抛物线24y x =的焦点,,,A B C 为抛物线上三点.O 为坐标原点,若F 是ABC ?的重心,,,OFA OFB OFC ???的面积分别为123,,S S S 3 ,则21S +2 2S +23S 的值为: ( ) A. 3 B. 4 C. 6 D. 9 17. 在平面直角坐标系xoy 中,抛物线2:2(0)C y px p =>的焦点为F ,M 为抛物线C 上一点,若△OFM 的外接圆与抛物线C 的准线相切,且外接圆的面积为π9,则=p ( ) A.2 B.4 C.6 D.8

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

高中数学选修2-1 抛物线导学案加课后作业及参考答案

抛物线及其标准方程导学案 【学习要求】 1.掌握抛物线的定义及焦点、准线的概念. 2.会求简单的抛物线的方程. 【学法指导】 通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程.通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用. 【知识要点】 1.抛物线的定义 平面内与一个定点F 和一条定直线l (l 不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 2 探究点一 抛物线定义 如图,我们在黑板上画一条直线EF ,然后取一个三角板,将一条拉链AB 固定在三角板的一条直角边 上,并将拉链下边一半的一端固定在C 点,将三角板的另一条直角边贴在直线EF 上,在拉锁D 处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线. 问题1 画出的曲线是什么形状? 问题2 |DA |是点D 到直线EF 的距离吗?为什么? 问题3 点D 在移动过程中,满足什么条件? 问题 4 在抛物线定义中,条件“l 不经过点F ”去掉是否可以? 例1 方程[] 2 2)1()3(2-++y x =|x -y +3|表示的曲线是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 跟踪训练1 (1)若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .直线 (2)若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 ( ) A .椭圆 B .双曲线 C .双曲线的一支 D .抛物线 探究点二 抛物线的标准方程 问题 1 结合求曲线方程的步骤,怎样求抛物线的标准方程? 问题2 抛物线方程中p 有何意义?标准方程有几种类型? 问题3 根据抛物线方程如何求焦点坐标、准线方程? 例2 已知抛物线的方程如下,求其焦点坐标和准线方程. (1)y 2=-6x ; (2)3x 2+5y =0; (3)y =4x 2; (4)y 2=a 2x (a ≠0). 跟踪训练2 (1)抛物线方程为7x +4y 2=0,则焦点坐标为( ) A .??? ?7 16,0 B .????-74,0 C .??? ?-7 16,0 D .? ???0,-7 4 (2)抛物线y =-1 4x 2的准线方程是 ( ) A .x =1 16 B .x =1 C .y =1 D .y =2 例3 分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0; (2)过点(3,-4); (3)焦点在直线x +3y +15=0上. 跟踪训练3 (1)经过点P (4,-2)的抛物线的标准方程为( ) A .y 2=x 或x 2=y B .y 2=x 或x 2=8y C .x 2=-8y 或y 2=x D .x 2=y 或y 2=-8x (2)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点F 的距离为5,求m 的值、

(完整版)《抛物线》典型例题12例(含标准答案)

《抛物线》典型例题12例 典型例题一 例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x 分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程. (2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程. 解:(1)2=p Θ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x a y 12=,a p 1 2=∴ ①当0>a 时, a p 41 2=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41 -=. ②当0?,则1->k .

∵AB 中点横坐标为:28 422 21=+=+∴ k k x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y . 解法二:设),(11y x A 、),(22y x B ,则有22 212 188x y x y ==. 两式作差解:)(8))((212121x x y y y y -=+-,即 2 121218 y y x x y y +=--. 421=+x x Θ444)(22212121-=-+=-+-=+∴k x x k kx kx y y , 4 48 -= ∴k k 故2=k 或1-=k (舍去). 则所求直线方程为:22-=x y . 典型例题三 例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12 MM AB =, 则以AB 为直径的圆,必与抛物线准线相切. 证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作 l MM ⊥1于1M ,则由抛物线的定义可知: BF BB AF AA ==11, 在直角梯形A A BB 11中: AB BF AF BB AA MM 21 )(21)(21111=+=+= AB MM 21 1=∴,故以AB 为直径的圆,必与抛物线的准线相切. 说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交. 典型例题四 例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值. (2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

【精品专题训练】2021年中考数学必刷压轴题二次函数抛物线与矩形问题专题训练含答案与试题解析

2021年中考数学压轴题二次函数与矩形问题 一.解答题(共11小题) 1.(2020?犍为县二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA. (1)试求抛物线的解析式; (2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M, 记m=PM DM,试求m的最大值及此时点P的坐标; (3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由. 2.(2019?海州区二模)如图,一次函数y=x+3与坐标轴交于A、C两点,过A、C两点的抛物线y=ax2﹣2x+c与x轴交于另一点B,抛物线顶点为E,连接AE. (1)求该抛物线的函数表达式及顶点E坐标; (2)点P是线段AE上的一动点,过点P作PF平行于y轴交AC于点F,连接EF,求△PEF面积的最大值及此时点P的坐标; (3)若点M为坐标轴上一点,点N为平面内任意一点,是否存在这样的点,使A、E、

M、N为顶点的四边形是以AE为对角线的矩形?如果存在,请直接写出N点坐标;若不存在,请说明理由. 3.(2018?曲靖)如图:在平面直角坐标系中,直线l:y=1 3x? 4 3与x轴交于点A,经过点A 的抛物线y=ax2﹣3x+c的对称轴是x=3 2. (1)求抛物线的解析式; (2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PF=3PE.求证:PE⊥PF; (3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE ⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由. 4.(2018?正阳县二模)如图,在平面直角坐标系中,直线l:y=kx+h与x轴相交于点A(﹣1,0),与y轴相交于点C,与抛物线y=﹣x2+bx+3的一交点为点D,抛物线过x轴上的AB两点,且CD=4AC. (1)求直线l和抛物线的解析式; (2)点E是直线l上方抛物线上的一动点,求当△ADE面积最大时,点E的坐标; (3)设P是抛物线对称轴上的一点,点Q在抛物线上,四边形APDQ能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.

抛物线基础训练题经典(含答案)

抛物线基础训练题 1.动点P 到点A (0,2)的距离比到直线l :y =-4的距离小2,则动点P 的轨迹方程为 D A. x y 42= B. x y 82= C.y x 42= D.y x 82= 2.已知直线l 与抛物线x y 82=交于A 、B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是 A A.4 25 B. 2 25 C. 8 25 D.25 3.已知抛物线的焦点在直线y x 2--4=0上,则此抛物线的标准方程是C A.x y 162= B.y x 82-= C. x y 162=或y x 82-= D. x y 162=或y x 82= 4.直线y =kx -2与抛物线x y 82=交于A 、B 两点,且AB 的中点横坐标为2,则k 的值是 B A.-1 B.2 C.-1或2 D.以上都不是 5.动圆M 经过点A (3,0)且与直线l :x =-3相切,则动圆圆心M 的轨迹方程是 A A. x y 122= B. x y 62= C. x y 32= D.x y 242= 6.θ是任意实数,则方程x2+y2sinθ=4的曲线不可能是(C ) A.椭圆 B.双曲线 C.抛物线 D.圆

7.双曲线k y x 2 24+=1的离心率e∈(1,2),则k 的取值范围是(B ) A.(-∞,0) B.(-12,0) C.(-3,0) D.(-60,-12) 8.以12 42 2y x -=1的焦点为顶点,顶点为焦点的椭圆方程为(D ) A. 112162 2=+y x B. 116122 2=+y x C. 14 162 2=+y x D. 116 42 2=+y x 9.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( B ) A.(45,23) B.(1,1) C.( 49 ,23) D.(2,4) 10.1122 222222=-=-a y b x b y a x 与(a>b>0)的渐近线(D ) A.重合 B.不重合,但关于x 轴对应对称 C.不重合,但关于y 轴对应对称 D.不重合,但关于直线y =x 对应对称 11.抛物线2 2x y =的焦点坐标是 ( C ) A .)0,1( B .)0,4 1( C .)8 1,0( D . )4 1,0( 12 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为

中考数学专题训练【动点与抛物线】提升(附参考答案)

中考数学专题训练【动点与抛物线】提升(附参考答案) 一、平行四边形与抛物线 1、(2012?钦州)如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣. (1)求抛物线对应的函数解析式; (2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上; (3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y 轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(﹣,),对称轴是直线x=﹣.) 2、(2012?鸡西)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y 轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA 上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒. (1)求A、B两点的坐标. (2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.

(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由. 3.(2012?恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设点M(3,m),求使MN+MD的值最小时m的值; (3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由; (4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值. 二、梯形与抛物线 1、已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处. (1)求点C的坐标; (2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;

人教新课标版数学高二选修1-1练习2-3-1抛物线及其标准方程

2.3.1 一、选择题 1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 [答案] A [解析] ∵定点(1,1)在直线x +2y =3上,∴轨迹为直线. 2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( ) A.? ???? 32,±62 B.? ???? 74,±72 C.? ???? 94,±32 D.? ???? 5 2,±102 [答案] B [解析] 设P (x 0,y 0),则|PF |=x 0+p 2=x 0+14=2, ∴x 0=74,∴y 0=±7 2. 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A.1 8 B .-1 8 C .8 D .-8 [答案] B [解析] ∵y =ax 2,∴x 2=1 a y ,其准线为y =2,

∴a <0,2=1-4a ,∴a =-18. 4.(2010·湖南文,5)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8 D .12 [答案] B [解析] 本题考查抛物线的定义. 由抛物线的定义可知,点P 到抛物线焦点的距离是4+2=6. 5.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是 ( ) A .相交 B .相切 C .相离 D .以上答案都有可能 [答案] B [解析] 特值法:取AB 垂直于抛物线对称轴这一情况研究. 6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为 ( ) A .y 2=12x B .y 2=-12x C .x 2=12y D .x 2=-12y [答案] C [解析] 由题意,知动圆圆心到点F (0,3)的距离等于到定直线y =-3的距离,故动圆圆心的轨迹是以F 为焦点,直线y =-3为准线的抛物线.

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

抛物线练习题

抛物线练习题

抛物线练习题 一、选择题 1. (2014·重庆高考文科·T8)设1 2 ,F F 分别为双曲线 22 221(0,0)x y a b a b -=>>的左、右焦点,双曲线上存在一点P 使得() 2 21 2 3, PF PF b ab -=- 则该双曲线的离心率为 () 215 417 【解题提示】直接根据双曲线的定义得到关于,a b 的等式,进而求出离心率的值. 【解析】选 D.由双曲线的定义知,() 2 21 2 4, PF PF a -=又 ()2 2 1 2 3,PF PF b ab -=- 所以2 243a b ab =- 等号两边同除2 a ,化简得2 340b b a a ?? -?-= ??? ,解得4,b a =或1b a =-(舍去) 故离心率 2 22222 117.c c a b b e a a a a +?? ====+= ??? 2. (2014·天津高考文科·T6同2014·天津高考理科·T5))已知双曲线 )0,0(12 2 22>>=-b a b y a x 的一条渐近线平行于直线 , 102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A. 120 52 2=-y x B. 15 202 2=-y x C. 1100 32532 2=-y x D. 125 310032 2=-y x

【解析】选 A.因为双曲线的一个焦点在直线l 上,所以 0210, c =+即5,c =又因为渐近线平行于直线,102:+=x y l 故有 2,b a =结合2 2 2 , c a b =+得2 2 5,20, a b ==所以双曲线的标准方程为 120 52 2=-y x 3. (2014·湖北高考理科·T9)已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123 F PF π ∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A. 433 B.23 3 C.3 D.2 【解题提示】 椭圆、双曲线的定义与性质,余弦定理及用基本不等式求最值 【解析】选A. 设椭圆的长半轴长为a ,双曲线的实半轴长为1a (1a a >),半焦距为c ,由椭圆、双曲线的定义得a PF PF 2||||21=+,121||||2PF PF a -=,所以11||a a PF +=, 12||a a PF -=, 因为 123F PF π ∠= ,由余弦定理得 22211114()()2()()cos 3c a a a a a a a a π =++--+-, 所以2 1 2 2 34a a c +=,即2 122122221)(2124c a c a c a c a c a +≥+=-, 所以21 214 8)11(e e e -≤+, 利用基本不等式可求得椭圆和双曲线的离心率的倒数之和的最大值为 43 . 4.(2014·广东高考理科)若实数k 满足0

二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB = 8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 2.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交 图2

于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大并求出最大面积. 3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P ,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积如果存在,请求出点E 的坐标;如果不存在,请说明理由. C E D G A x y O B F

抛物线基础习题训练

抛物线基础训练(解析版) 1.抛物线218 y x =-的焦点是________,准线方程是__________. 【答案】(0,-2); 2y =, 【解析】218 y x =-可化为2=8x y -, 所以其焦点坐标为(0,-2),准线为2y =. 2.已知抛物线过点(1,1),则该抛物线的标准方程是______.( ) A. x 2=y B. y 2=x C. y 2=4x D. y 2=x 或x 2=y 【答案】D ; 【解析】设抛物线为y 2=2px (p >0)或x 2=2My (M >0),把(1,1)代入得1=2p 或1=2M ,∴p =12或M =12 , ∴抛物线方程为y 2=x 或x 2=y . 3.抛物线2 2y px =过点(2,4)A ,F 是其焦点,又定点(8,8)B -,那么||:||AF BF =( ) A.1:4 B.1:2 C.2:5 D .3:8 【答案】C ; 【解析】将点(2,4)A 的坐标代入22y px =,得4p =, ∴抛物线方程为28y x =, 焦点(2,0)F ,已知(8,8)B -, ∴2222)08()28()04()22(||||--+--+-=BF AF =5 2104=. 4. 抛物线21(0)y x m m = <的焦点坐标是( ) A.(0,)4m B. (0,)4m - C. 1(0,)4m D. 1(0,)4m - 【答案】 A ; 【解析】∵x 2=My (M <0),∴2p =-M ,p =2 m -,焦点坐标为(0,)2p -,即(0,)4m . 5. 已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12 B .1 C .2 D .4 【答案】 C ; 【解析】本题考查抛物线的准线方程,直线与圆的位置关系. 抛物线y 2=2px (p >0)的准线方程是x =2p - ,由题意知,3+2 p =4,p =2. 6.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为

高考抛物线专题做题技巧与方法总结附精选提升训练练习题(含答案)

高考抛物线专题做题技巧与方法总结 知识点梳理: 1.抛物线的标准方程、类型及其几何性质 (0>p ): 2.抛物线的焦半径、焦点弦 ①)0(22≠=p px y 的焦半径=PF 2 P x +;)0(22≠=p py x 的焦半径=PF 2 P y +; ② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p. ③ AB 为抛物线px y 22=的焦点弦,则=B A x x 4 2p ,=B A y y 2p -, ||AB =p x x B A ++ 3. px y 22 =的参数方程为???==pt y pt x 222(t 为参数),py x 22=的参数方程为? ??==2 22pt y pt x (t 为参数). 重难点突破 重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质

难点: 与焦点有关的计算与论证 重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识 问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. 1617 B. 1615 C.8 7 D. 0 点拨:抛物线的标准方程为y x 412= ,准线方程为16 1 -=y ,由定义知,点M 到准线的距离为1,所以点M 的纵坐标是 16 15 2.求标准方程要注意焦点位置和开口方向 问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有 点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条 3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切 点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的 距离为AB BB AA 2 1 )''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相 切 3、典型例题讲解: 考点1 抛物线的定义 题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 [例1 ]已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为 解题思路:将点P 到焦点的距离转化为点P 到准线的距离 [解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,

相关文档
相关文档 最新文档