文档库 最新最全的文档下载
当前位置:文档库 › 高中数学 第八章 解三角形 8.3 解三角形的应用举例(二)学案 湘教版必修4

高中数学 第八章 解三角形 8.3 解三角形的应用举例(二)学案 湘教版必修4

高中数学 第八章 解三角形 8.3 解三角形的应用举例(二)学案 湘教版必修4
高中数学 第八章 解三角形 8.3 解三角形的应用举例(二)学案 湘教版必修4

8.3 解三角形的应用举例(二)

[学习目标] 1.利用正弦、余弦定理解决生产实践中的有关距离的测量问题.2.利用正弦、余弦定理解决生产实践中的有关高度的测量问题.3.培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神.

[知识链接]

“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?通过本节的学习,我们将揭开这个奥秘.

[预习导引]

1.仰角与俯角

与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图.

2.高度问题

测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.

要点一测量底部不能到达的建筑物的高度

例1 如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求出山高CD.

解 在△ABC 中, ∠BCA =90°+β, ∠ABC =90°-α, ∠BAC =α-β,∠CAD =β.

根据正弦定理得AC sin∠ABC =BC

sin∠BAC ,

AC sin (90°-α)=BC

sin (α-β)

∴AC =BC cos αsin (α-β)=h cos α

sin (α-β)

.

在Rt△ACD 中,CD =AC sin∠CAD =AC sin β =

h cos αsin β

sin (α-β)

.

即山的高度为

h cos αsin β

sin (α-β)

.

规律方法 利用正弦定理和余弦定理来解题时,要学会审题及根据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.

跟踪演练1 某登山队在山脚A 处测得山顶B 的仰角为35°,沿倾斜角为20°的斜坡前进1000米后到达D 处,又测得山顶的仰角为65°,则山的高度为________m(精确到1m.2≈1.4142,sin35°≈0.5736). 答案 811

解析 过点D 作DE∥AC 交BC 于E ,因为∠DAC =20°, 所以∠ADE =160°,于是∠ADB =360°-160°-65°=135°.

又∠BAD =35°-20°=15°,所以∠ABD =30°.在△ABD 中,

由正弦定理,AB =

AD sin∠ADB

sin∠ABD

=10002(m).

在Rt△ABC 中,BC =AB sin35°≈811(m).

例2 如图所示,A 、B 是水平面上的两个点,相距800m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 点是点C 到水平面的垂足,求山高CD

.

解 由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD . 因此只需在△ABD 中求出AD 即可,

在△ABD 中,∠BDA =180°-45°-120°=15°, 由

AB sin15°=AD

sin45°

得AD =

AB ·sin45°

sin15°

800×

22

6-24

=800(3+1) (m).

即山的高度为800(3+1) m.

规律方法 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.和高度有关的问题往往涉及直角三角形的求解.

跟踪演练2 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 和D .现测得∠BCD =α

,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .

解 在△BCD 中,∠BCD =α, ∠BDC =β,

∴∠CBD =180°-(α+β), ∴

BC sin β=s sin[180°-(α+β)],即BC sin β=s

sin (α+β)

.

∴BC =

sin β

sin (α+β)

·s .

在Rt△ABC 中,由于∠ABC =90°,∴AB BC

=tan θ, ∴AB =BC ·tan θ=sin β·tan θ

sin (α+β)

·s .

要点二 测量地面上两个不能到达点之间的距离

例3 如下图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为3

2

km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.

解 在△BCD 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin30°=CD

sin45°,

则BC =

CD sin30°

sin45°

6

4

(km). 在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形.∴AC =CD =3

2

km. 在△ABC 中,由余弦定理得

AB 2=AC 2+BC 2-2AC ·BC cos45°

=34+616-2×32×64×22=38,∴AB =64km. 所以河对岸A ,B 两点间距离为

6

4

km. 规律方法 测量两个不可到达的点之间的距离,一般是把求距离问题转化为应用余弦定理求三角形的边长问题,然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,运用正弦定理解决.

跟踪演练3 如图所示,隔河可以看见目标A ,B ,但不能到达,在岸边选择相距3km 的C ,

D 两点,并测得∠DCB =45°,∠BDC =75°,∠ADC =30°,∠ACD =120°(A ,B ,C ,D 在同

一平面内),求两目标A ,B 之间的距离.

解 在△BCD 中,因为∠DCB =45°,∠BDC =75°,所以∠CBD =60°. 又CD =3,由正弦定理得BD =

3sin45°

sin60°

= 2.

在△ACD 中,同理可求得AD =3. 在△ABD 中,

AB =(2)2+32-62cos (75°-30°)= 5.

即A 、B 之间的距离为5km.

1.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( )

A.a ,c ,α

B.b ,c ,α

C.c ,a ,β

D.b ,α,γ 答案 D

解析 由α、γ可求出β,由α、β、b ,可利用正弦定理求出BC .故选D.

2.甲、乙两人在同一地平面上的不同方向观测20m 高的旗杆,甲观测的仰角为50°,乙观测的仰角为40°,用d 1,d 2分别表示甲、乙两人离旗杆的距离,那么有( ) A.d 1>d 2B.d 120mD.d 2<20m 答案 B

解析 由tan50°=20d 1,tan40°=20

d 2

,及tan50°>tan40°可知d 1

3.甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________. 答案 203m

40

3

3m 解析 甲楼的高为20tan60°=20×3=203m ; 乙楼的高为203-20tan30°=203-20×

33=4033

m.

4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点

C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为

________m.

答案 50 2

解 由题意知∠ABC =30°, 由正弦定理AC sin∠ABC =AB

sin∠ACB ,

∴AB =AC ·sin∠ACB

sin∠ABC =50×

221

2

502(m).

1.只运用正弦定理就能测量“一个可到达点与一个不可到达点间的距离”,而测量“两个不可到达点间的距离”要综合运用正弦定理和余弦定理.无论测量“底部不能到达的建筑物的高度”,还是测量“两个不可到达点间的距离”都需要在两个点上分别测量,并且都需要测量出两点的距离.

2.正弦、余弦定理在实际测量中的应用的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图;

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型;

(3)求解:利用正弦定理或余弦定理有序地解三角形,求得数学模型的解;

(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.

一、基础达标

1.如下图所示,D ,C ,B 在地平面同一直线上,DC =10m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高AB

等于( )

A.10m

B.53m

C.5(3-1)m

D.5(3+1)m

答案 D

解析 在△ADC 中,AD =10·sin135°

sin15°=10(3+1).

在Rt△ABD 中,AB =AD ·sin30°=5(3+1).

2.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10m 到D ,测得塔顶A 的仰角为30°,则塔高为( ) A.15mB.5mC.10mD.12m 答案 C

解析 如图,设塔高为h ,

在Rt△AOC 中,∠ACO =45°, 则OC =OA =h .

在Rt△AOD 中,∠ADO =30°, 则OD =3h .

在△OCD 中,∠OCD =120°,

CD =10,

由余弦定理得OD 2

=OC 2

+CD 2

-2OC ·CD cos∠OCD , 即(3h )2

=h 2

+102-2h ×10×cos120°, ∴h 2

-5h -50=0,解得h =10或h =-5(舍).

3.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得∠BDC =45°,则塔AB 的高是( )

A.10m

B.102m

C.103m

D.106m 答案 D

解析 在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,

由正弦定理,得BC sin45°=CD sin30°,BC =CD sin45°

sin30°

=10 2.

在Rt△ABC 中,tan60°=AB

BC

,AB =BC tan60°=10 6.

4.在某个位置测得某山峰仰角为θ,对着山峰在地面上前进600m 后测得仰角为2θ,继续在地面上前进2003m 以后测得山峰的仰角为4θ,则该山峰的高度为( ) A.200mB.300mC.400mD.1003m 答案 B

解析 方法一 如图,

△BED ,△BDC 为等腰三角形,BD =ED =600,BC =DC =200 3. 在△BCD 中,由余弦定理可得

cos2θ=6002

+(2003)2

-(2003)2

2×600×2003=3

2,

∴2θ=30°,4θ=60°.

在Rt△ABC 中,AB =BC ·sin4θ=2003×

3

2

=300,故选B. 方法二 由于△BCD 是等腰三角形,1

2BD =DC cos2θ,即300=2003cos2θ.

cos2θ=

3

2

,2θ=30°,4θ=60°. 在Rt△ABC 中,AB =BC ·sin4θ=2003×

3

2

=300,故选B. 5.如图所示,为了测量河的宽度,在一岸边选定两点A ,B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120m ,则河的宽度为________m.

答案 60 解析

在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120(m). 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度. 由正弦定理得AC sin∠ADC =CD

sin∠CAD ,

∴120sin90°=CD sin30°,∴CD =60(m). ∴河的宽度为60m.

6.如下图,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.

解 选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.

由在H ,G 两点用测角仪器测得A 的仰角分别是α,β,CD =a ,测角仪器的高是h .

那么,在△ACD 中,根据正弦定理可得AC =a sin β

sin (α-β),

AB =AE +h =AC sin α+h =a sin αsin β

sin (α-β)

+h .

7.在某一山顶观测山下两村庄A ,B ,测得A 的俯角为30°,B 为俯角为40°,观测A ,B 两村庄的视角为50°,已知A 、B 在同一海平面上且相距1000米,求山的高度.(精确到1米.sin40°≈0.6428)

解 设山顶为C ,山高CD =x ,由题意 ∠CAD =30°,∠CBD =40°,∠ACB =50°. 在Rt△ADC 中,AC =CD sin30°

=2x ,

在Rt△BDC 中,BC =

CD

sin40°=x

sin40°

.

在△ABC 中,由余弦定理知

AB 2=AC 2+BC 2-2AC ·BC cos∠ACB .

∴10002

=4x 2

+x 2

sin 240°-4x

2

sin40°

cos50°,

∴x =1000×sin40°≈643(米). 所以山高约为643米. 二、能力提升

8.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500m ,则电视塔的高度是( ) A.1002mB.400mC.2003mD.500m 答案 D

解析 由题意画出示意图,

设高AB =h ,在Rt△ABC 中,由已知BC =h , 在Rt△ABD 中,由已知BD =3h ,在△BCD 中,

由余弦定理BD 2

=BC 2

+CD 2

-2BC ·CD ·cos∠BCD 得,3h 2

=h 2

+5002

+h ·500,解之得h =500.故选D.

9.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距82nmile.此船的航速是________nmile/h.

答案 32

解析 设航速为v nmile/h ,

在△ABS 中,AB =1

2

v ,BS =82nmile ,

∠BAS =30°,∴∠BSA =45°

由正弦定理得:82

sin30°=12v sin45°

,∴v =32nmile/h.

10.地平面上有一旗杆设为OP ,已知地平面上的一基线AB ,AB =200m ,在A 处测得P 点的仰角为∠OAP =30°,在B 处测得P 点的仰角为∠OBP =45°,又测得∠AOB =60°,求旗杆的高h .

解 如图,∠OAP =30°,∠OBP =45°, ∠

AOB =60°,AB =200m ,

在△OAP 中,∵OP ⊥AO ,

∴∠AOP =90°,则OP OA

=tan30°, ∴OA =

OP

tan30°

=3h (m),

同理在△BOP 中,∠BOP =90°,

且∠OBP =45°,∴OB =OP =h ,在△OAB 中,由余弦定理得

AB 2=OA 2+OB 2-2OA ·OB ·cos∠AOB ,即2002=3h 2+h 2-23h 2·cos60°,解得h =

2004-3

m.

答 旗杆高为

2004-3

m.

11.某人在塔的正东方沿着南偏西60°的方向前进40m 以后,望见塔在东北方向.若沿途测得塔的最大仰角为30°,求塔的高度.

解 在△BCD 中,CD =40m ,∠BCD =90°-60°=30°,∠DBC =45°+90°=135°. 由正弦定理,得CD sin∠DBC =BD

sin ∠BCD

∴BD =

CD ·sin∠BCD sin∠DBC =40sin30°

sin135°

=202(m).

在Rt△ABE 中,tan∠AEB =

AB

BE

,AB 为定值,故要使∠AEB 最大,需要BE 最小, 即BE ⊥CD ,这时∠AEB =30°.

在△BCD 中,∠BDE =180°-135°-30°=15°, ∴BE =BD ·sin∠BDE =202sin15°=10(3-1)(m). 在Rt△ABE 中,AB =BE tan∠AEB =10(3-1)·tan30°=10

3

(3-3)(m). 所以塔的高度为10

3

(3-3) m.

12.如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:∠ACD =90°,∠ADC =60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC =CE =1百米.

(1)求△CDE 的面积; (2)求A ,B 之间的距离.

解 (1)在△CDE 中,∠DCE =360°-90°-15°-105°=150°,S △CDE =1

2DC ·CE ·sin150°

=12

× sin30°=12×12=1

4(平方百米).

即S △CDE =1

4

公顷.

(2)连接AB ,依题意知,在Rt△ACD 中,

AC =DC ·tan∠ADC =1×tan60°=3(百米),

在△BCE 中,∠CBE =180°-∠BCE -∠CEB =180°-105°-45°=30°, 由正弦定理BC sin∠CEB =CE

sin∠CBE

,得

BC =

CE

sin∠CBE ·sin∠CEB =1

sin30°

×sin45°=2(百米).

∵cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45°=12×22+32×2

2=

6+2

4

, 在△ABC 中,由余弦定理AB 2

=AC 2

+BC 2

-2AC ·BC ·cos∠ACB , 可得AB 2

=(3)2

+(2)2

-23×2×6+2

4

=2-3, ∴AB =2-3百米. 三、探究与创新

13.如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1km.试探究图中B ,D 间距离与另外哪两点距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,2≈1.414,6≈2.449).

解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,∴CD =AC =0.1km , 又∠BCD =180°-60°-60°=60°, 故CB 是△CAD 底边AD 的中垂线, ∴BD =BA ,

在△ABC 中,∠ABC =75°-∠BCA =15°, 由正弦定理得AB sin∠BCA =AC

sin∠ABC ,

即AB =

AC sin60°sin15°

32+6

20

(km),

因此,BD =32+6

20

≈0.33km,故B ,D 的距离约为0.33km.

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

北师大版必修5高中数学第二章解三角形的实际应用举例word教案1

§3 解三角形的实际应用举例 教学目标 1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。 2、能够运用正弦定理、余弦定理进行三角形边与角的互化。 3、培养和提高分析、解决问题的能力。 教学重点难点 1、正弦定理与余弦定理及其综合应用。 2、利用正弦定理、余弦定理进行三角形边与角的互化。 教学过程 一、复习引入 1、正弦定理: 2sin sin sin a b c R A B C === 2、余弦定理:,cos 22 2 2 A bc c b a -+=?bc a c b A 2cos 2 22-+= C ab b a c cos 22 2 2 -+=,?ab c b a C 2cos 2 22-+= 二、例题讲解 引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。 解:0 60=A 0 75=B ∴0 45=C 由正弦定理知 045 sin 10 60sin =BC 6545 sin 60sin 100 ==?BC 海里 例1.如图,自动卸货汽车采用液压机构,设 计时需要 计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为 /02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字). 分析:这个问题就是在ABC ?中,已知AB=1.95m ,AC=1.4m, 750 600 C B A

求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。 解:由余弦定理,得 答:顶杠BC 长约为1.89m. 解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。 2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。 3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。 练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东0 20, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东0 65方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB 由正弦定理知 020 sin 45sin BS AB = 7.745 sin 20 sin 100 ≈= BS 海里 答:灯塔S 和B 处的距离约为7.7海里 例2.测量高度问题 如图,要测底部不能到达的烟囱的高AB ,从与烟囱底部在同一水平直线上的C ,D 两处, 测得烟囱的仰角分别是0 45=α和0 60=β, C、D间的距离是12m.已知测角仪器高1.5m. 求烟囱的高。 图中给出了怎样的一个几何图形?已知什么,求什么? 分析:因为B A AA AB 11+=,又m AA 5.11= 所以只要求出B A 1即可 解:在11D BC ?中, 0001112060180=-=∠C BD ,00011154560=-=∠BD C D C B A 1.40m 1.95m 6020/ 600 ?S B A 1150 450 650200 A 1α β D 1C 1D C B A

高中数学-解三角形知识点汇总及典型例题1

解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角.

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

解三角形全章教案(整理)

数学5 第一章 解三角形 第1课时 课题: §1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定 义 , 有 sin a A =, sin b B =,又s i n 1c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

山东省郯城三中高二数学《2.2 解三角形应用举例(3)》教案

郯城三中个人备课 课题§2.2解三角形应用举例(3) 高二年级数学备课组

我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 三、典例分析 解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解。 例1. 如图为了测量河对岸两点,A B 之间的距离,在河岸这边取 点,C D ,测得75ADC ∠=,60BDC ∠=, 45ACD ∠=,75BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离的平方。 例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以 9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇靠近渔轮所需的时间(时间精确到1min )。 主要是应用,因而通过 典型例题对应用加以讲解。 讨论交流,给每个学生表现个人的机会。 本例中AB 看成ABC ?或ABD ?的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ?和BDC ?,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB . 引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法. 本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠.

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解

注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状: 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >. 7、正余弦定理的综合应用: 如图所示:隔河看两目标A 、B, C 并测得∠ACB=75O , ∠BCD=45O , ∠ADC=30O ,

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

高中数学解三角形最值

高中数学解三角形最值 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 三角形中的最值(或范围)问题 解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决。 类型一:建立目标函数后,利用三角函数有界性来解决 例1.在△ABC 中, ,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b )sinC. (1) 求角A 的大小;(2)求sin sin B C +的最大值. 变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ?=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边. (1) 求角C 的大小;(2)求sin sin A B +的最大值. 解:由m n ?=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC 所以cosC=21 ,从而C=60 故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A) 所以当A=30 时,sin sin A B +的最大值是3 变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。 解:根据题意得:

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

山东省郯城三中高二数学《2.2解三角形应用举例》教案

是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m) 解:根据正弦定理,得 ACB AB ∠sin = ABC AC ∠sin AB=ABC ACB AC ∠∠sin sin = ABC ACB ∠∠sin sin 55 = )7551180sin(75sin 55?-?-?? = ? ?54sin 75sin 55 ≈ 65.7(m) 答:A 、B 两点间的距离为65.7米 例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。 分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测 量问题。首先需要构造三角形,所以需要确定C 、D 两点。根据正弦定 理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别 求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。 解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α, ∠ ACD=β,∠CDB=γ,∠BDA =δ,在?ADC 和?BDC 中,应用正弦定理得 启发提问1:?ABC 中,根据已知 的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。 分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。 变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30?,灯塔B 在观察站C 南偏东60?,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型。 解略:2a km 分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分 析。 变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60?,∠ACD=30?,∠CDB=45?,∠BDA =60? 略解:将题中各已知量代入例2

【高中数学】解三角形基本题型

解三角形 解三角形 正弦定理的基本运用 1、 △A BC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为 。 2、 在△ABC 中,b cos A =a cos B ,则三角形为 。 3、 已知△ABC 中,a =10,B =60°,C =45°,则c = 。 4、 在△ABC 中,已知150,350,30==?=c b B ,那么这个三角形是 。 5、 在ABC ?中,?===452232B b a ,,,则A 为 。 6、 在△ABC 中,A =60°,C =45°,b =2,则此三角形的最小边长为 。

余弦定理的基本运用 1、 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于 。 2、 已知△ABC 的面积2,32,3===b a S ,解此三角形。 3、 在△ABC 中,1326+===c b a ,,,求A 、B 、C 。 4、 在△ABC 中,化简b cos C +c cos B = 。 5、 在△ABC 中,化简 ) cos cos cos (222c C b B a A c b a abc ++++。 正余弦定理的综合运用 1、已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和 B 。 2、在△ABC 中,c =22,tan A =3,tan B =2,试求a 、b 及此三角形的面积。 3、在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于 。

4、已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为。 5、△ABC中,A=60°,b=1,这个三角形的面积为3,则△ABC外接圆的直径 为。 6、在△ABC中,BC=3,AB=2,且 )1 6 ( 5 2 sin sin + = B C ,A=。

最新专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题 解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理: 2sin sin sin a b c R A B C ===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)2 2 2 2 2 2 sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3) 22sin sin sin bc B C a A = 2、余弦定理:2 2 2 2cos a b c bc A =+- 变式:()()2 2 21cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的 最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: sin sin cos cos a b A B A B A B >?>?>?< 其中由cos cos A B A B >?<利用的是余弦函数单调性,而sin sin A B A B >?>仅在一个三角形内有效. 5、解三角形中处理不等关系的几种方法 (1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 【经典例题】 例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形 中, ,

高中数学解三角形复习教案

模块一:解三角形复习 正弦定理 教学过程: 一、复习准备: 1. 讨论:在直角三角形中,边角关系有哪些(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形那么斜三角形怎么办 2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系(内角和、大边对大角) 是否可以把边、角关系准确量化 →引入课题:正弦定理 二、讲授新课: 1. 教学正弦定理的推导: [ ①特殊情况:直角三角形中的正弦定理:sin A = c a sin B =c b sin C =1 即 c =sin sin sin a b c A B C == . ② 能否推广到斜三角形 (先研究锐角三角形,再探究钝角三角形) 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有 sin sin CD a B b A ==,则 sin sin a b A B = . 同理,sin sin a c A C =(思考如何作高),从而sin sin sin a b c A B C == . ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ABC = 111 sin sin sin 222 ab C ac B bc A ==. 两边同除以 12abc 即得: sin a A =sin b B =sin c C . 证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a a CD R A D ===, 同理 sin b B =2R ,sin c C =2R . 证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得….. , ④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题: ① 出示例1:在?ABC 中,已知045A =,060B =,42a =cm ,解三角形.

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

高中数学解三角形练习及详细答案

解三角形练习 题一:在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(). A.43B.2 3 C. 3 D. 3 2 题二:在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=23,c=22,1+tan A tan B= 2c b,则C =(). A.30°B.45° C.45°或135°D.60° 题三:在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________. 题四:在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.求角A的大小. 题五:在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为________. 题六:在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C. 求证:a,b,c成等比数列. 题七:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港

口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. 题八:如图,在△ABC中,已知B=π 3,AC=43,D为BC边上一点.若AB=AD,则△ADC的 周长的最大值为________. 题九:如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=5 13,cos∠ADC= 3 5. (1)求sin∠ABD的值; (2)求BD的长. 题十:如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)(). A.2.7 m B.17.3 m C.37.3 m D.373 m 题十一:在△ABC中,若sin2A+sin2B < sin2C,则△ABC的形状是(). A.锐角三角形B.直角三角形

高中数学必修五解三角形教案

高中数学必修五解三角形教案 高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习 解三角形 一、知识点: 1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R 为???C的外接圆的半径,则有abc???2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC 两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.) 2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中) ③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2R a?b?cabc???.sin??sin??sinCsin?sin?sinC 1113、三角形面积公式:S???C?bcsin??absinC?acsin? 222④ ?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自:https://www.wendangku.net/doc/0c4849551.html, 教师联盟网:高中数学必修五解三角形教案)B 或 ?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2

?cosC?2ab? (两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.) 2225、设a、b、c是???C的角?、?、C的对边,则:①若a?b?c,则C?90?为 222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为 钝角三角形. 6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sin A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222 二、知识演练 1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于() A.60°B.60°或120°C.30°或150°D.120° 2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形 3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

相关文档
相关文档 最新文档