文档库 最新最全的文档下载
当前位置:文档库 › 高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法
高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法

概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。

题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。

例1:甲、乙两人各射击一次,击中目标的概率分别是

32和4

3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.

(Ⅰ)求甲射击4次,至少1次未击中目标的概率;

(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;

(Ⅲ)假设某人连续2次未击中...

目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?

解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4

26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则

()223

23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。

故()22123313145444441024

P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.

(Ⅰ)求3个景区都有部门选择的概率;

(Ⅱ)求恰有2个景区有部门选择的概率.

解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.

(I)3个景区都有部门选择可能出现的结果数为!32

4?C (从4个部门中任选2个作为1组,

另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为

P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

和A 3,则事件A 3的概率为P(A 3)=

271334=,事件A 2的概率为P(A 2)=1-P(A 1)-P(A 3)=.2714271941=--解法二:恰有2个景区有部门选择可能的结果为).!2(32

414C C +?(先从3个景区任意选定2个,共有323=C 种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有!214?C 种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外

2个部门在另1个景区,共有24C 种不同选法).所以P(A 2)=.27143)!2(342424=+?C C 例3:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响

(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数)

解:记“甲理论考核合格”为事件1A ;“乙理论考核合格”为事件2A ;“丙理论考核合格”为事件3A ;记i A 为i A 的对立事件,1,2,3i =;记“甲实验考核合格”为事件1B ;“乙实验考核合格”为事件2B ;“丙实验考核合格”为事件3B ;

(Ⅰ)记“理论考核中至少有两人合格”为事件C ,记C 为C 的对立事件

解法1:()()123123123123

P C P A A A A A A A A A A A A =+++()()()()123123123123

P A A A P A A P A A A P A A A =+++0.90.80.30.90.20.70.10.80.70.90.80.7=??+??+??+??0.902=解法2:()()

1P C P C =-()123123123123

1P A A A A A A A A A A A A =-+++()()()()1231231231231P A A A P A A A P A A A P A A A ??=-+++??()

10.10.20.30.90.20.30.10.80.30.10.20.7=-??+??+??+??10.098=-0.902=所以,理论考核中至少有两人合格的概率为0.902

(Ⅱ)记“三人该课程考核都合格”为事件D

()()()()112233P D P A B A B A B =?????????()()()

112233P A B P A B P A B =?????()()()()()()

112233P A P B P A P B P A P B =?????0.90.80.80.80.70.9=?????0.254016=0.254

≈所以,这三人该课程考核都合格的概率为0.254

题型二:概率与排列组合、等差数列、等比数列的综合。

例4:将1,2,3,…,9,这9个数平均分成三组,则每组的三个数都成等差数列的概

率为(

)A 、156B 、170C 、1336D 、1420

解析:共有339633

280C C A ?=种分组的方法,三组的平均值可能是456,357,258,348,267,且各有一种分组的方法,所求的概率为5128056

=,故选A 例5:从原点出发的某质点M ,按照向量(1,0)=a 移动的概率为

5

3,按照向量(2,0)=b 移动的概率为52,设可到达点)0,(n 的概率为n P .(Ⅰ)求概率1P 、2P ;

(Ⅱ)求2+n P 与n P 、1+n P 的关系并证明数列{}12++-n n P P 是等比数列;

(Ⅲ)求n P .

解(Ⅰ)M 点到达点)0,1(的概率为5

31=P ;M 点到达点)0,2(的事件由两个互斥事件组成:①A=“M 点先按向量)0,1(=a 到达点)0,1(,再按向量(1,0)=a 到达点)0,2(”,此时2

53()(=A P ;

②B=“M 点先按向量(2,0)=b 移动直接到达点)0,2(”,此时5

2)(=B P 。=2P +)(A P =)(B P 2)53(52+25

19=(Ⅱ)M 点到达点)0,2(+n 的事件由两个互斥事件组成:①=+2n A “从点)0,1(+n 按向量(1,0)=a 移动到达点)0,2(+n ”,此时125

3)(++=n n P A P ;②=+2n B “从点)0,(n 按向量)0,2(=b 移动到达点)0,2(+n ”,此时n n P B P 52)(2=

+。n n n P P P 525312+=

∴++,即=-++12n n P P )(521n n P P --+∴数列{}12++-n n P P 是以25412=-P P 为首项,公比为52-的等比数列。(Ⅲ)由(Ⅱ)可知=-++12n n P P n n )52()52(2542-=--=-+n n P P 1152(--n =--1n n P P 2

52(--n ……=-12P P 2

)52(-n n P P 52()52()52(321-++-+-=-

111)52(7272])52(1[72521]52(1[52----+-=---=+---=n n n 11)5

2(723511)52(727253---+=-+-=∴n n n P 例6:设事件A 发生的概率为p ,若在A 发生的条件下发生B 的概率为'p ,则事件,A B 同时发生的概率为'p p ?根据这一事实解答下列问题:

一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3…,100,共101站,一枚棋子开始在第0站(即01p =)由棋手每掷一次硬币,棋子向前跳动一次,若出现正面,则棋子向前跳动一站,若出现反面则向前跳动两站;直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束。已知硬币出现正、反两面的概率相等,设棋子在跳跃的过程中经过第n 站的概率为n p 。

(1)求123

,,P P P (2)(2)设1(1100)n n n a P P n -=-≤≤,求证数列{n a }是等比数列。

(3)求玩游戏获胜的概率。

解析:(1)012311113113151,,,2222422428

P P P P =∴==?+==+?= (2)棋子跳到第n 站,必须是从第1n -站或第2n -站跳来的(2100)n ≤≤,所以

12112111,()222n n n n n n n P P P P P P P -----=

+∴-=--,11(2100),2n n a a n -∴=-≤≤且11012a P P =-=-,故{n a }是以公比为12-,首项为12-的等比数列。(30由(2)知1239910219998()()()

a a a a P P P P P P ++++=-+-++- =2999910011121()()()

)22232P -+-++-?=- ,所以获胜的概率为9910021(132

P =-例7:质点A 位于数轴0x =处,质点B 位于2x =处。这两个质点每隔1秒就向左或向右

移动1个单位,设向左移动的概率为13,向右移动的概率为23

。(Ⅰ)求3秒后,质点A 位于点1x =处的概率;(Ⅱ)求2秒后,质点,A B 同时在点2x =处的概率;

(Ⅲ)假若质点C 在0,1x x ==两处之间移动,并满足:当质点C 在0x =处时,1秒后必移到1x =处;当质点C 在1x =处,1秒后分别以

12

的概率停留在1x =处或移动到0x =处,

今质点C 在1x =处,求8秒后质点C 在1x =处的概率。

解析:(1)3秒后,质点A 到1x =处,必须经过两次向右,一次向左移动;

223214((339

P C ∴==(2)2秒后,质点,A B 同时在点2x =处,必须质点A 两次向右,且质点B 一次向左,一次向右;故12222116333381

P C =????=(3)设第n 秒后,质点C 在1x =处的概率为n x ,质点C 在0x =处的概率为n y 依题意知:

112n n n x x y +=

+,由1,n n x y +=得11111,32(32)()22n n n n x x x x ++=-∴-=--所以{32n x -}是首项为111323222x -=?-=-,公比为12-的等比数列。所以112()32n n x ??=+-????,81718,256n x ∴==;所以8秒后质点C 在1x =处的概率为171256

。题型三:概率与函数的综合。

例8:猎人在距离100米处射击一野兔,其命中率为

12,如果第一次射击未中,则猎人进行第二次射击,但在发射瞬间距离为150米,如果第二次射击又未中,则猎人进行第三次射击,且在发射瞬间距离200米,已知猎人的命中的概率与距离的平方成反比,求猎人命中野兔的概率。

解析:记三次射击命中野兔的事件依次为,,A B C ,由1(),2P A =且2(),100k P A =则21,50002100k k =∴=,于是225000250001(),()15092008

P B P C ====猎人命中野兔的事件为:,A A B A B C +?+??又,,A A B A B C ???为互斥事件,且,;,,A B A B C 都是相互独立事件;故所求概率为()()()

P P A P AB P ABC =++=()()()()()()P A P A P B P A P B P C +?+??=11212195(1)(1)(1)229298144

+-?+--?=例9:袋中有红球和白球100个,从这只袋中任取3只,问袋中有几个红球时,使取得的3个球全为同色的概率最小?

解:设,x y 分别为红球,白球的个数,则有100,,x y x y N *

+=∈,从100个球中任取3个球,全为红色球的概率为313100(1)(2)1009998

x C x x x P C ?-?-==??;从100个球中任取3个球全为白色的概率为323100(1)(2)1009998

y

C y y y P C --==??,所以取得3个同色球的概率为

12(1)(2)(1)(2)1009998x x x y y y P P P --+--=+=??=3322()3()2()970200

x y x y x y +-+++=297020029410019702003300

xy x x --=+=211(50)25003300x ??+--??;50x ∴=当时,P 最小,此时833P =。【点评】此题是一道集等可能事件概率,互斥事件和的概率,二次函数于一体的一道综合题。题型四:概率与不等式的结合。

例10:如图:每个电子元件能正常工作的概率均为(01)P P ,问甲、乙两个系统那个正常工作的概率大?

解:22241(1)2;

P P P P =--=-甲2222221(1)(2)(44)

P P P P P P P ??=--=-=-+??乙22222(244)2(1)0P P P P P P P P -=--+-=-- 乙甲所以,乙正常工作的概率较大。

例11:北京某公司招聘员工,指定三门考试课程,有两种考试方案,方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过。假定某应聘者对三门课程的考试及格的概率分别为,,a b c ,且这三门课程考试是否及格相互之间没有影响。

(1)分别求应聘者用方案一和方案二时考试通过的概率;

(2)试比较应聘者在上述两种方案下考试通过的概率的大小;

解:记应聘者对三门课程考试及格的事件分别为,,A B C ,则(),(),()P A a P B b P C c

===(1)应聘者用方案一,考试通过的概率1()()()()P P ABC P ABC P ABC P ABC =+++=(1)(1)(1)abc a bc a b c ab c +-+-+-=2ab bc ac abc

++-应聘者用方案二,考试通过的概率为

21111()()()()3333

P P A B P B C P A C ab bc ac =?+?+?=++(2)[],,0,1a b c ∈ ,

122()23P P ab bc ac abc ∴-=

++-=[]2(1)(1)(1)03

a bc a

b

c ab c -+-+-≥,所12P P ≥,该应聘者采用方案一通过考试的概率较大。

总之,概率是新教材中的一个重要内容,在现实生活中应用广泛,同时它和排列、组合、函数、数列、不等式等都有着密切联系,在今后的高考中,概率在知识交汇点处命题可能性很大,请大家引起注意。

(甲)

(乙)

高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法 概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。 题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。 例1:甲、乙两人各射击一次,击中目标的概率分别是 32和4 3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中... 目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少? 解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4 26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()223 23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。 故()22123313145444441024 P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率. 解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为!32 4?C (从4个部门中任选2个作为1组, 另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高三数学 深入分析高考中概率试题的特点与解题方法

深入分析高考中概率试题的特点与解题方法 1 概率试题的特点 (1)密切联系教材,试题通常是通过对课本原题的改编,通过对基础知识的重新组合、拓广,从而成为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题. (2)概率试题与其它数学试题有着明显的区别,它具有一定的应用性.近三年来出现过三种类型:一是课本中出现的,从实际生活中概括出来的;二是与横向学科有联系的问题;三是赋予时代气息的数学问题. (3)概率试题中注重了对四个基本公式的考查,即对等可能性事件的概率;互斥事件的概率加法公式;独立事件的概率乘法公式;事件在n次独立重复试验中恰发生k次的概率的考查. 2 概率试题的解题分析 2.1 通过对事件的理解与把握来解决问题 例1 (2000年新课程卷第17题)甲乙两人参加普法知识竞赛,其中选择题6个,判断题4个,甲、乙二人依次各抽一题. (Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少? 分析本题是一个等可能性事件的概率问题.同时注意到“甲、乙二人依次各抽一题”在解题中的作用,于是可利用排列知识及等可能事件的概率公式加以求解. 2.2 通过应用分类讨论的思想来解决问题 例2 (2002年新课程卷第19题)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立). (Ⅰ)求至少3人同时上网的概率; (Ⅱ)至少几人同时上网的概率小于0.3? 分析本题可应用分类讨论的思想将问题(Ⅰ)“至少3人同时上网的概率”转化为恰有3人同时上网,恰有4人同时上网,恰有5人同时上网,恰有6人同时

上网的四种类型,再结合相互独立事件同时发生或互斥事件有一个发生的概率的计算方法加以求解.同时问题(Ⅰ)的解决为第二问的求解做好了铺垫. 2.3 通过合理运用公式()1()P A P A =-来解决问题 例3 (2000年新课程卷第18题)用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作,当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90,分别求系统N 1、N 2正常工作的概率. 分析 系 统N 1正常工作的概率由物理串联知识结合独立事件的乘法公式即可求得;而系统N 2正常工作的概率由“当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作”可知,必须分成三类:一元件A 、B 正常工作,元件C 不正常工作;二元件A 、C 正常工作,元件B 不正常工作;三元件A 、B 、C 都正常工作.在解题时容易遗漏第三种情况,且忘记不正常工作的元件,导致解题错误.但若我们合理使用公式()1()P A P A =-,则系统N 2正常工作的概率可以看成元件A 正常工作,元件B 、C 都不正常工作的对立事件的概率,从而可以简化计算过程. 3 概率试题对高考复习的启示 3.1 在复习中,不能因为概率这部分是新增加的内容而加以忽视,也不能因为概率与排列、组合同在一个章节,认为只可能出现填空、选择题的类别.因为从近三年的试卷看到,每年均有一个概率解答题,所以在复习中应引起足够的重视. 3.2 在复习中,应充分研究大纲、考纲,使学生做到:(1)五个了解,即了解随机事件的统计规律性;随机事件的概率;等可能事件的概率;互斥事件;相互独立事件.(2)四个会,即会用排列组合基本公式计算等可能事件的概率;会用互斥事件的概率加法公式计算事件的概率;会用独立事件的概率乘法公式计算事件的(N 1 (N 2

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学概率大题

高中数学概率大题(经典二)一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (Ⅲ)当p1=,p2=时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ. 3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师

和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;(Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 7 8 B班 6 7 8 9 10 11 12

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

高中数学概率大题(经典二)

高中数学概率大题(经典二) 一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由老师和老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设老师和老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到老师或老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到老师或老师所发活动通知信息的概率; (II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ; (Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 6.5 7 7.5 8 B班 6 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (Ⅰ)试估计C班的学生人数; (Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润. (Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

高中理科数学解题方法篇(概率与数据)

概率与数据 概率 1.随机事件的概率,其中当时称为必然事件;当时称为不可能事件P(A)=0; 2.等可能事件的概率(古典概率): P(A)=。理解这里m、n的意义。比如: (1)将数字1、2、3、4填入编号为1、2、3、4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是______(答:); (2)设10件产品中有4件次品,6件正品,求下列事件的概率:①从中任取2件都是次品;②从中任取5件恰有2件次品;③从中有放回地任取3件至少有2件次品;④从中依 次取5件恰有2件次品。(答:①;②;③;④) 3、互斥事件:(A、B互斥,即事件A、B不可能同时发生)。计算公式:P(A+B)=P(A)+P(B)。比如: (1)有A、B两个口袋,A袋中有4个白球和2个黑球,B袋中有3个白球和4个黑球,从A、B袋中各取两个球交换后,求A袋中仍装有4个白球的概率。(答:); (2)甲、乙两个人轮流射击,先命中者为胜,最多各打5发,已知他们的命中率分别为0.3和0.4,甲先射,则甲获胜的概率是(0.425=0.013,结果保留两位小数)______(答:0.51); (3)有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t无关,统计得

到,那么在某一时刻,这个公用电话亭里一个人也没有的概率P(0)的值是(答:) 4、对立事件:(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生)。计算公式是:P(A)+ P(B)=1;P()=1-P(A); 5、独立事件:(事件A、B的发生相互独立,互不影响)P(A?B)=P(A) ? P(B) 。提醒: (1)如果事件A、B独立,那么事件A与、与及事件与也都是独立事件; (2)如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1-P(A B)=1-P(A)P(B); (3)如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1-P() =1-P()P()。比如: ①设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是______(答:); ②某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为_____________;这名同学至少得300分的概率为_____________(答:0.228;0.564); ③袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是________(答:);

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学大题规范解答-全得分系列之十概率与统计的综合问题答题模板

概率与统计是高中数学的重要学习内容,在高考试卷中,每年都有所涉及,以解答题形式出现的试题常常设计成包含概率计算,统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,注重考查基础知识和基本方法;以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算. “大题规范解答——得全分”系列之(十) 概率与统计的综合问题答题模板 [典例](2012辽宁高考改编·满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. (1)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关? 非体育迷体育迷合计 男 女 合计 (2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率. 附K2=n(ad-bc)2 (a+b)(c+d)(a+c)(b+d) ,

P (K 2≥k ) 0.05 0.01 k 3.841 6.635 [教你快速规范审题] 1.审条件,挖解题信息 观察 条件 ―→ 100名观众收看节目时间的频率分布直方图及日均收看时间不低于40分钟的观众称为体育迷,女体育迷10名 ??????→ 借助直方可确定图非体育迷及 体育迷人数 2.审结论,明解题方向 观察所求结论―→完成2×2列联表并判断“体育迷”与性别的相关性 ???→ 需要确定a ,b ,c ,d 及K 2的值 3.建联系,找解题突破口 由直方图及条件确定体育迷与非体育迷人数―→完成列联表―→ 计算K 2可判断结论 1.审条件,挖解题信息 观察条件―→确定“超级体育迷”标准且有2名女性“超级体育迷” ??????→由率分布直方频图 确定“超级体育迷”的人数 2.审结论,明解题方向 观察所求结论―→从“超级体育迷”中任取2人求至少有1名女性观众的概率 ????→ 分分析类1名女性观众或两名女性观众 3.建联系,找解题突破口 由频率分布直方图确定“超级体育迷”的人数?????→列法列出 举举

概率习题精选精讲

概 率 (1)随机事件——概率学把“可能性”引进数学 在概率学中,我们称一定发生的事件为必然事件,不可能发生的事件是不可能事件,可能发生也可能不发生的事件是随机事件. 概率也就是事件发生的可能性.所以必然事件的概率是1,不可能事件的概率是0,而随机事件的概率在区间(0,1)之中. 【例1】 同时掷两枚骰子,则以下事件各是什么事件? (1) 点数之和是正整数; (2) 点数之和小于2; (3) 点数之和是3的倍数. 【解析】(1)是必然事件,(2)是不可能事件;(3)是随机事件. (2)等可能事件——概率公式的起源 如果一次试验中可能出现的结果有n 个,而且这n 个结果出现的可能性相同,则称这类事件为等可能事件.由此导出基本概率公式是: ()m P A n = .(其中n 和 m 分别表示基本事件总数和事件A 发生的次数.) 【例2】将一枚骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为 ( ) A. 19 B. 112 C.1 15 D. 1 18 【解析】抛掷一枚骰子后,出现任何一面的可能性相同.所以本题属于等可能事件. 一枚骰子连续抛掷三次,则基本事件总数3 6 216n ==;设事件A ;连掷3次所得点数依次成等差数列,那么3数相等时有111, 222,…666等六种;3数不相等时有123,234,345,456,135,246及其反序数等12个.于是事件A 发生的次数61218m =+=种. 故()181 21612 P A = =.选B. (3)互斥事件——概率的加法原理 在某种试验中,不能同时发生的事件称为互斥事件.如果A 、B 是互斥事件,那么: ()()()P A B P A P B ?=+. 【例3】在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A . 310 B .15 C .110 D .112 【解析】设小球标注的数字之和为3与6的事件分别为A 、B.显然A 与B 不能同时成立,是互斥事件. 由于基本事件总数 2 510.n C ==事件 A 只有1+2=3一种,;事件 B 有1+5=2+4=6两种,.∵A 与B 互斥, ()()()12 3 10 10 P A B P A P B +∴?=+= =.选A. (4)对立事件——两互斥事件的特写 在一次试验中,如果事件A 与B 一定恰有一个发生,则称事件A 与B 是对立事件. 注意对立事件必然互斥,但是互斥事件不一定对立. 一般地,记A 的对立事件为 A .由于A 与A 具有互补性,所以()()1P A P B +=.这是简化概率计算的基本公式. 【例4】8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,这两个强队被分在一个组内的概率是多少? 【解析】 我们用a 、b 分别记八个队中的两个强队. 令C =“a 队与b 队分在同一组”, 则C =“a 队与b 队不在同一组”. a 队与 b 队不在同一组,只能分成两种情况:a 队在第一组,b 队在第二组,此时有C 3 6·C 3 3=C 3 6种分法;a 队在第二组,b 队在第一

相关文档
相关文档 最新文档