文档库 最新最全的文档下载
当前位置:文档库 › 课本一道数学习题的多种解法

课本一道数学习题的多种解法

课本一道数学习题的多种解法
课本一道数学习题的多种解法

课本一道数学习题的多种解法

教材P-87例4 求CD的长。

图1图2

解法一:辅助线如图所示,解得CE=

,所以CD=

解法二:将三角BCD绕点D逆时针旋转90度,则三角形DCE为等要直角三角形,

CE=6+8=14,所以CD=

解法三:辅助线如图,则四边形DECF 为正方形,设AE=BF=x,解得x=1,

所以DE=DF=CE=CF=7,所以

CD=

B A

B

B

新编【人教A版】高中数学:必修2课本例题习题改编(含答案)

A A ' B B ' C C ' 2 3 新编人教版精品教学资料 2015版人教A 版必修2课本例题习题改编 湖北省安陆市第一高级中学 伍海军 597917478@https://www.wendangku.net/doc/041972125.html, 1.原题(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称. 改编 如图是一个几何体的三视图(单位:cm ) (Ⅰ)画出这个几何体的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积及体积; (Ⅲ)设异面直线AA '与BC '所成的角为θ,求cos θ. 解:(Ⅰ)这个几何体的直观图如图23-2所示. (Ⅱ)这个几何体是直三棱柱. 由于底面ABC ?的高为1,所以2 2 112AB =+=. 故所求全面积22ABC BB C C ABB A S S S S ''''?=++ 1 221322328622 =???+?+??=+2(cm ). 这个几何体的体积121332 ABC V S BB ?'=?=???=3 (cm ) (Ⅲ)因为//AA BB '',所以AA '与BC '所成的角是B BC ''∠. 俯视图 A 正视图 侧视图 A ' B B 'A B C A B C A ' B ' C ' 1 2 3 11 3 正视图 侧视图 俯视图

2 P P 正视图 侧视图 O O O ' O ' 2 2 22 2 2 2 俯视图 P O O ' 在Rt BB C ''?中,22223213BC BB B C ''''=+=+=,故33 cos 1313 13BB BC θ'= =='. 2.原题(必修2第28页例3)如图,已知几何 体的三视图,用斜二测画法画出它的直观图. 改编1 如图,已知几何体的三视图(单位:cm ). (Ⅰ)画出它的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积和体积. 解:(Ⅰ)这个几何体的直观图如图所示. (Ⅱ)这个几何体是一个简单组合体,它的下部是 一个圆柱(底面半径为1cm ,高为2cm ),它的上部 是一个圆锥(底面半径为1cm ,母线长为2cm ,高为 3cm ). 所以所求表面积2 1212127S ππππ=?+??+??=2 (cm ), 所求体积221 3 1213233 V ππππ=??+???=+ 3(cm ). 3.原题(必修2第30页习题1.3B 组第三题)分别以一个直角三角形的斜边,两直角边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,画出它们的三视图和直观图,并探讨它们体积之间的关系。 改编 已知直角三角形ABC ,其三边分为c b a ,,,(c b a >>).分别以三角形的a 边,b 边,c 边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为321,,S S S 和 321,,V V V ,则它们的关系为 ( ) A .321S S S >>, 321V V V >> B .321S S S <<, 321V V V << C .321S S S >>, 321V V V == D .321S S S <<, 321V V V == 解:a a bc V c b a bc S 211)(31),)(( ππ=+=,22223 1 ,bc V c ac S πππ=+= , c b V b ab S 23233 1 ,πππ=+=, 选B. 4.原题(必修2第32页图像)改编 如图几何体是圆柱挖去一个同底等高的圆锥所得,现用一个竖直的平面截这个几何体,所得截面可能是:

一道课本三角习题的多解和变式探究

一道课本三角习题的多解和变式探究 罗文军 刘娟娟 (甘肃省秦安县第二中学,741600)(甘肃省秦安县郭嘉镇槐川中学,741609) 在历年高考真题中,有部分解三角形试题以对角互补的四边形为载体(例如2014年新课标Ⅱ卷文科第17题和2015年四川卷理科19题).主要考查余弦定理、三角形面积公式和三角恒等变换等知识,考查函数与方程、数形结合和化归与转化的思想,考查推理论证能力和运算求解能力,旨在考查学生的逻辑推理和数学运算的核心素养,具有很好的区分度和选拔功能.从源头来看,这类试题可以看成如下的源自苏教版课本必修5第11章解三角形第17页习题11.2的第13题. 题目、如图1,已知圆内接四边形ABCD 的边长分别为2AB =, 6BC =,4AD CD ==,如何求出四边形ABCD 的面积? 本文对这道课本习题探究和变式探究,以期达到对学生解答这 类以对边互补的四边形为载体的解三角形问题求解起引导作用. 一、解法探究 将四边形问题转化为解三角形问题是所有解法探求的关键,在已知四边形四条边长的基础上,求某个内角大小是解题的主攻方向,掌握这两点,问题可迎刃而解. 分析1、连对角线BD ,将四边形分解成ABD ?和BCD ?.注意对角互补关系180A C +=o ,分别运用余弦定理表示出公共边BD ,解方程组可得cos A ,从而得到A 和C 的度数.明确了ABD ?和BCD ?的两边一角之和,利用三角形面积公式可得解. 解法1、如图2,连结BD .在ABD ?、BCD ?中分别应用余弦定理,可得 22222224224cos 64264cos BD A BD C ?=+-????=+-???? 因为四边形ABCD 为圆内接四边形,有180A C +=o ,从而 222016cos 5248cos BD A BD A ?=-??=+??,可得1cos 2A =-,120A =o ,所以60C =o . 于是1124sin12064sin 608322 ABD BCD ABCD S S S ??=+=???+???=o o 四边形. 解法2、如图3,在BC 边上取点E ,使得BE BA =,连结DE 合BD .

高中数学一道课本习题的应用——谈基本不等式的延伸

一道课本习题的应用 严兆永 (南京外国语学校仙林分校 210046) 苏教版《普通高中课程标准实验教科书(必修5)》第98页第14题:“…,试研究线段 GH ,KL ,EF ,MN 与代数式2a b + 211a b + 之间的关系,…”. 能够得到结论:2 211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立. 这是对课本第十三章第四节“基本不等式”的整理和引申,定理本身的证明在此不再重复.笔者结合自己的教学实践,谈谈这道题的结论在求最值和不等式证明中的应用. 一、求最大(小)值 【例1】若,x y 恒成立,则a 的最小值是 . 分析:由题意有y x y x a ++≥恒成立,转化为求 y x y x ++的最大值,由基本不等式有 22)()(222y x y x y x +=+≤+,故2≤++y x y x ,所以2≥a . 评析:熟练掌握基本不等式的结构特征,能透过表象看本质,方能求得最值得结果. 【例2】若12311,,, ,a a a a 成等差数列,且22111100a a +≤,则1121a a a S +++= 的最 大值为 . 略解:111102111a a a a a a +==+=+ , )(11)(221111121a a a a a S +=+++=∴ , 由“基本不等式”2 222b a b a +≤+有:210221121111≤+?≤+a a a a ,当且仅当111a a =时取等号,故255≤S ,即1121a a a S +++= 的最大值为255. 评析:倒序相加,由等差数列的性质为基本不等式的运用做好准备. 【例3】已知0>x ,0>y ,且1=+y x ,则y x 14+的最小值为 . 错解:xy xy y x 144214=≥+,又xy y x 21≥+=,得21≤xy ,有21≥xy ,所以y x 14+的最小值为8.

不等式的解法典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

一道课本例题的探究开发

一道课本例题的探究开发 663312云南省广南县篆角乡中心学校 陆智勇 课本的例题不仅仅是传授知识、巩固方法、培养能力、积淀素养的载体,如果我们对它们进行特殊联想、类比联想、可逆联想和推广引申,这些例题也可作为探究教学的重要材料。笔者尝试着从课本例题入手,合理开发课本例题,引导学生反思、深化与推广,并结合数学探究教学作了初步的探讨. 题目:如图(1),AD 是△ABC 的高,点P,Q 在BC 上,点R 在AC 上,点S 在AB 上,边BC=60cm ,高AD=40cm,四边形PQRS 是正方形. (1)相似吗?与ABC ASR ?? (2)求正方形PQRS 的边长. 分析:由于四边形PQRS 为正方形,所以SR ∥BC ,故ASR ?∽ABC ?.利用相似三角形对应高的比等于相似比列方程求解. 解:(1)ASR ?∽ABC ?.理由: 是正方形,因为PQRS 所以SR ∥BC. 所以 .,ACB ARS ABC ASR ∠=∠∠=∠ 所以ASR ?∽ABC ? . (2)由(1)可知ASR ?∽ABC ?.根据“相似三角形对应高的比等于相似比,可得 设正方形PQRS 的边长 为 AE=(40- χ )cm, 所以 解得: 所以正方形PQRS 的边长为24cm. 此题是北师大版九年义务教育课程标准实验教科书八年级数学下册第147页 .BC SR AD AE =,cm χ. 24=χ60 4040χχ= -

的一道例题。该题是典型的利用“相似三角形对应高的比等于相似比”解决实际问题的例题。笔者在教学过程中没有停留在问题的解决上,而是以此题为切入口,精心设计了一组变式,恰当设置问题梯度,使难易程度尽量贴近学生的最近发展区,使设计的问题触及学生的兴奋点,把学生从某种抑制状态下激奋起来,使之产生一种一触即发的效果。 变式1:如图(2),△ABC 的内接矩形EFGH 的两邻边之比EF :FG=9:5,长边在BC 上,高AD=16cm,BC=48cm,求矩形EFGH 的周长。 分析:因为EFGH 为矩形,则AN ⊥HG.这样△AHG 的高可写成AD-DN=AD-FG.再由△AHG ∽△ABC ,即可以找到HG、FG与已知条件的关系,求出矩形EFGH 的周长. 解:因为EFGH 为矩形,所以HG ∥EF,HG=EF. 所以△AHG ∽△ABC. 所以 则 解得: 所以矩形EFGH 的周长为56cm. 变式2:如图(3),已知边长为10cm 的等边三角形ABC ,内接正方形HEFG 。求正方形HEFG 的面积。 分析:因为AD 是等边三角形ABC 的高,所以根据等腰三角形的三线合一性质可以求出AD 的长,由△AEH ∽△ABC,可得相似三角形对应高的比等于相似比,即可求出正方形的面积。 . AD AN BC HG =.5,9χχ==FG EF 设16516489χχ-=. 2=χ

最新人教版 高中数学必修一课后习题配套答案

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版

习题1.2(第24页)

练习(第32页) 1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值, 而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.解:图象如下 [8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设 12,x x R ∈,且12x x <, 因为 121221()()2()2() 0f x f x x x x x -=--=->, 即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数. 5.最小值. 练习(第36页)

1.解:(1)对于函数 42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数; (2)对于函数 3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数 3()2f x x x =-为奇函数; (3)对于函数 21 ()x f x x +=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有 22()11 ()()x x f x f x x x -++-==-=--, 所以函数21 ()x f x x +=为奇函数; (4)对于函数 2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数 2()1f x x =+为偶函数. 2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的. 习题1.3(第39页) 1.解:(1) 函数在5(,)2-∞上递减;函数在5 [,)2 +∞上递增; (2)

由一道课本例题带来的日常教学思考

由一道课本例题带来的日常教学思考 发表时间:2013-06-13T09:29:21.560Z 来源:《少年智力开发报》2013学年36期供稿作者:张进辉 [导读] 从学生能力发展的要求来看,形成数学概念(或定义),提示其内涵与外延,比数学概念(或定义)本身更重要。 江西省抚州市东乡二中张进辉 对数学问题多种解法的不懈追求,体现了数学思维的深刻性、发散性、变通性、灵活性、流畅性和开放性.本文介绍一道课本习题的多解、推广、反思. 一、课本上的一道例题: 浙教版八上《3.2直棱柱的表面展开图》P58 书本例题:如图,有一长方体形的房间,地面为边长4米的正方形,房间高3米.一只蜘蛛在A处,一只苍蝇在B处. ⑴试问,蜘蛛去抓苍蝇需要爬行的最短路程是多少? ⑵若苍蝇在C处,则最短路程是多少? 问题解决——谜底: 二、例题教学后的反思: 对于立方体表面展开图这个概念的形成,由于很难下一个简洁明了的定义,所以课本先安排了一个合作学习的栏目,让学生把一个立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,得到一些平面图形,然后再通过体例、练习和作业题来理解概念,进一步迁移到其他直棱柱的表面展开图。 从学生能力发展的要求来看,形成数学概念(或定义),提示其内涵与外延,比数学概念(或定义)本身更重要。当学生对于概念、定义有了初步理解(或了解),但这种理解还不十分稳定、清晰的时候,可以在变式中辨别是非。在复习概念(或定义)的教学过程中,利用问题变式可加速加深学生对概念的理解,巩固所学知识,提高学习的兴趣和积极性,从而培养学生阅读理解、观察与分析、抽象与概括等能力。 三、题目变式教学 题目变式包括条件的探究(增加、减少或变更条件)、结论的探究(结论是否唯一)、数与形的探究、引申探究(命题是否可以推广)等。在解题复习课或试卷讲评课的教学中,利用问题变式可使学生掌握姊妹题甚至一类题的解法,从而使学生运用数学思想方法去分析问题和解决问题的能力得到提高,探究创新的能力得到发展。. 变式1:如图1,有一个圆锥粮仓,其正视图为边长是 6em的正三角形。粮仓的母线AC的中点P处有一老鼠正在偷吃粮食。此时,小猫正在B处,它要沿粮仓侧面到达 P处捕捉老鼠,求小猫所经过的最短路程的长。 变式2:如图2所示的圆柱体中,底面圆的半径是 1,高为2。若一只蚂蚁从A点出发沿着圆柱体的侧面爬行到C点,则蚂蚁爬行的最短

对一道课本试题的变式

对一道课本习题的变式、推广与思考 波利亚指出:“拿一个有意义又不复杂的题目去帮助学生发掘问题的各个方面,使得通过这个题目就好像通过一道门户,把学生引入一个完整的领域。” 题目:已知ABC ?两个顶点()()0,6,0,6B A -,边BC AC ,所在直线的斜率之积等于9 4-,求顶点C 的轨迹方程。(北师大版数学选修2-1第三章§1椭圆习题3-1A 组第8题) 一、动手实践,掌握方法 解析:设()y x C ,,则直线BC AC ,的斜率分别是()6,66 ,621-≠≠-= +=x x x y k x y k , 根据题意,9 4 21- =?k k ,所以 9 4 362 2-=-x y ,化简,得()6,6116362 2 -≠≠=+x x y x 所以顶点C 的轨迹是椭圆,去掉左右顶点。 评析:(1)典型的用直接法求动点的轨迹方程,注意6,6-≠≠x x ,一方面它保证了直线BC AC ,的斜率的存在性,另一方面符合C 为ABC ?的一个顶点,C B A ,,不能共线。 (2)题目的几何条件包括“两个定点、一个动点、一个定值,两条直线的斜率,一个等量关系”。 (3)轨迹是椭圆,去掉左右顶点。 二、引进参数,化静为动 变式1、已知两个定点()()()00,,0, a a B a A -,动点C 满足直线BC AC ,的斜率之积等于()0≠m m ,试讨论动点C 的轨迹。 分析:首先确定动点C 的轨迹方程,然后依据方程判定它的轨迹。 解析:设()y x C ,,则直线BC AC ,的斜率分别是 a x y k a x y k -=+= 21,,()a x + - ≠,根据题意,m k k =?2 1 , 所以m a x y =-2 22,化简,得动点C 的轨迹方程122 22=-ma y a x ,所以 1、当0 m 时,动点C 的轨迹是焦点在x 轴上的双曲线,去掉它的两个顶点; 2、当0 m 时 (1)若1-=m ,则动点C 的轨迹方程为2 2 2 a y x =+,所以它的轨迹是圆心在原点,半径为a 的圆,去掉 与x 轴的两个交点; (2)当01 m -时,2 2ma a - ,所以动点C 的轨迹是焦点在x 轴上的椭圆,去掉左右顶点; (3)当1- m 时,2 2ma a - ,所以动点C 的轨迹是焦点在 y 轴上的椭圆去掉左右顶点。 评析:引进参数,化静为动,培养学生分类讨论的数学思想,发展学生的数学思维能力。注意到变式1并没有改变题目中的几何关系,但是参数值及它的的符号决定了轨迹的不同形式——圆、椭圆、双曲线,这也从一个侧面说明三种曲线之间有着内在的联系,可以想象当参数m 由()+∞→≠→-→∞-001变化时,动点 c 的轨迹由焦点在y 轴上的椭圆,变为圆,再变为焦点在x 轴上椭圆,然后蜕变为焦点在x 轴上的双曲线,

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线 z=2 x 1+x 2与约 束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

人教版高中数学全套教材例题习题改编(高考必做,高考题来源)

人教A 版必修1课本例题习题改编 1.原题(必修1第七页练习第三题(3))判断下列两个集合之间的关系:A={} {}|410|20,x x x N B x x m m N ++∈==∈是与的公倍数,, 改编 已知集合4x x M x N N **??=∈∈????且10,集合40x N x Z ?? =∈???? ,则( ) A .M N = B .N M ? C .20x M N x Z ?? =∈???? D .40x M N x N *?? =∈???? 解:{}20,M x x k k N *==∈, {} 40,N x x k k Z ==∈,故选D . 2.原题(必修1第十二页习题1.1B 组第一题)已知集合A={1,2},集合B 满足A ∪B={1, 2},则这样的集合B 有 个. 改编1 已知集合A 、B 满足A ∪B={1,2},则满足条件的集合A 、B 有多少对?请一一写出来. 解:∵A ∪B={1,2},∴集合A ,B 可以是:?,{1,2};{1},{1,2};{1},{2};{2},{1,2};{2},{1};{1,2},{1,2};{1,2},{1};{1,2},{2};{1,2},?.则满足条件的集合A 、B 有9对. 改编2 已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个 解:子集个数有2n 个,真子集个数有21n -个 改编3 满足条件 {}{} 1,21,2,3A =的所有集合A 的个数是 个 解:3必须在集合A 里面,A 的个数相当于2元素集合的子集个数,所以有4个. 3.原题(必修1第十三页阅读与思考“集合中元素的个数”)改编 用C(A)表示非空集合A 中的元素个数,定义 ?? ?<-≥-=*C(B) C(A)当C(A),C(B)C(B) C(A)当C(B),C(A)B A ,若 {}{} 02)ax ax)(x (x x B ,1,2A 22=+++==,且1B A =*,则由实数a 的所有可能取值构 成的集合S = . 解:由{ }2C(A)1,2A ==得,而1B A =*,故3C (B )1C (B )==或.由02)ax ax )(x (x 22=+++得02)ax (x 0ax )(x 22=++=+或. 当1C(B)=时,方程02)ax ax )(x (x 2 2 =+++只有实根0x =,这时0a =.

值域的解法及例题

一、配方法 适用类型:二次函数及能通过换元法等转化为二次函数的题型. 【例1】求函数的值域. 解:为便于计算不妨: 配方得: , 利用二次函数的相关知识得,从而得出: . 【例2】已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0),求函数y的最小值. 解析:y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a2-2. 令t=ex+e-x,f(t)=t2-2at+2a2-2. ∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为[2,+∞). ∵抛物线y=f(t)的对称轴为t=a, ∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2; 当a>2时,ymin=f(a)=a2-2. 练习○1 求y = sin2x - 6sinx + 2值域. ○2 当1≤x≤1000时,求y=(lgx)2-2lgx+3值域. 二、换元法 【例3】求函数的值域. 适用类型:无理函数、三角函数(用三角代换). 解析:由于题中含有不便于计算,但如果令:注意从而得:变形得即: 【例4】设a,b∈R,a2+2b2=6,则a+b的最小值是______. 解:∵a,b∈R,a2+2b2=6, ∴令a=6cosα,2b=6sinα,α∈R. ∴a+b=6cosα+3sinα=3sin(α+φ). ∴a+b的最小值是-3;故填-3. 练习○3 已知是圆上的点,试求的值域. 三、反函数法(变量分类法) 【例5】求函数的值域. 解:原式中x∈R,将原式化为由○1解出x,得;(也可由直接得到) 因此函数值域是(-1,1) 四、不等式法 利用不等式法求解函数最值,主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种: a2+b2≥2ab(a,b为实数);a+b2≥ab(a≥0,b≥0);ab≤a+b22≤a2+b22(a,b为实数). 【例6】设x,y,z为正实数,x-2y+3z=0,则的最小值为________. 解析:因为x-2y+3z=0,所以y=x+3z2,因此y2xz=x2+9z2+6xz4xz. 又x,z为正实数,所以由基本不等式,得y2xz≥6xz+6xz4xz=3,当且仅当x=3z时取“=”.

一道课本例题的探究与拓展

在运动中探索在变化中思考 江苏省东台市五烈镇中学杨荫林 (获2013江苏省教育科学研究院中学数学组二等奖) 摘要在我们自主学习,合作交流中,要认真观察、实验、归纳,大胆提出猜想。为了证实或推翻提出的猜想,我们要通过分析,概括、抽象出数学概念,通过探究、推理,建立数学理论。我们要积极地运用这些理论去解决问题。在探究与应用过程中,我们的思维水平会不断提高,我们的创造能力会得到发展。在数学学习过程中,我们将快乐成长。 在我们的教科书中设计了一些具有挑战性的内容,包括思考、探究、链接,以及习题中的“思考〃应用”、“探究〃拓展”等,以激发我们探索数学的兴趣。在掌握基本内容之后,选择其中一些内容作思考与探究,我们会更加喜欢数学。 关键词命题运动变化两圆内切、外切、外离、内含。 普通高中新课程标准实验教科书中有一部分例题和习题,它本身提出的的问题是非常明确具体的,但如果我们在自主学习的过程中不是以得到例习题所提问题的解答为满足,而是进一步加强合作、探索实践创新,交流我们的学习成果,我们发现新课程标准实验教科书中的例习题的背后还有好多资源有待去研究与拓展。本文以(苏教版)普通高中课程标准实验教科书选修4-1《几何证明选讲》1.2圆的进一步认识,1.2.2圆的切线,2.弦切角例4为例P32,作初步的探究与拓展。 一. 原题中两圆内切 命题1如图1,两圆内切于点P,大圆的弦AD与小圆相离,PA、PD交小圆于点E、F,直线EF交大圆于点B、C,求证:(1)EF∥AD;(2)∠APB=∠CPD. B D 如图1 如图2 变化1如果大圆的弦AD与小圆相离,变化为与小圆相切,那么有 命题2如图2,两圆内切于点P,大圆的弦AB切小圆于点C.求证:∠APC=∠BPC. 设PA,PB交小圆于E,F,则请你探究下列各等式是否成立? (1)CE=CF;(2)⊿ACE∽⊿CPF;(3)PC2=PA·PF;(4)PE·BC=PF·AC;(5)PA·PB-PC2=AC·BC; (6)S ⊿ACE :S ⊿BCF =PE:PF. 变化2如果大圆的弦AD与小圆相离,变化为与小圆相交,那么有 命题3如图3,两圆内切于点P,大圆的弦AD交小圆于点B,C.求证:∠APB=∠CPD

由一道课本习题引发的思考

由一道课本习题引发的思考 九年义务教育八年级数学上配套练习册 P 65第11题: 已知:如图1,点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形, 思考 由命题的条件,根据平行线判定定理易知: AM/CN MC/ NB,由此得命题1: 命题1已知:如图1,点C 为线段AB 上一点,△ACM, △:BN 都是等边三角形, 求证:AM CN ,MC /NB 思考二 由命题的条件结合三角形全等的判定定理可知,有三对全等三角形,故得命题: 命题2已知:如图2,点C 为线段AB 上一点,△ACM, △:BN 都是等边三角形,AN 、 CM 交于点E,CN 、BM 交于点F. 求证:△ACN 也血CB, △AEC 也 JMFC, △ECN 也△CB 思考三 由命题2的结论,根据全等三角形的性质,可得到一些相等的线段和相等的角, 从而得到 命题: 命题3已知:如图2,点C 为线段AB 上一点,△ACM, △:BN 都是等边三角形,AN 、 CM 交于点E,CN 、BM 交于点F. 求证:⑴ AN=BM,CE=CF,AE=MF,NE=FB, (2)/NAC= /BMC; ZANC= JMBC; ZAEC= / MFC; 山东省五莲县洪凝初中 王爱仁 求证: 图1

JCEN= /CFB

思考四 因为/ ACM # NCB=60 ,所以/ MCN=6D ,再由命题3的结论可知CE=CF 则△ ECF 为等边三 角形,得命题: 命题4已知:如图3,点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,AN 交 思考五 _ 由命题4的结论知,/ EFC=60°,故/ EFC=/FCB ,所以EF I AB ,得命题: 命题5已知;如图3,点C 为线段AB 上一点,^ACM, ACBN 是等边三角形,AN 交MC 于点 BM 交CN 于点F. 求证:AN=BM MrzT -[y 、. 思考八 由^ ACN^A MCB 可知,/ CAN=/ CMB 所以/ A0B2 MAO £ AMO ^ MAO £ AMC :+ CMB ^ MAO 乂 CAN # AMChMAC+^AMC=60 +60° =120° ,可得命题: 命题6已知;如图4,点C 为线段AB 上一点,AACM, ACBN 是等边三角形,AN,BM 相交于 点O. MC 于点 E ,BM 交CN 于点F. ⑴求证: AN=BM; (2)求证: △CEF 为等边三角形 若AN 、MC 交于点E,BM 、 NC 交于点F ,求证:EF IAB 图4

一元一次方程解法及例题

一)知识要点: 1.一元一次方程的概念: 只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程. 一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- . 我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程. 2.解一元一次方程的一般步骤: (1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数.要注意不要漏掉不含分母的项,如方程x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误. (2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号.特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号.括号前有数字因数时要注意使用分配律. (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.注意移项要变号. (4)合并项:把方程化成最简形式ax=b (a≠0). (5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= . 解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤.

(二)例题: 例1.解方程(x-5)=3- (x-5) 分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便. 移项得:(x-5)+ (x-5)=3 合并得:x-5=3 ∴x=8. 例2.解方程2x-3(x+1)/6 =4/3 -(x+2)/3 因为方程含有分母,应先去分母. 去分母:12x-3(x+1)=8-2(x+2) (注意每一项都要乘以6) 去括号:12x-3x-3=8-2x-4 (注意分配律及去括号法则) 移项:12x-3x+2x=8-4+3 合并:11x=7 系数化成1:x=7/11 . 例3.1/9{1/7[1/5((x+2)/3 +4)+6]+8}=1 解法1:从外向里逐渐去括号,展开求 去大括号得:1/7[1/5((x+2)/3+4)+6]+8=9 去中括号得:1/5((x+2)/3+4)+6+56=63 整理得:1/5((x+2)/3+4)=1 去小括号得:(x+2)/3+4=5 去分母得:x+2+12=15 移项,合并得:x=1.

2019人教版 高中数学 选修2-2课本例题习题改编(含答案)

2019人教版精品教学资料·高中选修数学 选修2-2课本例题习题改编 1.原题(选修2-2第十一页习题1.1B 组第一题)改编 在高台跳水中,t s 时运动员相对水面的高度(单位:m )是105.69.4)(2 ++-=t t t h 则t=2 s 时的速度是_______. 解:5.68.9)(+-='t t h 由导数的概念知:t=2 s 时的速度为 )/(1.135.628.9)2(s m h -=+?-=' 2.原题(选修 2-2 第十九页习题 1.2B 组第一题)改编记 21 sin 23sin ,23cos ,21cos -===c B A ,则A,B,C 的大小关系是( ) A .A B C >> B .A C B >> C . B A C >> D. C B A >> 解:时的导数值,,在分别表示,2321sin 23cos 21 cos = x x 记)2 3 sin 23(,21sin 21,),(N M 根据导数的几何意义A 表示sinx 在点M 处的切线的斜率,B 表示sinx 在点N 处的切线的斜率,C 表示直线MN 的斜率, 根据正弦的图像可知A >C >B 故选B 32.5 2 1.5 1 0.5 0.5 1 1.5 2 2.5 3 54321 1 2 3 4 5 f x () = sin x () M N 3.原题(选修2-2第二十九页练习第一题)改编 如图是导函数/ ()y f x =的图象,那么函数 ()y f x =在下面哪个区间是减函数

A. 13(,)x x B. 24(,)x x C.46(,)x x D.56(,)x x 解:函数的单调递减区间就是其导函数小于零的区间,故选B 4.原题(选修2-2第三十二页习题 1.3B 组第1题(4))改编 设02 x π << ,记 s i n ln sin ,sin ,x a x b x c e === 试比较a,b,c 的大小关系为( ) A a b c << B b a c << C c b a << D b c a << 解:先证明不等式ln x x x e << x>0 设()ln ,0f x x x x =-> 因为1 ()1,f x x '= -所以,当01x <<时,1()10, f x x '=->()f x 单调递增,()ln (1)10f x x x f =-<=-<;当1x >时1 ()10,f x x '=-<()f x 单调递减, ()l n (1)1f x x x f =-< =-<;当x=1时,显然ln11<,因此ln x x < 设(),0x g x x e x =-> ()1x g x e '=- 当0()0x g x '><时 ()(0,+g x ∴∞在)单调递减 ∴()(0)0g x g <= 即x x e < 综上:有ln x x x e <<,x>0成立 02 x π << ∴0sin 1x << ∴ sin ln sin sin x x x e << 故选A 5.原题(选修2-2第三十七页习题1.4A 组第1题)改编 用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是_________. 解:设长方体的宽为x m ,则长为2x m ,高??? ?? -=-=230(m)35.441218<<x x x h . 故长方体的体积为).2 30)((m 69)35.4(2)(3322<<x x x x x x V -=-= 从而2 ()181818(1).V x x x x x '=-=- 令0(X)V =',解得x =0(舍去)或x =1,因此x =1. 当0<x <1时,(X)V '>0;当1<x < 3 2 时,(X)V '<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值. 从而最大体积V =3(m 3 ),此时长方体的长为2 m ,高为1.5 m. 答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3 . 6.原题(选修2-2第四十五页练习第二题)改编 一辆汽车在笔直的公路上变速行驶,设

一道课本例题引发的探究

一道课本例题引发的探究 【摘 要】高中数学教材绝大多数例习题都是很经典的,教师应该鼓励学生对其进行积极的探究,引导学生乐于把现有的问题进行演变、引申,发展学生的创新思维,培养他们的探究能力。 【关键词】例习题 问题 探究 引申 高中数学教材绝大多数例习题都是很经典的,教师应该鼓励学生对其进行积极的探究,通过探究让学生大胆的提出问题、解决问题。这样不仅能加深概念、法则、定理等基础知识的理解与掌握,更重要是开发了学生的智力,培养学生的探究能力。现以人教版选修2—1第41页例3的教学为例,并谈谈自己的一些想法。 一、问题的提出 (选修2—1第41页例3)设点A 、B 的坐标(5,0)、(-5,0)。直线AM 、BM 相交于点M ,且它们的斜率之积是-9 4 ,求点M 的轨迹方程。 解答:(略) 本题由学生用直译法做,没有太大的问题。 二、问题的引申 1、逆向思维,大胆猜想: 牛顿说过:“没有大胆的猜想,就做不出伟大的发现。”翻开数学史册,可以发现数学的历史就是一部充满猜想的历史。可见猜想与数学发现是形影不离的。我们可以通过例题,引导学生进行大胆猜想与合情推理,发展他们发现问题的能力。针对例3的答案为椭圆方程,学生不禁会问一般的椭圆是不是都有这样的性质呢? 猜想1:椭圆0(122 22>>=+b a b y a x 上长轴的两顶点A 、B 与任意一 点P (不同于A 、B )连线PA PB 、的斜率之积为定值. 解答:(略) 有了例3的解答,这个问题让学生自主解决。 2、大胆假设,归纳引申:

先通过大胆假设,再从特殊问题入手,归纳出一般性的结论。这样有利于学生形成良好的认知结构。变式问题中弦AB 是长轴,能不能改成一般过原点的弦呢? 我们可以先与学生一起来探究一个特殊的问题,归纳出方法,再引申出一般性的命题。 问题:椭圆22 132x y +=上任意一点P 与过中心的弦AB 的两端点A 、B 连线P A P B 、与对称轴不平行,求直线PA PB 、的斜率之积。 证明:设111(,),(,),P x y A x y 则111(,),B x y --2222 111,13232 x y x y ∴+ =+=,两式相减得: 22221132x x y y --∴=, 22122 12 3 y y x x -∴=-- 22111221112 3 PA PB y y y y y y k k x x x x x x -+-∴?=?==- -+- 让学生自主探究,再让学生归纳引申出一般的问题。 命题1: 椭圆0(122 22>>=+b a b y a x 上任意一点P 与过中心的弦AB 的两 端点A 、B 连线P A P B 、与对称轴不平行,则直线PA PB 、的斜率之积 为定值. 证明:设111(,),(,),P x y A x y 则111(,),B x y --1,122122122 22=+=+∴b y a x b y a x ,两式相减 得: 22122212b y y a x x --=- 22 2 12212a b x x y y -=--∴ 22 1111a b x x y y x x y y K K PB PA -=++?--=?∴为定值. 3、极限思想,知识串联; G ?波利亚说:“类比是一个伟大的引路人”。我们这时引导学生,然后提问:椭圆的极限位置是圆,此性质可以类比圆中什么性质呢?让学生分组探讨,进行类比与归纳。探讨后部分学生提出了对性质的解释:是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广。 这个解释充分揭示了椭圆的本质属性,因而能简洁解决问题。再引导类比圆中的性质,可以引申出以下命题.

由一道课本习题的思考

由一道课本习题的思考 数学学习的核心是发展思维能力。同学们在学习的过程中,若能经常对课本的经典题进行挖掘、引申和改编,就可以得到综合性强、形式新颖的命题,这样可帮我们全面系统地掌握知识,培养思维的灵活性和发散思维能力。现举例说明。 原题目:苏科版九年级上册第136页:已知点I为ABC的内心,/ BAC的平分线与ABC的外 接圆于D, AD交BC于E, DB与DI 相等吗?为什么? 分析:连接BI , VI为内心,.?./ ABI=Z EBI, / BAEh CADh EBD 而/ DIB=Z ABI+Z BAE / DBI=Z EBDZ EBI,.Z DIB=Z DBI,. DB=D。 变形题1:本题还可证得(1)AB?AC=AE?AD( 2)DI2=DE?DA (3)AB?AC=AE2+BE?CE 分析:结论(1)可通过证明AB? AEC结论(2)可通过证明DB0 DAB;结论(3)可通过证明AE3 BED得AE?DE=BE?EC由(1)得AB?AC=AE?AD=(EAE+ED =AE2+ AE?ED=AE2+BE?EC 原题可互换条件和结论得 变形题2:如图1, ABC的角平分线交BC于E,交ABC的外接圆于D, I为AD上一点,且DB=D,求证:I为ABC的内心。

分析:只要证明/ AB匸/ EBI,与原题的证法类似。 变形题3:在原题条件下,作DMLAB DNLAC M, N为垂 足,AB>AC。 求证:(1)BM=CN=(AB-AC)(2) 分析:(1)易证DBMP?DCN ADMP?ADN 得BM=CNAM=AN 由 AM=AN 得AB-BM=AC+CN即卩2BM=AB-AC 所以BM=CN=(AB-AC)。 (2)易证AE3 ABD, ABE^ ADC 得 。 。 变形题4:在原题条件下,过D作圆的切线交AB AC的延长线于M N,求证:(1)BC// MN (2)CD2=CE (AB-AC)DM 分析:(1)设0为?ABC的外接圆的圆心,连接0D因为MN为切线,所以ODL MN又因为/ BADh CAD可得弧BD=^ CD 所以ODL BC 所以BC// MN (2)由弧BD=弧CD得BD=CD 又BC// MN 得 / DCBh DBCh BDM 又/ ADCh ABCh M 可得CDE^ DMB 得 CD?BD=CE?BD因为BD=CD 所以CD2=CE?DM 通过对一道习题的引申、改编,同学们不仅对课本知识的掌握和应用更为熟练,而且对培养发散思维和创造性思维能力大有裨益。更重要的是可以培养学生对已经解决的数学问题加以引申变化的意识,从而提高创新能力。

相关文档
相关文档 最新文档