文档库 最新最全的文档下载
当前位置:文档库 › SMD贴片元件的封装尺寸

SMD贴片元件的封装尺寸

SMD贴片元件的封装尺寸
SMD贴片元件的封装尺寸

SMD贴片元件的封装尺寸

【SMD贴片元件的封装尺寸】

公制:3216——2012——1608——1005——0603——0402

英制:1206——0805——0603——0402——0201——01005

注意:

0603有公制,英制的区分

公制0603的英制是英制0201,

英制0603的公制是公制1608

还要注意1005与01005的区分,

1005也有公制,英制的区分

英制1005的公制是公制2512

公制1005的英制是英制0402

像在ProtelDXP(Protel2004)及以后版本中已经有SMD贴片元件的封装库了,如

CC1005-0402:用于贴片电容,公制为1005,英制为0402的封装

CC1310-0504:用于贴片电容,公制为1310,英制为0504的封装

CC1608-0603:用于贴片电容,公制为1608,英制为0603的封装

CR1608-0603:用于贴片电阻,公制为1608,英制为0603的封装,与CC16-8-0603尺寸是一样的,只是方便识别。

【贴片电阻规格、封装、尺寸】

贴片电阻常见封装有9种,用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。下表列出贴片电阻封装英制和公制的关系及详细的尺寸:

【0201元器件的焊盘图形和间距】

0201元器件的焊盘图形和间距

有14种独特的0201元器件的焊盘图形和间距的组合形式,每一种用一系列数字来表示。

装配

● 模板设计

例如用一个0.127mm (5 mil) 厚梯型激光切割的电抛光模板来满足电路板上的焊膏筛网印刷。因为焊膏的释放特性还不知道,一些焊盘的设计中包含有盘中孔,对其进行确定完全取决于常规的模板设计试验。结果所有的0201器件的孔隙被设计成:孔隙与焊盘的比例为1:1。因为在这块电路板上还包含有其它的元器件包括CCGA器件,一个0.127mm (5 mil)厚的模板可能是最薄的模板,没有设计成分级模板(step stencil)是为了防止损害到在板上的其它元器件的焊点。来自这项设计的长度与直径比(aspect ratios)数值在2.4至3.2之间。面积的纵横比(area aspect ratios)范围在0.72到0.85之间。根据这些数值可以预见优良的焊膏释放效果。

●焊膏与涂布

为了能够非常逼真地模拟生产制造情况,采用一种类型3的免清洗焊膏来满足这项制造要求。对于0201器件来说,可能类型4的焊膏更能使印刷质量理想化,但是也可能对其它元器件位置上的印刷质量产生消极的效果。为了能够达到最大的焊膏释放效果,一种密封的印刷头系统被用来替代传统的橡皮滚子刮刀/模板结构。

●组件模拟

由于组件可能存在问题,所以采用0201电阻封装来进行模拟,以满足贴装试验的需要。这些元器件在形状和引线端接长度上不完全相同,这样就增加了发生拾取出错和回流焊接以后发生墓碑现象的机会。在这项试验中,采用完全随机地通过该试验的方法。然而,当使用0201元器件的时候,随之而来的是要考虑质量水平和元器件的一致性情况。

●整套设备情况

筛网印刷机:DEK 265 GSX (采用ProFlow 头)

贴装设备:Panasonic MVIIV

回流焊接炉:Conceptronic HV 155 (共10区对流加热烤箱)

供料器和管嘴

在这项研究中采用标准的设备供料器。在开展研究以前,对供料器进行检验并进行测定校准以确保其具有最佳的性能。专门的0201管嘴和过滤装置是从Panasonic Factory Automation(松下工厂自动化公司)购得的。

●回流焊接加热曲线

所有的板在一台采用氮气氛保护的Conceptronic(10区对流加热烤箱)中进行回流焊接。加热炉中的氧含量水平维持在150 ppm 以下。起始的加热速率为1.7 ℃/秒。

对装配结果的总结

●筛网印刷

一般来说,优良的印刷质量可以通过良好的对准中心和平坦的焊膏沉淀来得到。焊膏沉淀的高度通过采用一台激光焊膏高度测试仪进行测量,结果其高度在0.1143mm (4.5 mil) 和0.1524mm (6 mil) 之间。由于设备的局限性,3维焊膏检测仪仅被用在测量较大的分离焊盘(0402,0603,0805)上的焊膏体积,以确认焊膏的体积是否能够满足这些位置上的要求。

1:1的模板隙缝设计会导致焊盘上的焊膏过量,这会产生大量的焊料球,从而会增加形成墓碑电阻器现象的机会。通过降低缝隙尺寸消除焊料球产生的机会,是将来模板设计的优化方法。

●外观检测

在开始工作以前,0201电阻器以双面形式进行安置,以确保满足设备贴装的使用要求。0201电阻器有着各种各样尺寸和形状以及不规则的端接方式。

●拾取和贴装的确认

元器件被良好地安置在所有0201器件焊盘的中心位置上。

●拾取和贴装结果

就所提供的各种各样尺寸和形状的元器件来说,拾取和贴装的精度是良好的。

标准供料器的拾取率为99.85%,所实现的贴装率是99.68%。同时也采用新的高速供料器来进行试验。采用这些供料装置能够大幅度地增加拾取速率。

●回流焊接后的检测

在进行了回流焊接以后,使用一台显微镜对所有安置有0201器件的位置进行外观检查。一般情况下,焊料填角显现出光泽,并展示令人满意的润湿。然而,许多焊料填角显露出拥有过多的焊料体积,焊料填角呈现出凸状,在横截面处这种现象非常明显。因为焊料不会延伸到端边金属喷镀处,这种焊接点在IPC-A- 610C4标准下将可以接受。

过多的焊膏量是在焊盘之间形成大量焊料球的关键因素。因此,这些焊料球不能计算在缺陷内,因为它们将可以通过优化模板的隙缝来使其降低到最小的程度或者消除掉。尽管有着较大的焊料体积,不会导致产生桥接的缺陷现象。

所有缺陷的产生是由于墓碑缺陷所引发的,它会导致4.25的单位平均缺欠数(defect per unit 简称DPU),1012的每百万缺陷机会(million opportunities 简称DPMO),考虑到焊盘几何形状的多种多样,这些数据是惊人的。

对这些数据的进一步分析可以发现影响墓碑缺陷的主要因素是元器件之间的间距、焊盘和盘中孔之间的间距。

当间距从0.254mm (0.010 英寸)增大至0.381mm (0.015英寸)的时候,相伴而生的现象是墓碑缺陷减少了。这样可以预计由于增大了元器件至元器件的间距,这将朝着对焊膏、元器件贴装和定位差错增加容忍度的方向发展。

另外,焊盘之间的间隙(G)会对墓碑缺陷率产生影响。小型化的0.2032mm (0.008 英寸)焊盘间隙与0.254mm (0.010 英寸)的焊盘间隙相比较明显地降低了产生缺陷的数量。这证明了Schake et al 的研究成果,他指出较小的焊盘间隙会导致装配生产量的提高(注:在这项研究中所采用的最小焊盘间隙为0.2032mm/0.008 英寸)

令人感兴趣的是在很少缺陷和盘中孔之间奇特的正相关性。正如在7,8,11 和12排所显示的那样,采用正切导孔焊盘(tangent via pads)形成了最大的墓碑缺陷现象。然而,在正切导孔设计位置产生墓碑现象仅限于0201器件,对于0402和0603器件来说不显现出相同的问题。

在采用正切导孔的焊盘上发生大量的缺陷还没有被完全认识,可能要归咎于一些不同的原因。当采用通孔时,由于导孔上有着较大的热物质,所以在对焊盘上的元器件进行焊接时需要较大的热量,这样就增加了两个焊盘之间的热量不均匀的机会。当采用盘中孔的时候,加热时需要的热量较少,加热可能非常均匀,这是因为所涉及的热物质较少。同样埋置入电容的层面与盘中孔的位置相连接,可以提供相当均匀和一致的加热。由于存在着墓碑现象的潜在可能性,电路板的设计师选择使用0201元器件与导孔相连接的时候,将试图尽可能的达到均匀一致。另外,在没有盘中孔的位置上采用通孔,其表面上覆盖着焊剂,它与焊盘相毗连。所存在的细微的高度差异可能会导致在焊盘上产生不均匀的填料以及焊膏掩膜,这样就增大了墓碑现象的产生机会。为了进一步确认原因,必须开展进一步的实验工作。

14个焊盘图形排列中的6排(1,2,5,6,9,10) 包含着一个具有盘中孔的焊盘和一个具有正切导孔的焊盘。这些焊盘形状也使用得很好。

●抗剪强度

由于元器件和它们各自的焊点非常的小,所以焊点的耐久性和可靠性成为非常关键的因素。随着可焊面积的减小,抗剪强度将降低。为了能够确定在抗剪强度方面降低的程度,使用一台5 kg的测力计,以0.254mm/秒(0.01 in/秒)的剪切速率对所有各排0201电阻器件进行完全的剪力测试。测试结果表明:对于不同的焊盘几何形状或者说不管焊盘采用还是不采用盘中孔技术,焊点的抗剪强度没有很大的差异。对于0201元器件来说平均的抗剪强度测试值为734 gf。所有元器件测试的失效模式为在焊点发生松散现象。同样,在相同的电路板上对0402和0603元器件也进行了对抗剪强度的测试。图4显示了0201 元器件相对于0402和0603元器件的平均抗剪强度。

SMT最新技术之CSP及无铅技术

只要关注一下如今在各地举办的形形色色的专业会议的主题,我们就不难了解电子产品中采用了哪些最新技术。

CSP、0201无源元件、无铅焊接和光电子,可以说是近来许多公司在PCB上实践和积极评价的热门先进技术。

比如说,如何处理在CSP和0201组装中常见的超小开孔(250um)问题,就是焊膏印刷以前从未有过的基本物理问题。板级光电子组装,作为通信和网络技术中发展起来的一大领域,其工艺非常精细。典型封装昂贵而易损坏,特别是在器件引线成形之后。这些复杂技术的设计指导原则也与普通SMT工艺有很大差异,因为在确保组装生产率和产品可靠性方面,板设计扮演着更为重要的角色;

例如,对CSP焊接互连来说,仅仅通过改变板键合盘尺寸,就能明显提高可靠性。

CSP应用如今人们常见的一种关键技术是CSP。CSP技术的魅力在于它具有诸多优点,如减小封装尺寸、增加针数、功能∕性能增强以及封装的可返工性等。

CSP的高效优点体现在:用于板级组装时,能够跨出细间距(细至0.075mm)周边封装的界限,进入较大间距(1,0.8,0.75,0.5,0.4mm)区域阵列结构。已有许多CSP器件在消费类电信领域应用多年了,人们普遍认为它们是SRAM与DRAM、中等针数ASIC、快闪存储器和微处理器领域的低成本解决方案。

CSP可以有四种基本特征形式:即刚性基、柔性基、引线框架基和晶片级规模。

CSP技术可以取代SOIC和QFP器件而成为主流组件技术。

CSP组装工艺有一个问题,就是焊接互连的键合盘很小。通常0.5mm间距CSP的键合盘尺寸为0.250~

0.275mm。如此小的尺寸,通过面积比为0.6甚至更低的开口印刷焊膏是很困难的。不过,采用精心设计的工艺,可成功地进行印刷。

而故障的发生通常是因为模板开口堵塞引起的焊料不足。板级可靠性主要取决于封装类型,而CSP器件平均能经受-40~125℃的热周期800~1200次,可以无需下填充。然而,如果采用下填充材料,大多数CSP的热可靠性能增加300%。CSP器件故障一般与焊料疲劳开裂有关。无源元件的进步另一大新兴领域是0201无源元件技术,由于减小板尺寸的市场需要,人们对0201元件十分关注。自从1999年中期0201元件推出,蜂窝电话制造商就把它们与CSP一起组装到电话中,印板尺寸由此至少减小一半。处理这类封装相当麻烦,要减少工艺后缺陷(如桥接和直立)的出现,焊盘尺寸最优化和元件间距是关键。只要设计合理,这些封装可以紧贴着放置,间距可小至150?m。

另外,0201器件能贴放到BGA和较大的CSP下方。

CSP组件下面的0201的横截面图。由于这些小型分立元件的尺寸很小,组装设备厂家已计划开发更新的系统与0201相兼容。通孔组装仍有生命力光电子封装正广泛应用于高速数据传送盛行的电信和网络领域。普通板级光电子器件是“蝴蝶形”模块。这些器件的典型引线从封装四边伸出并水平扩展。其组装方法与通孔元器件相同,通常采用手工工艺—-引线经引线成型压力工具处理并插入印板通路孔贯穿基板。

处理这类器件的主要问题是,在引线成型工艺期间可能发生的引线损坏。由于这类封装都很昂贵,必须小心处理,以免引线被成型操作损坏或引线-器件体连接口处模块封装断裂。归根结底,把光电子元器件结合到标准SMT产品中的最佳解决方案是采用自动设备,这样从盘中取出元器件,放在引线成型工具上,之后再把带引线的器件从成型机上取出,最后把模块放在印板上。鉴于这种选择要求相当大资本的设备投资,大多数公司还会继续选择手工组装工艺。

大尺寸印板(20×24″)在许多制造领域也很普遍。诸如机顶盒和路由/开关印板一类的产品都相当复杂,包含了本文讨论的各种技术的混合,举例来说,在这一类印板上,常常可以见到大至40mm2的大型陶瓷栅阵列(CCGA)和BGA器件。

这类器件的两个主要问题是大型散热和热引起的翘曲效应。

这些元器件能起大散热片的作用,引起封装表面下非均匀的加热,由于炉子的热控制和加热曲线控制,可能导致器件中心附近不润湿的焊接连接。在处理期间由热引起的器件和印板的翘曲,会导致如部件与施加到印板上的焊膏分离这样的“不润湿现象”。因此,当测绘这些印板的加热曲线时必须小心,以确保BGA/CCGA的表面和整个印板的表面得到均匀的加热。

印板翘曲因素

为避免印板过度下弯,在再流炉里适当地支撑印板是很重要的。印板翘曲是电路组装中必须注意观察的要素,并应严格进行特微描述。再流周期中由热引起的BGA或基板的翘曲会导致焊料空穴,并把大量残留应力留在焊料连接上,

造成早期故障。采用莫尔条纹投影影像系统很容易描述这类翘曲,该系统可以在线或脱机操作,用于描述预处理封装和印板翘曲的特微。脱机系统通过炉内设置的为器件和印板绘制的基于时间/温度座标的翘曲图形,也能模拟再流环境。

无铅焊接

无铅焊接是另一项新技术,许多公司已经开始采用。这项技术始于欧盟和日本工业界,起初是为了在进行PCB组装时从焊料中取消铅成份。实现这一技术的日期一直在变化,起初提出在2004年实现,最近提出的日期是在2006年实现。不过,许多公司现正争取在2004年拥有这项技术,有些公司现在已经提供了无铅产品。

现在市场上已有许多无铅焊料合金,而美国和欧洲最通用的一种合金成份是95.6Sn∕3.7Ag∕0.7Cu。处理这些焊料合金与处理标准Sn/Pb焊料相比较并无多大差别。其中的印刷和贴装工艺是相同的,主要差别在于再流工艺,也就是说,对于大多数无铅焊料必须采用较高的液相温度。Sn∕Ag∕Cu合金一般要求峰值温度比Sn/Pb焊料高大约30℃。另外,初步研究已经表明,其再流工艺窗口比标准Sn/Pb合金要严格得多。

对于小型无源元件来说,减少表面能同样也可以减少直立和桥接缺陷的数量,特别是对于0402和0201尺寸的封装。总之,无铅组装的可靠性说明,它完全比得上Sn/Pb焊料,不过高温环境除外,例如在汽车应用中操作温度可能会超过150℃。

倒装片

当把当前先进技术集成到标准SMT组件中时,技术遇到的困难最大。在一级封装组件应用中,倒装片广泛用于BGA 和CSP,尽管BGA和CSP已经采用了引线-框架技术。在板级组装中,采用倒装片可以带来许多优点,包括组件尺寸减小、性能提高和成本下降。

令人遗憾的是,采用倒装片技术要求制造商增加投资,以使机器升级,增加专用设备用于倒装片工艺。这些设备包括能够满足倒装片的较高精度要求的贴装系统和下填充滴涂系统。此外还包括X射线和声像系统,用于进行再流焊后焊接检测和下填充后空穴分析。

焊盘设计,包括形状、大小和掩膜限定,对于可制造性和可测试性(DFM/T)以及满足成本方面的要求都是至关重要的。

板上倒装片(FCOB)主要用于以小型化为关键的产品中,如蓝牙模块组件或医疗器械应用。图4所展示的就是一个蓝牙模块印板,其中以与0201无源元件同样的封装集成了倒装片技术。组装了倒装片和0201器件的同样的高速贴装和处理也可围绕封装的四周放置焊料球。这可以说是在标准SMT 组装线上与实施先进技术的一个上佳例子。

(本文来源:区别比较好https://www.wendangku.net/doc/044983856.html,)

原文地址https://www.wendangku.net/doc/044983856.html,/lwljs/blog/item/e8ee2b2496a09c6834a80fcf.html

常用贴片元件封装尺寸图

常用贴片元件封装尺寸图 目录 1 TO-268AA 41 D-7343 2 TO-26 3 D2PAK 42 C-6032 3 TO-263-7 43 B-3528 4 TO-263- 5 44 A-3216 5 TO-263-3 45 SOT883 6 TO-252 DPAK 46 SOT753 7 TO-252-5 47 SOT666 8 TO252-3 48 SOT663 9 2010 49 SOT552-1 10 4020 50 1SOT523 11 0603 51 SOT505-1 12 0805 52 SOT490-SC89 13 01005 53 SOT457 SC74 14 1008 54 SOT428 15 1206 55 SOT416/SC75 16 1210 56 SOT663 SMD 17 1406 57 SOT363 SC706L 18 1812 58 SOT353/sc70 5L 19 1808 59 SOT346/SC59 20 1825 60 SOT343 SMD 21 2010 61 SOT323/SC70-3 SMD 22 2225 62 SOT233 SMD 23 2308 63 SOT-223/TO-261AA SMD 24 2512 64 SOT89/TO243AA SC62 SMD 25 DO-215AB 65 SOT23-8 26 DO-215AA 66 SOT23-6 27 DO-214AC 67 SOT23-5 28 DO-214AB 68 SOT23 29 DO-214AA 69 SOT143/TO253 SMD 30 DO-214 31 DO-213AB 32 DO-213AA 33 SOD123H 34 SOD723 35 SOD523 36 SOD323 37 SOD-123F 38 SOD123 39 SOD110 40 DO-214AC SOD106

PCB贴片器件封装尺寸详解

贴片元件封装说明 贴片封装 - 两脚表贴 现在常用的的电阻、电容、电感、二极管都有贴片封装。贴片封装用四位数字标识,表明了器件的长度和宽度。贴片电阻有百分五和百分一两种精度,购买时不特别说明的话就是指百分五。一般说的贴片电容是片式多层陶瓷电容(MLCC),也称独石电容。附表是贴片电阻的参数。 英制 (mil) 公制 (mm) 长(L) (mm) 宽(W) (mm) 高(t) (mm) a (mm) b (mm) 常规 功率W 提升 功率 W 最大 工作 电 压 V 0201 0603 0.60±0.05 0.30±0.05 0.23±0.05 0.10±0.05 0.15±0.05 1/20 25 0402 1005 1.00±0.10 0.50±0.10 0.30±0.10 0.20±0.10 0.25±0.10 1/16 50 0603 1608 1.60±0.15 0.80±0.15 0.40±0.10 0.30±0.20 0.30±0.20 1/16 1/10 50 0805 2012 2.00±0.20 1.25±0.15 0.50±0.10 0.40±0.20 0.40±0.20 1/10 1/8 150 **** **** 3.20±0.20 1.60±0.15 0.55±0.10 0.50±0.20 0.50±0.20 1/8 1/4 200 1210 3225 3.20±0.20 2.50±0.20 0.55±0.10 0.50±0.20 0.50±0.20 1/4 1/3 200 1812 4832 4.50±0.20 3.20±0.20 0.55±0.10 0.50±0.20 0.50±0.20 1/2 200 2010 5025 5.00±0.20 2.50±0.20 0.55±0.10 0.60±0.20 0.60±0.20 1/2 3/4 200 2512 6432 6.40±0.20 3.20±0.20 0.55±0.10 0.60±0.20 0.60±0.20 1 200 AXIAL - 两脚直插 AXIAL 就是普通直插电阻的封装,也用于电感之类的器件。后面的数字是指两个焊盘的间距。 AXIAL-0.3 小功率直插电阻(1/4W);普通二极管(1N4148);色环电感(10uH) AXIAL-0.4 1A 的二极管,用于整流(1N4007);1A 肖特基二极管,用于开关电源(1N5819);瞬态保护二极管 AXIAL-0.8 大功率直插电阻(1W 和2W) DIP - 双列直插 直插芯片常用的古老封装。 SOIC - 双列表贴 现在用的贴片max232就是soic-16,后面的数字显然是管脚数。 贴片485芯片有SOIC-8S,管脚排布更密了。

常用电子元件封装尺寸规格汇总

常用电子元件封装、尺寸、规格汇总 贴片电阻规格 贴片电阻常见封装有9种,用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。下表列出贴片电阻封装英制和公制的关系及详细的尺寸: 贴片元件的封装 一、零件规格: (a)、零件规格即零件的外形尺寸,SMT发展至今,业界为方便作业,已经形成了一个标准零件系列,各家零件供货商皆是按这一标准制造。标准零件之尺寸规格有英制与公制两种表示方法,如下表英制表示法1206 0805 0603 0402 公制表示法3216 2125 1608 1005含义L:1.2inch(3.2mm)W:0.6inch(1.6mm) L:0.8inch(2.0mm)W:0.5inch(1.25mm) L:0.6inch(1.6mm)W:0.3inch(0.8mm) L:0.4inch(1.0mm)W:0.2inch(0.5mm) 注: a、L(Length):长度;W(Width):宽度;inch:英寸 b、1inch=25.4mm(b)、在(1)中未提及零件的厚度,在这一点上因零件不同而有所差异,在生产时应以实际量测为准。(c)、以上所讲的主要是针对电子产品中用量最大的电阻(排阻)和电容(排容),其它如电感、二极管、晶体管等等因用量较小,且形状也多种多样,在此不作讨论。(d)、SMT发展至今,随着电子产品集成度的不断提高,标准零件逐步向微型化发展,如今最小的标准零件已经到了0201。二、常用元件封装1)电阻:最为常见的有0805、0603两类,不同的是,它可以以排阻的身份出现,四位、八位都有,具体封装样式可参照

贴片电阻规格 封装 尺寸

贴片电阻规格、封装、尺寸 ChipR Dimensions 、Footprint 简述 基本结构 分类 规格、封装、 尺寸 额定功率及工 作电压 阻值,标准阻 值 标识 规格书、生产 厂家

命名方法 价格、报价 创建时间:2005-12-30 最后修改时间:2006-10-29 贴片电阻套件 为方便学生、研发人员试验和产 品试制,特推出片式电阻系列套 件。 我们常说的贴片电阻 (SMD Resistor)叫"片式固定电阻器"(Chip Fixed Resistor),又叫"矩形片状电阻"(Rectangular Chip Resistors),是由ROHM 公司发明并最早推出市场的。特点是耐潮湿,耐高温,可靠度高,外观尺寸均匀,精确且温度系数与阻值公差小。 按生产工艺分厚膜(Thick Film Chip Resistors)、薄膜(Thin Film Chip Resistors )两种。厚膜是采用丝网印刷将电阻性材料淀积在绝缘基体(例如玻璃或氧化铝陶瓷)上,然后烧结形成的。我们通常所见的多为厚膜片式电阻,精度范围±0.5% ~ 10%,温度系数:±50PPM/℃~ ±400PPM/℃。薄膜是在真空中采用蒸发和溅射等工艺将电阻性材料淀积在绝缘基体工艺(真空镀膜技术)制

成,特点是低温度系数(±5PPM/℃),高精度(±0.01%~±1%)。 封装有:0201,0402,0603,0805,1206,1210,1812,2010,2512。其常规系列的精度为5%,1%。阻值范围从0.1欧姆到20M欧姆。标准阻值有E24,E96系列。功率有1/20W、1/16W、1/8W、1/10W、1/4W、1/2W、1W。 特性: 体积小,重量轻 适合波峰焊和回流焊 机械强度高,高频特性优越 常用规格价格比传统的引线电阻还便宜 生产成本低,配合自动贴片机,适合现代电子产品规模化生产使用状况:由于价格便宜,生产方便,能大面积减少PCB面积,减少产品外观尺寸,现在已取代绝大部分传统引线电阻。除一些小厂或不得不使用引线电阻的设计,各种电器上几乎都在使用。目前绝大部分电子产品,以0603、0805器件为主;以手机,PDA为代表的高密度电子产品多使用0201、0402的器件;一些要求稳定和安全的电子产品,如医疗器械、汽车行驶记录仪、税控机则多采用1206、1210等尺寸偏大的电阻。 市场状况:目前,在全球的市场份额中,排名依次是台湾、日本、中国、韩国,欧美几乎不再生产。主要的生产厂商几乎都在中国建立生产基地。台湾国巨(Yageo)公司为世界上第一大生产商。日本企业则生产一些如0201、0402、高精度、高电压,具有工艺难度,利润高的系列。台湾及国内工厂则多生产些

SMD贴片元件的封装尺寸

【SMD 贴片元件的封装尺寸】 公制:3216——2012——1608——1005——0603——0402 英制:1206——0805——0603——0402——0201——01005 注意: 0603有公制,英制的区分 公制0603的英制是英制0201, 英制0603的公制是公制1608 还要注意1005与01005的区分, 1005也有公制,英制的区分 英制1005的公制是公制2512 公制1005的英制是英制0402 像在ProtelDXP(Protel2004)及以后版本中已经有SMD 贴片元件的封装库了,如 CC1005-0402:用于贴片电容,公制为1005,英制为0402的封装 CC1310-0504:用于贴片电容,公制为1310,英制为0504的封装 CC1608-0603:用于贴片电容,公制为1608,英制为0603的封装 CR1608-0603:用于贴片电阻,公制为1608,英制为0603的封装,与CC16-8-0603尺寸是一样的,只是方便识别。 【贴片电阻规格、封装、尺寸】 英制 (inch) 公制 (mm) 长(L) (mm) 宽(W) (mm) 高(t) (mm) a (mm) b (mm) 0201 0603 0.60±0.05 0.30±0.05 0.23±0.05 0.10±0.05 0.15±0.05 0402 1005 1.00±0.10 0.50±0.10 0.30±0.10 0.20±0.10 0.25±0.10 0603 1608 1.60±0.15 0.80±0.15 0.40±0.10 0.30±0.20 0.30±0.20 0805 2012 2.00±0.20 1.25±0.15 0.50±0.10 0.40±0.20 0.40±0.20 1206 3216 3.20±0.20 1.60±0.15 0.55±0.10 0.50±0.20 0.50±0.20 1210 3225 3.20±0.20 2.50±0.20 0.55±0.10 0.50±0.20 0.50±0.20 1812 4832 4.50±0.20 3.20±0.20 0.55±0.10 0.50±0.20 0.50±0.20 2010 5025 5.00±0.20 2.50±0.20 0.55±0.10 0.60±0.20 0.60±0.20 2512 6432 6.40±0.20 3.20±0.20 0.55±0.10 0.60±0.20 0.60±0.20 国内贴片电阻的命名方法: 1、5%精度的命名:RS-05K102JT 2、1%精度的命名:RS-05K1002FT R -表示电阻 S -表示功率0402是1/16W 、0603是1/10W 、0805是1/8W 、1206是1/4W 、 1210是 U n R e g i s t e r e d

常用元器件封装尺寸大小

封装形式图片国际统一简称 LDCC LGA LQFP PDIP TO5 TO52 TO71 TO71 TO78 PGA Plastic PIN Grid Array 封装形式图片国际统一简称 TSOP Thin Small OUtline Package QFP Quad Flat Package PQFP 100L QFP Quad Flat Package SOT143 SOT220 Thin Shrink Qutline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid Array PCDIP

PLCC LQFP LQFP 100L TO8 TO92 TO93 T099 EBGA 680L QFP Quad Flat Package TQFP 100L ZIP Zig-Zag Inline Packa SOT223 SOT223 SOT23 SOT23/SOT323 SOT25/SOT353 SOT26/SOT363 FBGA FDIP SOJ

SBGA LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L TSBGA 680L CLCC SC-705L SDIP SIP Single Inline Package SO Small Outline Package SOP EIAJ TYPE II 14L SSOP 16L SSOP SOJ 32L Flat Pack HSOP28 ITO220 ITO3P TO220 TO247

PCB贴片元件焊盘尺寸规范

在PCB 中画元器件封装时,经常遇到焊盘的大小尺寸不好把握的问题,因为我们查阅的资料给岀的是元 器件本身的大小,如引脚宽度,间距等,但是在 PCB 板上相应的焊盘大小应该比引脚的尺寸要稍大,否则 焊接的可靠性将不能保证。下面将主要讲述焊盘尺寸的规范问题。 为了确保贴片元件(SMT )焊接质量,在设计SMT 印制板时,除印制板应留出 3mm-8mm 的工艺边外, 应按有关规范设计好各种元器件的焊盘图形和尺寸, 布排好元器件的位向和相邻元器件之间的间距等以外, 我们认为还应特别注意以下几点 : (1) 印制板上,凡位于阻焊膜下面的导电图形(如互连线、接地线、互导孔盘等)和所需留用的铜箔之 处,均应为裸铜箔。即绝不允许涂镀熔点低于焊接温度的金属涂层,如锡铅合金等,以避免引发位于涂镀 层处的阻焊膜破裂或起皱,以保证 PCB 板的焊接以及外观质量。 (2) 查选或调用焊盘图形尺寸资料时,应与自己所选用的元器件的封装外形、焊端、引脚等与焊接有关 的尺寸相匹配。必须克服不加分析或对照就随意抄用或调用所见到的资料 J 或软件库中焊盘图形尺寸的不 良习惯。设计、查选或调用焊盘图形尺寸时,还应分清自己所选的元器件,其代码(如片状电阻、电容) 和与焊接有关的尺寸(如SOIC,QFP 等)。 (3) 表面贴装元器件的焊接可靠性,主要取决于焊盘的长度而不是宽度。 (a )如图1所示,焊盘的长度 B 等于焊端(或引脚)的长度 T ,加上焊端(或引脚)内侧(焊盘)的延伸 长度bl ,再加上焊端(或引脚)外侧(焊盘)的延伸长度 b2,即B=T+b1+b2。其中bl 的长度(约 为0.05mm — 0.6mm ),不仅应有利于焊料熔融时能形成良好的弯月形轮廓的焊点,还得避免焊料产生 桥接现象及兼顾元器件的贴装偏差为宜; b2的长度(约为0.25mm — 1.5mm ),主要以保证能形成最 佳的弯月形轮廓的焊点为宜(对于 soic 、QFP 等器件还应兼顾其焊盘抗剥离的能力) T p h 卜 + ? fr : 仙 .-i — *■ bi —S. ----- 卜 " _____ 图1理想的优质焊点形状及真焊轴 (b )焊盘的宽度应等于或稍大(或稍小)于焊端(或引脚)的宽度 常见贴装元器件焊盘设计图解,如图 2所示。 片状元件 _翼形引脚

常用贴片元件封装尺寸图

目录 TO-268AA贴片元件封装形式图片 (3) TO-263 D2PAK封装尺寸图 (4) TO-263-7封装尺寸图 (5) TO-263-5封装尺寸图 (6) TO-263-3封装尺寸图 (7) TO-252 DPAK封装尺寸图 (8) TO-252-5封装尺寸图 (9) TO252-3封装尺寸图 (10) 0201封装尺寸 (11) 0402封装尺寸图片 (12) 0603封装尺寸图 (13) 0805封装尺寸图 (14) 01005封装尺寸图 (15) 1008封装尺寸图 (16) 1206封装尺寸图 (17) 1210封装尺寸图 (18) 1406封装尺寸图 (19) 1812封装尺寸图 (20) 1808封装尺寸图 (21) 1825封装尺寸图 (22) 2010封装尺寸图 (23) 2225封装尺寸图 (24) 2308封装尺寸图 (25) 2512封装尺寸图 (26) DO-215AB封装尺寸图 (27) DO-215AA封装尺寸图 (28) DO-214AC封装尺寸图 (29) DO-214AB封装尺寸图 (30) DO-214AA封装尺寸图 (31) DO-214封装尺寸图 (32) DO-213AB封装尺寸图 (33) DO-213AA封装尺寸图 (34) SOD123H封装图 (35) SOD723封装尺寸图 (36) SOD523封装尺寸图 (37) SOD323封装尺寸图 (38) SOD-123F封装尺寸图 (39) SOD123封装尺寸图 (40) SOD110封装尺寸图 (41) DO-214AC SOD106封装尺寸图 (42) D-7343封装尺寸图 (43)

常用贴片元件封装尺寸

常用贴片元件封装 1 电阻: 最为常见的有0201、0402、0805、0603、1206、1210、1812、2010、2512几类 1)贴片电阻的封装与尺寸如下表: 英制(mil) 公制(mm) 长(L)(mm) 宽(W)(mm) 高(t)(mm) 0201 0603 0.60±0.05 0.30±0.05 0.23±0.05 0402 1005 1.00±0.10 0.50±0.10 0.30±0.10 0603 1608 1.60±0.15 0.80±0.15 0.40±0.10 0805 2012 2.00±0.20 1.25±0.15 0.50±0.10 1206 3216 3.20±0.20 1.60±0.15 0.55±0.10 1210 3225 3.20±0.20 2.50±0.20 0.55±0.10 1812 4832 4.50±0.20 3.20±0.20 0.55±0.10 2010 5025 5.00±0.20 2.50±0.20 0.55±0.10 2512 6432 6.40±0.20 3.20±0.20 0.55±0.10 2)贴片电阻的封装、功率与电压关系如下表: 英制(mil)公制(mm)额定功率@ 70°C 最大工作电压(V) 0201 0603 1/20W 25 0402 1005 1/16W 50 0603 1608 1/10W 50 0805 2012 1/8W 150 1206 3216 1/4W 200

1210 3225 1/3W 200 1812 4832 1/2W 200 2010 5025 3/4W 200 2512 6432 1W 200 3)贴片电阻的精度与阻值 贴片电阻阻值误差精度有±1%、±2%、±5%、±10%精度, J -表示精度为5%、 F-表示精度为1%。 T -表示编带包装 阻值范围从0R-100M 2电容: 1)贴片电容可分为无极性和有极性两种,容值范围从0.22pF-100uF 无极性电容下述两类封装最为常见,即0805、0603; 英制尺寸公制尺寸长度宽度厚度 0402 1005 1.00±0.05 0.50±0.05 0.50±0.05 0603 1608 1.60±0.10 0.80±0.10 0.80±0.10 0805 2012 2.00±0.20 1.25±0.20 0.70±0.20 1206 3216 3.20±0.30 1.60±0.20 0.70±0.20 1210 3225 3.20±0.30 2.50±0.30 1.25±0.30 1808 4520 4.50±0.40 2.00±0.20 ≤2.00 1812 4532 4.50±0.40 3.20±0.30 ≤2.50 2225 5763 5.70±0.50 6.30±0.50 ≤2.50 3035 7690 7.60±0.50 9.00±0.05 ≤3.00

贴片电阻尺寸封装

贴片电阻、贴片电容规格、封装、尺寸、功率 贴片电阻、贴片电容规格、封装、尺寸 贴片电阻常见封装有9种,用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。下表列出贴片电阻封装英制和公制的关系及详细的尺寸: 英制 (i nch) 公制 ( mm) 长(L) (mm) 宽(W) (mm) 高(t) (mm) a (mm) b (mm) 0201 0603 0.60±0.050.30±0.050.23±0.050.10±0.050.15±0.05 0402 1005 1.00±0.100.50±0.100.30±0.100.20±0.100.25±0.10 0603 1608 1.60±0.150.80±0.150.40±0.100.30±0.200.30±0.20 0805 2012 2.00±0.201.25±0.150.50±0.100.40±0.200.40±0.20 1206 3216 3.20±0.201.60±0.150.55±0.100.50±0.200.50±0.20 1210 3225 3.20±0.202.50±0.200.55±0.100.50±0.200.50±0.20 1812 4832 4.50±0.203.20±0.200.55±0.100.50±0.200.50±0.20 2010 5025 5.00±0.202.50±0.200.55±0.100.60±0.200.60±0.20 2512 6432 6.40±0.203.20±0.200.55±0.100.60±0.200.60±0.20 贴片电容和贴片电阻都是一样可以用的,0805,1206等

贴片电阻规格、封装、尺寸

贴片电阻常见封装有9种,用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。下表列出贴片电阻封装英制和公制的关系及详细的尺寸: 贴片元件的封装 一、零件规格: (a)、零件规格即零件的外形尺寸,SMT发展至今,业界为方便作业,已经形成了一个标准零件系列,各家零件供货商皆是按这一标准制造。 标准零件之尺寸规格有英制与公制两种表示方法,如下表 英制表示法1206 0805 0603 0402 公制表示法3216 2125 1608 1005 含义 L:1.2inch(3.2mm)W:0.6inch(1.6mm)

L:0.8inch(2.0mm)W:0.5inch(1.25mm) L:0.6inch(1.6mm)W:0.3inch(0.8mm) L:0.4inch(1.0mm)W:0.2inch(0.5mm) 注: a、L(Length):长度;W(Width):宽度;inch:英寸 b、1inch=25.4mm (b)、在(1)中未提及零件的厚度,在这一点上因零件不同而有所差异,在生产时应以实际量测为准。 (c)、以上所讲的主要是针对电子产品中用量最大的电阻(排阻)和电容(排容),其它如电感、二极管、晶体管等等因用量较小,且形状也多种多样,在此不作讨论。 (d)、SMT发展至今,随着电子产品集成度的不断提高,标准零件逐步向微型化发展,如今最小的标准零件已经到了0201。 二、常用元件封装 1)电阻: 最为常见的有0805、0603两类,不同的是,它可以以排阻的身份出现,四位、八位都有,具体封装样式可参照MD16仿真版,也可以到设计所内部PCB库查询。 注: ABCD四类型的封装形式则为其具体尺寸,标注形式为L X S X H 1210具体尺寸与电解电容B类3528类型相同 0805具体尺寸:2.0 X 1.25 X 0.5(公制表示法) 1206具体尺寸:3.0 X 1.5 0X 0.5(公制表示法) 2)电阻的命名方法 1、5%精度的命名:RS – 05 K 102 JT 2、1%精度的命名:RS – 05 K 1002 FT R -表示电阻 S -表示功率 0402是1/16W、 0603是1/10W、 0805是1/8W、 1206是1/4W、 1210是1/3W、 1812是1/2W、 2010是3/4W、 2512是1W。 05 -表示尺寸(英寸): 02表示0402、 03表示0603、 05表示0805、 06表示1206、 1210表示1210、

PCB中贴片元件封装焊盘尺寸的规范

在PCB中画元器件封装时,经常遇到焊盘的大小尺寸不好把握的问题,因为我们查阅的资料给出的是元器件本身的大小,如引脚宽度,间距等,但是在PCB板上相应的焊盘大小应该比引脚的尺寸要稍大,否则焊接的可靠性将不能保证。下面将主要讲述焊盘尺寸的规范问题。 为了确保贴片元件(SMT)焊接质量,在设计SMT印制板时,除印制板应留出3mm-8mm的工艺边外,应按有关规范设计好各种元器件的焊盘图形和尺寸,布排好元器件的位向和相邻元器件之间的间距等以外,我们认为还应特别注意以下几点: (1)印制板上,凡位于阻焊膜下面的导电图形(如互连线、接地线、互导孔盘等)和所需留用的铜箔之处,均应为裸铜箔。即绝不允许涂镀熔点低于焊接温度的金属涂层,如锡铅合金等,以避免引发位于涂镀层处的阻焊膜破裂或起皱,以保证PCB板的焊接以及外观质量。 (2)查选或调用焊盘图形尺寸资料时,应与自己所选用的元器件的封装外形、焊端、引脚等与焊接有关的尺寸相匹配。必须克服不加分析或对照就随意抄用或调用所见到的资料J 或软件库中焊盘图形尺寸的不良习惯。设计、查选或调用焊盘图形尺寸时,还应分清自己所选的元器件,其代码(如片状电阻、电容)和与焊接有关的尺寸(如SOIC,QFP等)。 (3)表面贴装元器件的焊接可靠性,主要取决于焊盘的长度而不是宽度。 (a)如图1所示,焊盘的长度B等于焊端(或引脚)的长度T,加上焊端(或引脚)内侧(焊盘)的延 伸长度b1,再加上焊端(或引脚)外侧(焊盘)的延伸长度b2,即B=T+b1+b2。其中b1的长度(约为0.05mm—0.6mm),不仅应有利于焊料熔融时能形成良好的弯月形轮廓的焊点,还得避免焊料产生桥接现象及兼顾元器件的贴装偏差为宜;b2的长度(约为 0.25mm—1.5mm),主要以保证能形成最佳的弯月形轮廓的焊点为宜(对于SOIC、QFP等 器件还应兼顾其焊盘抗剥离的能力)。 (b)焊盘的宽度应等于或稍大(或稍小)于焊端(或引脚)的宽度。 常见贴装元器件焊盘设计图解,如图2所示。

SMD贴片元件的封装尺寸

SMD贴片元件的封装尺寸 【SMD贴片元件的封装尺寸】 公制:3216——2012——1608——1005——0603——0402 英制:1206——0805——0603——0402——0201——01005 注意: 0603有公制,英制的区分 公制0603的英制是英制0201, 英制0603的公制是公制1608 还要注意1005与01005的区分, 1005也有公制,英制的区分 英制1005的公制是公制2512 公制1005的英制是英制0402 像在ProtelDXP(Protel2004)及以后版本中已经有SMD贴片元件的封装库了,如 CC1005-0402:用于贴片电容,公制为1005,英制为0402的封装 CC1310-0504:用于贴片电容,公制为1310,英制为0504的封装 CC1608-0603:用于贴片电容,公制为1608,英制为0603的封装 CR1608-0603:用于贴片电阻,公制为1608,英制为0603的封装,与CC16-8-0603尺寸是一样的,只是方便识别。 【贴片电阻规格、封装、尺寸】 贴片电阻常见封装有9种,用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。下表列出贴片电阻封装英制和公制的关系及详细的尺寸:

【0201元器件的焊盘图形和间距】 0201元器件的焊盘图形和间距 有14种独特的0201元器件的焊盘图形和间距的组合形式,每一种用一系列数字来表示。 装配 ● 模板设计 例如用一个0.127mm (5 mil) 厚梯型激光切割的电抛光模板来满足电路板上的焊膏筛网印刷。因为焊膏的释放特性还不知道,一些焊盘的设计中包含有盘中孔,对其进行确定完全取决于常规的模板设计试验。结果所有的0201器件的孔隙被设计成:孔隙与焊盘的比例为1:1。因为在这块电路板上还包含有其它的元器件包括CCGA器件,一个0.127mm (5 mil)厚的模板可能是最薄的模板,没有设计成分级模板(step stencil)是为了防止损害到在板上的其它元器件的焊点。来自这项设计的长度与直径比(aspect ratios)数值在2.4至3.2之间。面积的纵横比(area aspect ratios)范围在0.72到0.85之间。根据这些数值可以预见优良的焊膏释放效果。 ●焊膏与涂布

贴片电阻封装英制和公制的关系及详细的尺寸

贴片电阻封装英制和公制的关系及详细的尺寸 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

贴片电阻封装英制和公制的关系及详细的尺寸 贴片电阻常见封装有9种,用两种尺寸代码来表示。一种尺寸代码是由4位数字表示的EIA(美国电子工业协会)代码,前两位与后两位分别表示电阻的长与宽,以英寸为单位。我们常说的0603封装就是指英制代码。另一种是米制代码,也由4位数字表示,其单位为毫米。下表列出贴片电阻封装英制和公制的关系及详细的尺寸: 英制(inch) 公制(mm) 长(L)(mm) 宽(W)(mm) 高 (t)(mm) a(mm)b(mm) 020106030.60±0.0 5 0.30±0.0 5 0.23±0. 05 0.10±0. 05 0.15±0. 05 040210051.00±0.1 0.50±0.1 0.30±0. 10 0.20±0. 10 0.25±0. 10 060316081.60±0.1 5 0.80±0.1 5 0.40±0. 10 0.30±0. 20 0.30±0. 20 080520122.00±0.2 1.25±0.1 5 0.50±0. 10 0.40±0. 20 0.40±0. 20 120632163.20±0.2 1.60±0.1 5 0.55±0. 10 0.50±0. 20 0.50±0. 20 121032253.20±0.2 2.50±0.2 0.55±0. 10 0.50±0. 20 0.50±0. 20 181248324.50±0.2 3.20±0.2 0.55±0. 10 0.50±0. 20 0.50±0. 20 201050255.00±0.2 2.50±0.2 0.55±0. 10 0.60±0. 20 0.60±0. 20 251264326.40±0.2 3.20±0.2 0.55±0. 10 0.60±0. 20 0.60±0. 20 贴片电容和贴片电阻都是一样可以用的,0805,1206等贴片电阻电容功率与尺寸对应表 电阻封装尺寸与功率关系,通常来说: 0201 1/20W 0402 1/16W 0603 1/10W 0805 1/8W 1206 1/4W

SMT常见贴片元器件封装类型和尺寸

1、SMT表面封装元器件图示索引(完善)

2、SMT物料基础知识 一. 常用电阻、电容换算: 1.电阻(R): 电阻:定义:导体对电流的阻碍作用就叫导体的电阻。 无方向,用字母R表示,单位是欧姆(Ω),分:欧(Ω)、千欧(KΩ)、兆欧(MΩ)1MΩ=1000KΩ=1000000Ω 1).换算方法: ①.前面两位为有效数字(照写),第三位表示倍数10n次方(即“0”的个数) 103=10*103=10000Ω=10KΩ 471=47*101=470Ω 100=10*100=10Ω 101=10×101=100Ω 120=12×100=12Ω ②.前面三位为有效数字(照写),第四位表示倍数倍数10n次方(即“0”的个数). 1001=100*101=1000Ω=1KΩ 1632=163*102=16300Ω=16.3KΩ 1470=147×100=147Ω 1203=120×103Ω=120KΩ 4702=470×102Ω=47KΩ

2.电容(C): 电容的特性是可以隔直流电压,而通过交流电压。它分为极性和非极性,用C表示。 2.1三种类型:电解电容钽质电容有极性, 贴片电容无极性。 用字母C表示,单位是法(F),毫法(MF),微法(UF),纳法(NF)皮法(PF) 1F=103MF=106UF=109NF=1012PF 2.2换算方法: 前面两位为有效数字(照写),第三位倍数10n次方(即“0”的个数) 104=10*104=100000PF=0.1UF 100=10*100=10PF 473=47×103=47000pF=47nF=0.047uF 103=10×103=10000pF=10nF=0.01uF 104=10×104=100000pF=10nF=0.1uF 221=22×101=220pF 330=33×100=33pF 2.3钽电容: 它用金属钽或者铌做正极,用稀流酸等配液做负极,用钽或铌表面生成的氧化膜做成介质制成,其特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好,用在要求较高的设备中。钽电容表面有字迹表明其方向、容值,通常有一条横线的那边标志钽电容的正极。钽电容规格通常有:A型、B型、C型、P型。 2.4 电容的误差表示 2.4.1常用钽电容代换参照表. 1UF:105、A6、CA6 2.2UF:225 3.3UF:335、AN6、CN6、JN6、CN69 4.7UF:475、JS6 10UF:106、JA7、AA7、GA7 22UF:226、GJ7、AJ7、JJ7 47UF:476 3. 电感(L) 电感的单位:亨(H)、毫享(MH)、微享(μH)、纳享(NH),其中:1H=103MH=106μH=109NH 片状电感 电感量:10NH~1MH 材料:铁氧体绕线型陶瓷叠层

贴片封装尺寸

各种贴片封装尺寸 贴片元件封装 SMT(Surface Mount Technology)是电子业界一门新兴的工业技术,它的兴起及迅猛发展是电子组装业的一次革命,被誉为电子业的”明日之星”,它使电子组装变得越来越快速和简单,随之而来的是各种电子产品更新换代越来越快,集成度越来越高,价格越来越便宜。为IT (Information Technology)产业的飞速发展作出了巨大贡献。 SMT零件 SMT所涉及的零件种类繁多,样式各异,有许多已经形成了业界通用的标准,这主要是一些芯片电容电阻等等;有许多仍在经历着不断的变化,尤其是IC类零件,其封装形式的变化层出不穷,令人目不暇接,传统的引脚封装正在经受着新一代封装形式(BGA、FLIP CHIP 等等)的冲击,在本章里将分标准零件与IC类零件详细阐述。 一、标准零件 标准零件是在SMT发展过程中逐步形成的,主要是针对用量比较大的零件,本节只讲述常见的标准零件。目前主要有以下几种:电阻(R)、排阻(RA或RN)、电感(L)、陶瓷电容(C)、排容(CP)、钽质电容(C)、二极管(D)、晶体管(Q)【括号内为PCB(印刷电路板)上之零件代码】,在PCB上可根据代码来判定其零件类型,一般说来,零件代码与实际装着的零件是相对应的。 1、零件规格: (1)、零件规格即零件的外形尺寸,SMT发展至今,业界为方便作业,已经形成了一个标准零件系列,各家零件供货商皆是按这一标准制造。 标准零件之尺寸规格有英制与公制两种表示方法,如下表 公制表示法 1206 0805 0603 0402 英制表示法 3216 2125 1608 1005 含义 L:1.2inch(3.2mm)W:0.6inch(1.6mm) L:0.8inch(2.0mm)W:0.5inch(1.25mm) L:0.6inch(1.6mm)W:0.3inch(0.8mm) L:0.4inch(1.0mm)W:0.2inch(0.5mm) 注:a、L(Length):长度; W(Width):宽度; inch:英寸 b、1inch=25.4mm (2)、在(1)中未提及零件的厚度,在这一点上因零件不同而有所差异,在生产时应以实际量测为准。 (3)、以上所讲的主要是针对电子产品中用量最大的电阻(排阻)和电容(排容),其它如电感、二极管、晶体管等等因用量较小,且形状也多种多样,在此不作讨论。 (4)、SMT发展至今,随着电子产品集成度的不断提高,标准零件逐步向微型化发展,如今最小的标准零件已经到了0201。 2、钽质电容(Tantalum) 钽质电容已经越来越多应用于各种电子产品上,属于比较贵重的零件,发展至今,也有了一

常用元件封装号

protel99常用元件的电气图形符号和封装形式: 1. 标准电阻:RES1、RES2;封装:AXIAL-0.3到AXIAL-1.0 两端口可变电阻:RES3、RES4;封装:AXIAL-0.3到AXIAL-1.0 三端口可变电阻:RESISTOR TAPPED,POT1,POT2;封装:VR1-VR5 2.电容:CAP(无极性电容)、ELECTRO1或ELECTRO2(极性电容)、可变电容CAPVAR 封装:无极性电容为RAD-0.1到RAD-0.4,有极性电容为RB.2/.4到RB.5/1.0. 3.二极管:DIODE(普通二极管)、DIODE SCHOTTKY(肖特基二极管)、DUIDE TUNNEL (隧道二极管)DIODE VARCTOR(变容二极管)ZENER1~3(稳压二极管) PROTEL元件封装总结 □ emcu 发表于2006-11-28 17:10:00 电阻AXIAL 无极性电容RAD 电解电容RB- 电位器VR 二极管DIODE 三极管TO 电源稳压块78和79系列TO-126H和TO-126V 场效应管和三极管一样 整流桥D-44 D-37 D-46 单排多针插座CON SIP 双列直插元件DIP 晶振XTAL1

电阻:RES1,RES2,RES3,RES4;封装属性为axial系列 无极性电容:cap;封装属性为RAD-0.1到rad-0.4 电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0 电位器:pot1,pot2;封装属性为vr-1到vr-5 二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率) 三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管) 电源稳压块有78和79系列;78系列如7805,7812,7820等 79系列有7905,7912,7920等 常见的封装属性有to126h和to126v 整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46) 电阻:AXIAL0.3-AXIAL0.7其中0.4-0.7指电阻的长度,一般用AXIAL0.4 瓷片电容:RAD0.1-RAD0.3。其中0.1-0.3指电容大小,一般用RAD0.1 电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。一般<100uF用 RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6 二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4 发光二极管:RB.1/.2 集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8 贴片电阻 0603表示的是封装尺寸与具体阻值没有关系 但封装尺寸与功率有关通常来说 0201 1/20W 0402 1/16W

元件封装尺寸

Encapsulation size 电容:可分为无极性和有极性两类,无极性电容下述两类封装最为常见,即0805、0603;而有极性电容也就是我们平时所称的电解电容,一般我们平时用的最多的为铝电解电容,由于其电解质为铝,所以其温度稳定性以及精度都不是很高,而贴片元件由于其紧贴电路版,所以要求温度稳定性要高,所以贴片电容以钽电容为多,根据其耐压不同,贴片电容又可分为A、B、C、D四个系列,具体分类如下: 类型封装形式耐压 A321610V B352816V C603225V D734335V 贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容的系列型号有0402、0603、0805、1206、1812、2010、2225、2512,是英寸表示法,04表示长度是0.04英寸,02表示宽度0.02英寸,其他类同 型号尺寸(mm) 英制尺寸公制尺寸长度及公差宽度及公差厚度及公差 04021005 1.00±0.050.50±0.050.50±0.05 06031608 1.60±0.100.80±0.100.80±0.10 08052012 2.00±0.20 1.25±0.200.70±0.20 1.00±0.20 1.25±0.20 12063216 3.20±0.30 1.60±0.200.70±0.20 1.00±0.20 1.25±0.20 12103225 3.20±0.30 2.50±0.30 1.25±0.30 1.50±0.30 18084520 4.50±0.40 2.00±0.20≤2.00 18124532 4.50±0.40 3.20±0.30≤2.50 22255763 5.70±0.50 6.30±0.50≤2.50 303576907.60±0.509.00±0.05≤3.00

SMD贴片元件的封装尺寸

SMD 贴片元件的封装尺寸贴片元件的封装尺寸 【SMD 贴片元件的封装尺寸贴片元件的封装尺寸】】 公制:3216——2012——1608——1005——0603——0402 英制:1206——0805——0603——0402——0201——01005 注意注意:: 0603有公制,英制的区分 公制0603的英制是英制0201, 英制0603的公制是公制1608 还要注意1005与01005的区分, 1005也有公制,英制的区分 英制1005的公制是公制2512 公制1005的英制是英制0402 像在ProtelDXP(Protel2004)及以后版本中已经有SMD 贴片元件的封装库了,如 CC1005-0402:用于贴片电容,公制为1005,英制为0402的封装 CC1310-0504:用于贴片电容,公制为1310,英制为0504的封装 CC1608-0603:用于贴片电容,公制为1608,英制为0603的封装 CR1608-0603:用于贴片电阻,公制为1608,英制为0603的封装,与CC16-8-0603尺寸是一样的,只是方便识别。 【贴片电阻规格贴片电阻规格、、封装封装、、尺寸尺寸】】 英制 (inch) 公制 (mm) 长(L) (mm) 宽(W) (mm) 高(t) (mm) a (mm) b (mm) 0201 0603 0.60±0.05 0.30±0.05 0.23±0.05 0.10±0.05 0.15±0.05 0402 1005 1.00±0.10 0.50±0.10 0.30±0.10 0.20±0.10 0.25±0.10 0603 1608 1.60±0.15 0.80±0.15 0.40±0.10 0.30±0.20 0.30±0.20

相关文档