文档库 最新最全的文档下载
当前位置:文档库 › 传感器习题第5章 电容式传感器

传感器习题第5章 电容式传感器

传感器习题第5章 电容式传感器
传感器习题第5章 电容式传感器

第5章 电容式传感器(P99)

5-3 图5—7为电容式液位计测量原理图。请为该测量装置设计匹配的测量电路,要求输出电压0U 与液位h 之间呈线性关系。 图5-7

解:

电容式液位计的电容值为:d D n h C C 1)(210εεπ-+

=,其中d

D n H

C 120πε=。 可见C 与液面高度h 呈线性关系。

可以看出,该结构不宜做成差动形式,所以不宜采用二极管双T 形交流电桥,也不宜采用脉冲宽度调制电路。另外要求输出电压0U 与液位h 之间呈线性关系,所以不宜采用调频电路和运算放大器式电路。

可以采用环形二极管充放电法,具体电路如图所示。可将直流电流表改为直流电压表与负载电阻R 的并联,R 上的电压为0U ,则有:

)(0d x C C E Rf RI U -?==

其中,C x 为电容式液位计的电容值,f 为方波的频率,ΔE =E 2-E 1为方波的幅值,C d 为平衡电容传感器初始电容的调零电容。当h=0时调节

d

D n H

C C d 120πε==,则输出电压0U 与

液位h 之间呈线性关系。

5-5 题5—5图为电容式传感器的双T 电桥测量电路,已知Ω==

=k R R R 4021,

d

D n h

C C 1)

(210εεπ-+

=环形二极管电容测量电路原理图

E V R

Ω=k R L 20,V e 10=,MHz f 1=,pF C 100=,pF C 101=,pF C 11=?。求L U 的

表达式及对于上述已知参数的L U 值。 解:

()()

V C C Uf R R R R R R U L L L L 18.010110110202040)

20240(40)()()

2(1262

012

=??????+?+?=

-?++=-

5-8 题5—8图为二极管环形电桥检波测量电路,p U 为恒压信号源,1C 和2C 是差动式电容传感器,0C 是固定电容,其值10C C >>,20C C >>,设二极管41~D D V V 正向电阻为零,反向电阻为无穷大,信号输出经低通滤波器取出直流信号AB e 。要求: ① 分析检波电路测量原理;

② 求桥路输出信号()21,C C f e AB =的表达式;

③ 画出桥路中A U 、B U 、AB e 在21C C =、21C C >、21C C <三种情况下的波形图(提

示:画出p U 正负半周的等效电路图,并标出工作电流即可求出AB e 的表达式)。

解:

等效电路为:

U p t

题5—8图

当Up 为正半周时,D 1、D 3导通,等效电路如图(a )所示。 当Up 为负半周时,D 2、D 4导通,等效电路如图(b )所示。

电容0C 、1C 和2C 的阻抗分别为:001C j Z ω=

,111C j Z ω=,2

21

C j Z ω=。 则p A U Z Z Z U 011+=

,p B U Z Z Z U 0

22

+=。

()()()()()()

20102100201120C C C C C C C U Z Z Z Z Z Z Z U U U e p

p

A B AB ++-=++-=-= ∵2010C C C C >>>>, ∴p p AB U C C U C C C e 0

021212?=-≈

当21C C =时,21Z Z =,B A U U =,0=AB e ; 当21C C >时,21Z Z <,

0<<><<AB e ;

当21C C <时,21Z Z >,B

A B A p B A B A p U U U U U U U U U U >><>>>00,即负半周时,,即正半周时,,所以0

波形如图所示。

(b )Up 为负半周时

U p (a )Up 为正半周时

U p

t

e AB

2

1C C =

2

1

C C > U B 2

1 C C <

传感器习题第5章 电容式传感器

第5章 电容式传感器(P99) 5-3 图5—7为电容式液位计测量原理图。请为该测量装置设计匹配的测量电路,要求输出电压0U 与液位h 之间呈线性关系。 图5-7 解: 电容式液位计的电容值为:d D n h C C 1)(210εεπ-+ =,其中d D n H C 120πε=。 可见C 与液面高度h 呈线性关系。 可以看出,该结构不宜做成差动形式,所以不宜采用二极管双T 形交流电桥,也不宜采用脉冲宽度调制电路。另外要求输出电压0U 与液位h 之间呈线性关系,所以不宜采用调频电路和运算放大器式电路。 可以采用环形二极管充放电法,具体电路如图所示。可将直流电流表改为直流电压表与负载电阻R 的并联,R 上的电压为0U ,则有: )(0d x C C E Rf RI U -?== 其中,C x 为电容式液位计的电容值,f 为方波的频率,ΔE =E 2-E 1为方波的幅值,C d 为平衡电容传感器初始电容的调零电容。当h=0时调节 d D n H C C d 120πε==,则输出电压0U 与 液位h 之间呈线性关系。 5-5 题5—5图为电容式传感器的双T 电桥测量电路,已知Ω== =k R R R 4021, d D n h C C 1) (210εεπ-+ =环形二极管电容测量电路原理图 E V R

Ω=k R L 20,V e 10=,MHz f 1=,pF C 100=,pF C 101=,pF C 11=?。求L U 的 表达式及对于上述已知参数的L U 值。 解: ()() V C C Uf R R R R R R U L L L L 18.010110110202040) 20240(40)()() 2(1262 012 =??????+?+?= -?++=- 5-8 题5—8图为二极管环形电桥检波测量电路,p U 为恒压信号源,1C 和2C 是差动式电容传感器,0C 是固定电容,其值10C C >>,20C C >>,设二极管41~D D V V 正向电阻为零,反向电阻为无穷大,信号输出经低通滤波器取出直流信号AB e 。要求: ① 分析检波电路测量原理; ② 求桥路输出信号()21,C C f e AB =的表达式; ③ 画出桥路中A U 、B U 、AB e 在21C C =、21C C >、21C C <三种情况下的波形图(提 示:画出p U 正负半周的等效电路图,并标出工作电流即可求出AB e 的表达式)。 解: 等效电路为: U p t 题5—8图

电容式传感器的特点及应用中存在的问题

电容式传感器的特点及应用中存在的问题 摘要:本文阐述了电容式传感器有温度稳定性好、结构简单、动态响应好、可以实现非接触测量,具有平均效应的优点,输出阻抗高,负载能力差、寄生电容影的及其缺点,以及在应用中存在的问题。 关键词:电容、传感器、负载 Abstract: This paper describes the capacitive sensor has good temperature stability, simple structure, good dynamic response, non-contact measurement can be achieved, with the average effect of the advantages of high output impedance, load capacity is poor, and shortcomings of the parasitic capacitance of the film, and Problems in the application. Keywords: capacitors, sensors, load 1.电容式传感器的特点 1)优点 (1)温度稳定性好。电容式传感器的电容值一般与电极材料无关,有利于选择温度系统低的材料,又因本身发热极小,影响稳定性甚微。而电阻传感器有电阻,供电后产生热量:电感式传感器有铜损、磁游和涡流损耗等,易发热产生零漂。 (2)结构简单。电容式传感器结构简单,易于制造,易于保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强车船及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力、高冲击、过载等;能测量超高温和低压差,也能对带磁工作进行测量。 (3)动态响应好。电容式传感器由于带电极板间的静电引力很小(约几个10-5N),需要的作用能量极小,又由于它的可动部分可以做得很小、很薄,即质量很轻,因此其固有频率很高,动态响应时间短,能在几兆赫的频率下工作,特别适用于动态测量。又由于其介质损耗小可以用较高频率供电,因此系统工作频率高。它可用于测量高速变化的参数。 (4)可以实现非接触测量,具有平均效应。例如,非接触测量回转轴的振动或偏心率、小型滚珠轴承的径向间隙等。当采用非接触测量时,电容式传感器具有平均效应,可以减少工作表面粗糙度等对测量的影响。 电容式传感器除了上上述的优点外,还因其带电极板间的静电引力很小,所

第一章 传感器概述

第一章传感器概述 1.1 综述你所理解的传感器概念 1.2 何谓结构型传感器?何谓物性型传感器?试述两者的应用特点。 1.3 一个可供实用的传感器有哪几部分构成?各部分的功用是什么?试用框图标示出你所理解的传感器系统。 1.4 衡量传感器静态特性的主要指标有哪些?说明它们的含义。 1.5 技算传感器线性度的方法有哪几种?差别何在? 1.6什么是传感器的静态特性和动态特性?差别何在? 1.7 怎么评价传感器的综合静态性能和动态性能? 1.8 为什么要对传感器进行标定和校准?举例说明传感器静态标定和动态标定的方法。 1.9 何谓系统相似和机电模拟?它们有什么用途? 1.10有一只压力传感器的校准资料如下表。根据这些数据求最小二乘法和端点法线性度的拟合直线方程,并求其线性度。

1.11 试根据极限误差计算题1-7中压力传感器的重复性误差,并比较标准法和极差法的计算结果。 1.12 设一力传感器可作为二阶系统来处理。已知传感器的固有频率为800khz,阻尼比 =0.4,问在使用该传感器测定400Hz正弦变化的外力时会产生多大的振幅相对误差和相位误差? 1.13 今有两加速度传感器均可作为二阶系统来处理,其中一只固有频率为25kHz,另一只为35kHz,阻尼比均为0.3。若欲测量频率为10kHz的正弦振动加速度,应选用哪一只?试计算测量时将带来多大的振幅误差和相位误差。 1.14 有一个二阶系统如图1-12所示,求其输入为F=A·u(t)的阶跃响应,并画出响应曲线图(假定特征方程的根r1,r2为2个不等实数根)。 1.15 某测振传感器可作为二阶系统来处理,其幅频特性见图1-10。已知传感器的固有频率为800Hz,阻尼比0.4,问:用该传感器测定正弦振动时,若要求幅值误差小于2%,求允许使用的频率范围及相应的最大相位误差;欲用来测量复合周期振动,应对传感器的哪个参数进行调整?怎么调整?[提示:按系统不失真条件考虑。] 1.16 结合传感器技术在未来社会中的地位、作用及其发展方向,综述你的见解。

电容式传感器的特点及应用中存在的问题

电容式传感器的特点及应用中存在的问题 张文杰 保定天翔集团毛纺织有限责任公司河北保定071000 摘要:本文阐述了电容式传感器有温度稳定性好、结构简单、动态响应好、可以实现非接触测量,具有平均效应的优点,输出阻抗高,负载能力差、寄生电容影的及其缺点,以及在应用中存在的 问题。 关键词:电容、传感器、负载 Abstract:This paper describes the capacitive sensor has good temperature stability,simple structure,good dynamic response,non-contact measurement can be achieved,with the average effect of the advantages of high output impedance, load capacity is poor,and shortcomings of the parasitic capacitance of the film,and Problems in the application. Keywords:capacitors,sensors,load 1.电容式传感器的特点 1)优点 (1)温度稳定性好。电容式传感器的电容值一般与电极材料无关,有利于选择温度系统低的材料,又因本身发热极小,影响稳定性甚微。而电阻传感器有电阻,供电后产生热量:电感式传感器有铜损、磁游和涡流损耗等,易发热产生零漂。 (2)结构简单。电容式传感器结构简单,易于制造,易于保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强车船及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力、高冲击、过载等;能测量超高温和低压差,也能对带磁工作进行测量。 (3)动态响应好。电容式传感器由于带电极板间的静电引力很小(约几个10-5N),需要的作用能量极小,又由于它的可动部分可以做得很小、很薄,即质量很轻,因此其固有频率很高,动态响应时间短,能在几兆赫的频率下工作,特别适用于动态测量。又由于其介质损耗小可以用较高频率供电,因此系统工作频率高。它可用于测量高速变化的参数。 (4)可以实现非接触测量,具有平均效应。例如,非接触测量回转轴的振动或偏心率、小型滚珠轴承的径向间隙等。当采用非接触测量时,电容式传感器具有平均效应,可以减少工作表面粗糙度等对测量的影响。 电容式传感器除了上上述的优点外,还因其带电极板间的静电引力很小,所以输入和输入能量极小,因而可测极低的压力,以及很小的加速度、位移等,可以做得很灵敏,分辨率高,能敏感0.01μm甚至更小的位移;由于其空气等介质损耗小,采用差动结构连接成电桥式时产生的零残极小,因此允许电路进行高倍率放大,使仪器具有很高的灵敏度。 2)缺点 (1)输出阻抗高,负载能力差。电容式传感器的容量受共电极的几何尺寸等限制,一般只有几pF到几百pF,使传感器的输出阻抗很高,尤其当采用音频范围内的交流电源时,输出阻抗高达106—108Ω。因此传感器的负载能力很差,易受外界干扰影响而产生不稳定现象,严重时甚至无法工作,必须采取屏蔽措施,从而给设计和使用带来极大的不便。阻抗大还要求传感器绝缘部分的电阻值极高(几十MΩ以上),否则绝缘部分将作为旁路电阻而影响仪器的性能(如灵敏度降低),为此还要特别注意周围的环境如温度、清洁度等。不采用高频供电,可降低传感器输出阻抗,但高频放大、传输远比低频的复杂,且寄生电容影响大,不易保证工作的稳定性。 (2)。电容式传感器由于受结构与尺寸的限制,其寝电容量都很小(几pF到几十pF),而连接传感器和电子线路的引线电缆电容(1—2m导线可达800pF),电子线路的杂散电容,以及传感器内极板与其周围导体构成的“寄生电容”却较大,不仅降低了传感器的灵敏度,而且这些电容(职电缆电容)常常的随机变化的,将使仪器工作很不稳定,影响测量精度。因此对电缆的选择、安装、接法都有要求。 随着材料、工艺、电子技术,特别是集成技术的发展,使电容式传感器的优点得到发扬,而缺点不断地得到克服。电容式传感器正逐渐成为一种高灵敏度、高精度,在动态、低压及一些特殊测量方面大有发展前途的传感器。 2.应用中存在的问题 1)边缘效应以上分析各种电容式传感器进还忽略了边缘效应的影响。实际上当极板厚度h与极距d之比相对较大时,边缘疚的影响就不能忽略。这时,对极板半径为r的变极距型电容传感器。

电容式位移传感器的设计

课程设计 设计名称: 电容式位移传感器的设计_ 专业班级: __ 姓名: ____________ 学号: _________ 指导教师: ______ xxxx年 xx 月

目录 一、设计要求……………………………………………………………… 3 二、电容传感器工作特性 (3) 三、电容传感器的优缺点 (3) 四、基本原理……………………………………………………………… 3 五、设计分析……………………………………………………………… 4 六、消除和减少寄生电容的影响 (5) 七、转换电路的设计 (6) 八、差动放大电路………………………………………………………… 8 九、相敏检波器系统工作及原理 (9) 十、心得体会 (11) 十一、参考文献 (12) 十二、附录 (13)

1、设计要求: 设计差动变面积式电容位移传感器,要求规定的设计参数。 1、测量范围(mm):0~±1mm; 2、线性度(%Fs):0.5; 3、分辨率(μm):0.01; 4、灵敏度(PF/mm): 5、通过理论设计、结构设计、理论分析等过程设计传感器结构和测量电路,画出结构示意图和测量电路图,并进行参数计算。利用参数和结构来选择合理的方法消除或减少寄生电容的干扰影响。结合传感器实验平台,确定传感器的静态灵敏度和线性范围,并设计电容传感器的电子秤应用实验。 2、电容传感器工作特性 电容式传感器具有灵敏度高、精度高等优点。相对与其他传感器来说,电容式传感器的温度稳定性好,其结构简单,易于制造,易于保证高的精度,能在高温、低温、强辐射及强磁场等各种恶劣环境条件下工作,适应性强;它的静电引力小,动态响应好,可用于测量高速变化的参数,如测量振动、瞬时压力等;它能够实现非接触测量,在被测件不能受力,或高速运动,或表面不连接,或表面不允许划伤等不允许采用接触测量的情况下,电容传感器可以完成测量任务;当采用非接触测量时,电容传感器具有平均效应,可以减少工件表面粗糙度等对测量的影响。因其所需的输入力和输入能量极小,因而可测极低的压力、很小的加速度、位移等,由于在空气等介质中损耗小,采用差动结构并连接成桥式电路时产生的零点残余电压极小,因此允许电路进行高倍率放大,使仪器具有很高的灵敏度,分辨力高,能敏感0.01μm至更小的位移。本课题采用差动变面积式电容位移传感器,线性的反映电容和位移的变化关系。 3、电容传感器的优缺点

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。

由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。 2、交流电桥电路 电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。 3、双T型充放电网络 这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用

电容式传感器的应用和发展

电容式传感器的应用与发展 前言 电容式传感器是把被测量转换为电容量变化的一种参量型传感器。电容式传感器广泛应用于压力、液位、位移等各种检测中,由于形式多种多样,传感器电容值相差很大。电容式传感器可分为变面积变化式、变间隙式、变介电常数式三类。变面积变化式一般用于测量角位移或较大的线位移。变间隙式一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。变介电常数式常用于物位测量和各种介质的温度、密度、湿度的测定。这种传感器具有高阻抗、小功率、动态范围大、动态响应较快、几乎没有零漂、结构简单和适应性强等优点。70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。电容式传感器是一种用途极广,很有发展潜力的传感器。 关键词: 电容式传感器 应用发展 一、电容式传感器的基本工作原理 由绝缘介质分开的两个平行金属板组成的平板电容器, 如果不考虑边缘效应, 其电容量为 图1.1平行板电容器 ε为电容极板间介质的介电常数, ε=ε0·εr,其中ε0为真空介电常数, εr 为极板间介质相对介电常数; A 为两平行板所覆盖的面积; d 为两平行板之间的距离。 当被测参数变化使得上式中的A ,d 或ε发生变化时, 电容量C 也随之变化。如果保持其中两个参数不变, 而仅改变其中一个参数, 就可把该参数的变化转换为电容量的变化, 通过测量电路就可转换为电量输出。 d A c ε =

当动极板移动 后,覆盖面积就发生了变化,电容也随之改变,下图为 直线位移型电容式传感器的示意图,其为变面积式的一种。 电容: 电容增量: 测量灵敏度: 图1.2直线位移型 此外,改变板间距d 或者电介质ε,便是变间隙式和变介电常数式电容传感器结构形式,结构形式如下图所示, 图1.3变间隙式 图1.4变间介电常数式 二、电容式传感器在应用中的注意事项 1.克服寄生电容的影响 电容式传感器由于受结构与尺寸的限制,其电容量都很小(pF 到几十pF),属于小功率、高阻抗器件,因此极易外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响感器的输出特性,甚至会淹没有用信号而不能使用。消灭寄生电容影响,是电容式传感器实用的关键。 2.克服边缘效应的影响 实际上当极板厚度h 与极距d 之比相对较大时,边缘效应的影响就不能忽略;边缘效应不仅使电容传感器的灵敏度降低,而且产生非线性。 x ?x ?

电容式感应工作原理及设计

电容式感应工作原理及设计 电容式感应的工作原埋是什么呢?下面的示意图显示了1个电容式感应按钮的横截面。如图所示,在外覆层材料之下,存在导电的铜块区域和导电的传感器。在2个导电元件相互之间靠得很近时,就会产生一个电容值,本图中标为Cp,这个电容值是由于传感器垫板与接地板之间的耦合现象而形成的。Cp属于寄生电容,典型数量级任10pF至300pF。传感器与接地板靠近时也会形成一个边缘电场,这个电场能够穿透外覆层。基本上,人体组织也属于导电体。将一根手指放存边缘电场附近时,就会增加这个电容系统的导电表面面积。 但是,这个在图中标为CF的附加手指电容值的数量级在0.1pF至10pF。虽然一根于指的存在会导致电容发生变化,但与寄生电容相比,该变化的幅度是相当小的。而传感器的测得电容值称为CX。在没有手指存在的情况下,CX基本上等于CP。而在于指存在时,CX 则为CP和CF的和。 图1 手指电容值 电容式感应的设计方案 在我们了解了电容式感应的工作原理后,如何开始设计某一特定产品的电容式感应界面呢?我们重点要考虑到设计方案的需要。这个产品将用在什么地方?使用环境严苛吗?这项

设计中最重要的因素是电池的使用时间还是产品的耐久性?不同的因素对设计方案的影响也各不相同。 根据正在设计的产品类型,功耗可能是关键因素,也可能不是关键因素。例如,在由电池供电的手持设备上,功耗具有极为重要的意义。而一种对整体平均功耗即电池使用时间进行控制的方式是设立3个不同的工作区域。一个工作区域是快速响应区,这个区域内的每个传感器每200微秒扫描一次。系统会在按钮和滑动触摸处于连续操作状态下进入这一区域。在操作很少或无操作时,系统可以进入一个慢速响应区,将扫描频率减少到大约每100毫秒1次。最后,如果在很长时间内没有操作,则系统可以进入深度休眠模式,从而节省电力。通过实现节能、慢速响应模式,在便携手持设备每100秒扫描3个按钮的情况下,系统的耗电量可以低于50μA的平均电流。 在当今的电子产品领域,噪声也成为另-项重要的考虑因素。各类感应噪声,诸如来自电力线路的噪声,以及来自移动手机或日光灯的辐射噪声,无时无刻不存在,所以必须加以考虑。为了进行有效防范,我们的目标是增加信噪比,并消除虚假触摸响应。 在设计信噪比、耐久性、静电放电抵抗力以及精确度时,所选择的外覆层材料以及外覆层厚度具有很大的影响。而且,在考虑材料的类型和厚度时,必须根据产品的需要,在许多方面采取折衷方式。随着外覆层材料厚度的增加,信号和噪声两方面均会减少。但是,外覆层材料越厚,则对于静电放电的抵抗力就越强。人体的静电电压可以高达15 KV,而电容式感应系统的外覆层有助于避免集成电路在遭受此类静电放电时发生永久性损坏。另一种解决方法是,使用一层聚酰亚胺(Kapton)带,这种材料在需要超强静电放电保护的应用中能够发挥良好的作用。当然,外覆层越厚,也就越不容易破裂或者遭到破坏。

电容式传感器的应用与发展

电容式传感器的应用与发展 系别电子信息与电气工程系 专业自动化 班级 12级自动化卓越班 姓名刘安睿劼汪峰丁玉梦 学号 120503 120503 1205031035 老师储忠 成绩

电容式传感器的应用与发展 摘要:电容式传感器是把被测量转换为电容量变化的一种参量型传感器。它不但广泛应用于位移、振动、角度、加速度等机械量的精密测量,而且还逐步地扩大,应用于压力、位移、液位、料面、成分含量等方面的检测。由于形式多种多样,传感器电容值相差很大。电容式传感器可分为变面积变化式、变间隙式、变介电常数式三类。变面积变化式一般用于测量角位移或较大的线位移。变间隙式一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。变介电常数式常用于物位测量和各种介质的温度、密度、湿度的测定。这种传感器具有结构简单、灵敏度高、动态响应特性好、适应性强、抗过载能力大及价格便宜等一系列优点,因此占有很重要的地位。文中主要介绍了电容式传感器的工作原理,应用及发展趋势。 关键词:电容式传感器应用发展

目录 一、电容式传感器的工作原理 (1) 二.电容式传感器的应用行业 (2) 三.电容式传感器的基本方法 (3) 1.普通交流电桥 (3) 2.变压式电桥 (4) 3.双T电桥电路 (4) 4.运算放大器式测量电路 (4) 5.脉冲调制电路 (5) 6.调频电路 (5) 四.电容式传感器在具体工程中的应用 (5) 1.电容式位移传感器 (5) 2.电容式转速传感器 (6) 3.电容式加速度传感器 (6) 4.电容式液位传感器 (6) 5.电容式湿度传感器 (7) 6.电容式测厚仪 (7) 五.电容式传感器的发展趋势 (7) 1.智能化 (7) 2. 微型化 (8) 六、参考文献 (8)

电容式传感器中英文翻译资料毕业设计用

Capacitive Sensor Operation Part 1: The Basics Part 1 of this two-part article reviews the concepts and theory of capacitive sensing to help to optimize capacitive sensor performance. Part 2 of this article will discuss how to put these concepts to work. Noncontact capacitive sensors measure the changes in an electrical property called capacitance. Capacitance describes how two conductive objects with a space between them respond to a voltage difference applied to them. A voltage applied to the conductors creates an electric field between them, causing positive and negative charges to collect on each object Capacitive sensors use an alternating voltage that causes the charges to continually reverse their positions. The movement of the charges creates an alternating electric current that is detected by the sensor. The amount of current flow is determined by the capacitance, and the capacitance is determined by the surface area and proximity of the conductive objects. Larger and closer objects cause greater current than smaller and more distant objects. Capacitance is also affected by the type of nonconductive material in the gap between the objects. Technically speaking, the capacitance is directly proportional to the surface area of the objects and the dielectric constant of the material between them, and inversely proportional to the distance between them as shown.: In typical capacitive sensing applications, the probe or sensor is one of the conductive objects and the target object is the other. (Using capacitive sensors to sense plastics and other insulators will be discussed in the second part of this article.) The sizes of the sensor and the target are assumed to be constant, as is the material between them. Therefore, any change in capacitance is a result of a change in the distance between the probe and the target. The electronics are calibrated to generate specific voltage changes for corresponding changes in capacitance. These voltages are scaled to represent specific changes in distance. The amount of voltage change for a given amount of distance change is called the sensitivity. A common sensitivity setting is 1.0 V/100 μm. That means that for every 100 μm change in distance, the output voltage changes exactly 1.0 V. With this calibration, a 2 V change in the output means that the target has moved 200 μm relative to the probe.

电容传感器测量纸张厚度

本次课程设计主要讲解电容式传感器的使用中的一部分,传感器技术是现代信息技术的主要内容之一。传感器是将能够感受到的及规定的被测量按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成,其中敏感元件是指传感器中能直接感受或响应被测量(输入量)的部分;转换元件是指传感器中能将敏感元件感受的或响应的被探测量转换成适于传输和测量的电信号的部分。电容式传感器不但广泛应用于位移、振动、角度、加速度等机械量的精密测量而且还逐步地扩大应用于压力、差压、液面、料面、成分含量等方面的测量。根据δ εεS r o =C 可以把电容传感器分为极距变化型电容传感器、面积变化型电容传感器、介质变化型电容传感器。根据实际不同的需求,可以利用不同的电路来实现所需要的功能。 电容式传感器的特点:(1)小功率、高阻抗。电容传感器的电容量很小,一般为几十到几百微微法,因此具有高阻抗输出;(2)小的静电引力和良好的动态特性。电容传感器极板间的静电引力很小,工作时需要的作用能量极小和它有很小的可动质量,因而具有较高的固有频率和良好的动态响应特性;(3)本身发热影响小(4)可进行非接触测量。 布料厚度测量是基于变介电常数电容传感器的一种精密测量,它可以实现简单的厚度测量,根据电容电路的特性分析可以知道所测布料的厚度。 关键词:厚度测量装置,电容传感器,运算放大电路,仿真

第一章对布料厚度测量装置所做的调研 (3) 厚度测量装置在工业环境下的意义 (3) 厚度测量装置的研究现状 (3) 简述设计的整体思路 (4) 第二章电容测厚装置的介绍 (6) 详细介绍电容测厚装置 (6) 设计匹配电路 (8) 第三章仿真设计及分析 (9) 仿真电路的建立 (9) 仿真结果的分析 (13) 第四章对课程设计进行试验 (15) 实验过程 (15) 分析仿真与试验结果的差异 (15) 第五章设计体会 (16)

电容式传感器(传感器的理论设计及应用)

电容式传感器的应用 由于电子技术的发展,成功的解决了电容式传感器存在的技术问题,为电容式传感器 的应用开辟了广阔前景。它不但广泛地用于精确测量位移、厚度、角度、振动等机械量,还 用于测量力、压力、差压、流星、成分、被位等参数。 下面就其主要应用作简单介绍。 一、电容式差压变送器 电容式差压变送器是70年代的新产品,它具有结构简单、小型轻量、精度高(可达o.25%)、互换性强等优点。目前已广泛应用于工业生产中。该变送器具有如下特点: (1)变送器感压腔室内充灌了温度系数小、稳定性高的硅泊作为密封液; (2)为了使变送器获得良好的线性度,感压膜片采用张紧式结构; (3)变送器输出为标准电流信号, (4)动态响应时间一般为o.2—15s。 图4—29为电容式差压变送器的结构图。 图4—29(6)为二空结构的电容式楚压变送器,图中I、2为测量膜片(或隔离膜六J,它们与被测介质直接接触,3为感压膜片,此膜片在圆周方向张紧,1与3膜片间为·—室,2与3膜片间为另一室,故称为二室结构。其中感压膜片为可动电极,并与固定电极4、5构成差动式球—平面型电容传感器(”I和c”。固定球面电极是在绝缘体6上加工而成。绝缘体一般采用玻璃或陶瓷,在它的表面上蒸镀一层金属膜(如铝)作为电权。感压的挠曲变形,引起差动电容cL和c”变化,经测量电路将电容变化量转换成标准电流信号。因4—29(6)为一室结构的电容式差压交道器。图中1、2为测量膜片,它们与被测介质接触。3为可动乎

板电极,中心轴4把1、2、3连为一体,片簧5把可动电极在圆周方向张紧。在绝缘体6上蒸镀金属层而构成固定电极7、8,并与可动电极构成平行扳式差动电容。在可动电极与测量膜片间充满硅油作为密封刘,并有通道经节梳孔9将两电容连通,所以称为一室结构。当两边被测压力不等时(严”>PL),测量膜通过中心轴推动可动电极移动,因而使差动电容cj和cX发生变化。 以下着重分析二室结构电容式差压变送器。这种球—平面型电容量的变化可用单元积分法及等效电容法求得,如图4—30所示图中,c。为电容初始电容;cJ为感压膜片受压后挠曲变形位置与感压膜片初始位置。 因此在求得Co和C4后便可由式(4—94)、式(十95)求得传感器的差动电容在图4—31中,由球面形固定电极墨和平膜片电极A形成一个球—平面型电容器。在

电容式传感器的应用

电容式传感器的应用 关键词:电容式传感器、应用 电容式传感器是一种将被测非电量的变化转换为电容量变化的传感器。它结构简单,体积小,分辨率高,具有平均效应,测量精度高,可实现非接触测量,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用在压力、差压、液位、振动、位移、加速度、成分以及石油油品含水量等方面的测量,是一种具有良好发展前景的传感器。 1.1加速度传感器 电容式加速度传感器是基于电容原理的极距变化型的电容传感器。电容式加速度传感器/电容式加速度计是对比较通用的加速度传感器。在某些领域无可替代,如安全气囊,手机移动设备等。 加速度传感器主要用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面。当车辆在极度不平的路面行驶时,车辆的扭振可能会通过传动系传到发动机曲轴,造成曲轴转速信号的变化,引起误判失火。对于上述情况,1991年加州法规中规定:“当失火无法与其它作用区分时,当最好的诊断技术和方法在某些特定的条件下无法工作时,失火诊断系统可以不工作”。而到目前为止,大多数研究者都是采用曲轴转速不均匀性诊断失火的方法,所以上述规定是针对发动机在显示低负荷和车辆在不平路面行驶时的情况。加速度传感器的输出就是作为关闭失火诊断的阀值。ECU中定义了一个垂直方向的加速

度极限值,凡是超过这个加速度范围的,就有可能出现失火的误判,这个时候就应该关闭失火诊断功能。 加速度传感器可以检测上下左右的倾角的变化,因此通过前后倾斜手持设备来实现对游戏中物体的前后左右的方向控制,就变得很简单。 用加速度传感器检测手持设备的旋转动作及方向,实现所要显示图像的转正。 GPS系统是通过接收三颗呈120度分布的卫星信号来最终确定物体的方位的。在一些特殊的场合和地貌,如遂道、高楼林立、丛林地带,GPS信号会变弱甚至完全失去,这也就是所谓的死角。而通过加装加速度传感器及以前我们所通用的惯性导航,便可以进行系统死区的测量。对加速度传感器进行一次积分,就变成了单位时间里的速度变化量,从而测出在死区内物体的移动。 1.2电容式位移传感器 电容式位移传感器主要用于解决下述各种测量问题:压电微位移、振动台,电子显微镜微调,天文望远镜镜片微调,精密微位移测量等。 1.3自动化生产设备上 全自动硬胶囊填充机简要运行流程如下:首先空壳硬胶囊由料斗灌入设备,装在料斗里的硬胶囊随着机器的运转,逐个进入料斗下方顺序装置的顺序叉内,经过胶囊导槽和拨叉的作用使胶囊调头,机器每动作一次,释放一排胶囊进人模块孔内,并使其体(长度较长的半

2完整版电容式传感器课程设计

引言 硅压力传感器具有精度高、稳定性好等优点,在工业中广泛应用。但是,由于硅材料本身的限制,使其无法用于高温和腐蚀等特殊环境中。而陶瓷电容式压力传感器采用特殊陶瓷材料制作,具有抗腐蚀、耐高温等优点,弥补了硅压力传感器的上述缺点,可用于高温、腐蚀等特殊环境下。现今,国内有大量的需求,但是还没有国内厂家能够生产。因此,开发出一种实用的陶瓷压力传感器具有非常重要的现实意义。 陶瓷压力传感器通常采用多电容结构,在陶瓷膜片上同时烧结两个电容,一个作为参考电容,以消除温度对传感器输出的影响;另一个为测量电容,其变化量与传感器所受压力的变化量近似成正比,通过检测变化量就能得到传感器所受的压力。

1 电容式传感器设计的目的与任务 1.1电容式传感器设计的目的 ⑴巩固所学知识,加强对传感器原理的进一步理解; ⑵理论与实际相结合,“学以致用”; ⑶综合运用知识,培养独立设计能力; ⑷着重掌握典型传感器的设计要点,方法与一般过程; ⑸培养学生精密机械与测控电路的设计能力。 1.2电容式传感器设计的要求 ⑴设计时必须从实际出发,综合考虑实用性、经济性、安全性、先进性及操作维修方便。如果可以用比较简单的方法实现要求,就不必过分强调先进性。并非是越先进越好。同样,在安全性、方便性要求较高的地方,应不惜多用一些元件或采用性能比较好的元件,不能单纯考虑简单、经济; ⑵独立完成作业。设计时可以收集、参考传感器同类资料,但必须深入理解,消化后再借鉴。不能简单地抄袭; ⑶在课程设计中,要随时复习传感器的工作原理。积极思考。不能直接向老师索要答案和图纸。 ⑷设计传感器测头机械机构方案,绘制总装图(CAD为工具),编写传感器设计说明书。

电容传感器(传感器工作原理及应用实例)

第六节电容式传感器 以电容器作为敏感元件,将被测物理量的变化转换为电容量的变化的传感器称为电容式传感器。电容式传感器在力学量的测量中占有重要地位,它可以对荷重、压力、位移、振动、加速度等进行测量。这种传感器具有结构简单、灵敏度高、动态特性好等许多优点,因此,在自动检测技术中得到普遍的应用。 一、电容式情感器的工作原理 现以平板式电容器来说叫电容式传感器的工作原坝。电容是由两个金属电极,中间有腰电介质构成的,如图4.36所示。出合构极板N加3: 电压时,电极广就盒贮存有电荷.所以电容器实际6: 是—个储存电场能的元件。平板式电容器在忽略边缘6A质 效应时,其电容虽(:可长尔为 C—:半—l‘d4/J (‘——电容量(F); e一两极板间介质的介电常数(F/m); ‘,一一两极板间介质的相对介电常数; q一一真空的介电常数,等于8.85xlo 4——极板的面积(m’); J——极板间的距离(m)。 从上式可知,当其中的允、J、q中的任一项发生变化时,都会引起电容量c的变化。在 实际使用时,常使4、6f、q参数中的两项固定,仅改变其中—个参数来使电容量发生变化、根 据上述工作原理.电容式传感器可分为三种类型,即改变极板面积的变面积式,改变圾板距离的变间隙式。改变介电常数的变介电常数式。在力学传感器中常使用变间隙式电容传感器。 二、电容式传感器的特点 (1)结构简单.性能稳定 (2)阻抗高,功率小;。 (3)动态响应好,灵敏度高,分辨力强: (4)没有由于振动引起的漂移; (5)闭试导线分布电容对测旦误差影响较大; (6)电容量的变化与极板间距离变化为非线性。 表小5列出了电容式与压电式、应变式、压阻式传感器之间的特性对比。从表中可以

电容式传感器的应用与发展

传感器检测与运用 题目电容式传感器的应用与发展 姓名王鑫 学院工学院 专业交通运输 班级交运114班 学号 30211418 指导老师卢伟职称讲师 2 0 1 3 年 1 2 月 2 8 号

电容式传感器的应用与发展 电容式传感器是把被测量转换为电容量变化的一种参量型传感器。电容式传感器广泛应用于压力、液位、位移等各种检测中,由于形式多种多样,传感器电容值相差很大。电容式传感器可分为变面积变化式、变间隙式、变介电常数式三类。变面积变化式一般用于测量角位移或较大的线位移。变间隙式一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。变介电常数式常用于物位测量和各种介质的温度、密度、湿度的测定。这种传感器具有高阻抗、小功率、动态范围大、动态响应较快、几乎没有零漂、结构简单和适应性强等优点。70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。电容式传感器是一种用途极广,很有发展潜力的传感器。而本文主要介绍了电容式传感器的工作原理,应用及发展趋势。 一、电容式传感器的基本工作原理 由绝缘介质分开的两个平行金属板组成的平板电容器, 如果不考虑边缘效应, 其电容量为 图1.1平行板电容器 ε为电容极板间介质的介电常数,ε=ε0·εr,其中ε0为真空介电常数,εr 为极板间介质相对介电常数;A 为两平行板所覆盖的面积;d 为两平行板之间的距离。 当被测参数变化使得上式中的A ,d 或ε发生变化时, 电容量C 也随之变化。如果保持其中两个参数不变, 而仅改变其中一个参数, 就可把该参 数的变化转换为电容量的变化, 通过测量电路就可转换为电量输出。 当动极板移动 后,覆盖面积就发生了变化,电容也随之改变,下图为直线位移型电容式传感器的示意图,其为变面积式的一种。 d A c ε=x ?

电容式液位传感器设计

电容式液位传感器设计 一设计原理 本设计采用筒式电容传感器采集液位的高度。主要利用其两电极的覆盖面积随被测液体液位的变化而变化,从而引起对应电容量变化的关系进行液位测量。由于从传感器得出的电压一般在0~30mv之间,太小不易测量,所以要通过放大电路进行放大。从放大电路出来的是模拟量,因此送入ADC0809转换成数字量,ADC0809连接于单片机,把信号送入单片机。通过单片机控制水泵的运转。显示电路连接于单片机用于显示水位的高度。该显示接口用一片MC14499和单片机连接以驱动数码管。 二传感器设计 .(1)传感器原理 电容式液位传感器系统; 它利用被测体的导电率, 通过传感器测量电路将液位高度变化转换成相应的电压脉冲宽度变化, 再由单片机进行测量并转换成相应的液位高度进行显示,该系统对液位深度具有测量、显示与设定功能, 并具有结构简单、成本低廉、性能稳定等优点。 (2)传感器的组成 图3-1-2 为传感器部分的结构原理图。它主要是由细长的不锈钢管(半径为 R1 ) 、同轴绝缘导线(半径为R0 ) 以及其被测液体共同构成的金属圆柱形电容器构成。该传感器主要利用其两电极的覆盖面积随被测液体液位的变化而变化, 从而引起对应电容量变化的关系进行液位测量。

图3-1-2传感器原理图 (3) 测量原理 由图1 可知, 当可测量液位H = 0 时, 不锈钢管与同轴绝缘导线 构成的金属圆柱形电容器之间存在电容C0 , 根据文献得到电容量为: (1)式中, C0 为电容量, 单位为F ; ε0 为容器内气体的等效介电常数,单位为F/ m; L 为液位最大高度; R1 为不锈钢管半径;R0 为绝缘导线半径, 单位为m。当可测量液位)为H 时, 不锈钢管与同轴绝缘电线之间存在电容CH : (2) 式中, ε为容器内气体的等效介电常数, 单位为F/ m。因此, 当传感器内液位由零增加到H 时, 其电容的变化量ΔC 可由式(1) 和式(2) 得 (3) 由式可知, 参数ε0 , ε, R1 , R0 都是定值。所以电容的变化量ΔC 与液位变化量H 呈近似线性关系。因为参数ε0 , ε, R1 , R0 , L 都是定值, 由式(2) 变形可得:CH = a0 + b0 H ( a0 和b0 为常数) (4)。可见, 传感器的电

相关文档