文档库 最新最全的文档下载
当前位置:文档库 › 钢桥知识点

钢桥知识点

钢桥知识点
钢桥知识点

1、钢桥优缺点

钢桥——桥梁上部结构的主要承重部分用钢材制成。

优点:

a)钢材是一种抗拉、抗压、抗剪强度高的匀质材料

b)韧性、延性好,可提高抗震性能。

c)工厂制造,桥梁上部结构和下部结构可同时施工;

d)旧桥可回收,资源可再利用,有利于环保。

缺点:

e)对温度和动载效应敏感,易疲劳;

f)受大气侵蚀,易生锈。

g)铁路钢桥行车时噪声与振动比较大。

2、钢桥的主要形式

钢桥的主要结构形式——钢桥根据主要承重结构的受力体系可以分为:

1梁式桥2拱桥3刚构桥4斜拉桥5悬索桥6组合体系桥梁

3、拱桥分为:

?上承式拱桥(桥面在拱助的上方);

?中承式拱桥(桥面一部分在拱肋上方;一部分在拱肋下方)

?下承式拱桥(桥面在拱肋下方)

4、钢桥的破坏形式:

1、强度

2、疲劳

3、稳定

4、腐蚀、脆性断裂

5、钢结构疲劳定义:

钢结构疲劳:在反复荷载作用下,钢材应力低于极限强度时发生的破坏现象。

初始缺陷、裂纹或应力集中等局部位置形成裂纹→反复荷载作用下不断裂纹扩展→构件裂断

6、什么是钢板梁桥:

钢板梁桥——指由钢板焊接、栓接或铆接,形成工字形的实腹式钢梁作为主要承重结构的桥梁。

7、主梁梁高

主梁以截面应力控制设计时的用钢量比刚度控制设计的用钢量要省。

8、桁梁桥的组成:

一.桁梁桥的组成:1、主桁;2、联结系;3、桥道系

二.钢桁梁的受力特点:1桥面2纵梁3横梁4主桁5支座6墩台

9、1.钢桁梁桥按照桥面相对主桁架的位置不同分类:上承式桁架桥;下承式桁架桥;双层桁梁桥;

9.2按照承受荷载的性质分类:铁路桁架桥;公路桁架桥;

9.3按支承形式分类:简支桁架桥;悬臂桁架桥;连续桁梁桥

10、钢箱梁具有良好的受力特性,与钢板梁相比主要有以下优点:

1.梁缘宽度大,具有很大的抗弯能力,跨越能力比工形

钢板梁大得多。

2.具有很大的抗扭刚度,荷载横向分配均匀,即使采用

单箱结构形式,两个腹板的弯矩也相差不大,而且适合于扭矩较大的横向抗弯刚度。

3.具有很大的横向抗弯刚度,横向稳定性好,可以抵抗

很大的水平力作用,省去纵向联结系,对于单箱结构不需要横向联结系;

4.单根箱梁的整体稳定性好,便于吊装和无支架施工;

5.梁高小,适合于立交桥和建筑高度受到限制的桥梁。。

6.横隔板及加劲结构等都在箱内,外形美观。

11、钢拱桥的分类:

1.按照结构构造形式进行分类

(1)按照主拱圈形式进行分类:钢箱拱;钢管拱;钢桁架式拱;

(2)按照两拱肋的空间姿态分类:平行拱肋;内倾拱肋(提篮拱);外倾拱肋(蝶形拱)

12、拱梁组合体系桥的分类

根据拱肋和系梁刚度的比例关系分类

?无推力系杆拱的分类

?柔性系杆刚性拱——系杆拱

?EI拱/EI梁>80

?刚性系杆柔性拱——朗格尔拱(梁)

?EI拱/EI梁<1/80

?刚性系杆刚性拱——洛泽拱

13、系杆拱的受力特点:

1.中承式系杆拱桥的力学特性

三元结构:1.活载分布构件(桥面系)

2.力的传递构件(吊杆)

3.主要承重构件(拱肋与系杆)

2.下承式系杆拱桥的受力特点

3.不同边界条件对结构受力的影响

14、吊杆:刚性吊杆和柔性吊杆

柔性吊杆材料:平行钢丝束吊杆;钢绞线吊杆;粗钢筋吊杆;钢丝绳吊杆;钢吊杆;

15、系杆(梁)1.刚性系杆

钢、预应力混凝土材料

2.柔性系杆平行钢丝束系杆:佛陈大桥,上海卢浦大桥

?钢绞线系杆:大部系杆拱桥采用

?钢结构系杆:新光大桥、重庆市朝天门大桥

?预应力混凝土系杆:南宁市凌铁大桥

16、组合梁的定义:采用剪力连接件将钢板梁、钢箱梁、钢桁梁等结构构件和钢筋混凝土结合成组合截面共同工作的一种复合梁式结构。

17、根据架设与施工方法不同,组合梁可以分为活载组合梁与恒载组合梁两种形式。

?活载组合梁在钢梁架设与钢筋混凝土桥面板施工时,可

以不设置中间支架或临时墩,施工时的钢梁自重、桥面

施工荷载以及混凝土板自重仅由钢梁承担,钢筋混凝土

桥面板不参与共同工作。

?恒载组合梁在钢梁架设与钢筋混凝土桥面板施工时,设

置中间支架或临时墩,施工时的钢梁自重、桥面施工荷

载以及混凝土板自重由中间支架或临时墩承担,钢梁为

无应力状态。混凝土达到设计强度,钢筋混凝土桥面板

才作为主梁的上翼板与钢梁形成组合梁截面后,撤去中

间支架或临时墩。

18、为了使得钢筋混凝土桥面板与钢梁共同工作,两者之间必须设置剪力传递器,使得钢筋混凝土桥面板与钢梁之间不产生相对错动。剪力传递器:

?刚性(rigid):刚性剪力传递器一般采用角钢或槽钢,

?柔性(flexible):柔性剪力传递器采用斜钢筋或螺旋钢

?剪力钉(stud):剪力钉为焊接于钢梁翼板的大头螺钉。

19、负弯矩的处理方法

连续梁的支点附近因有负弯矩导致混凝土受拉,使混凝土开裂。为了抵抗负弯矩产生的拉应力,常用的措施有预加荷载法、调整支点标高法或设置预应力钢筋等对混凝土板负弯矩区预施压力等方法。(一)预加荷载法

预加荷载法的施工方法是:钢梁施工完后,首先在正弯矩区段浇注混凝土和施加一定的临时荷载,使得支点附近钢梁负弯矩区段产生足够的预应力,然后预应力状态下浇注负弯矩区段混凝土,混凝土达到设计强度后,撤去临时荷载

(二)调整支点标高法

这是一种用施工处理的方法,也是一种最基本的方法。大部分预应力组合截面连续梁桥不仅可采用本施工法,而且还可同时采用本施工法和后面所述粗钢筋的方法来进行架设。

20、拱肋的拱轴线:1.圆弧线2.二次抛物线3.悬链线4.多次抛物线

21、横撑作用:

?为了保证两片拱肋的横向刚度和稳定以承受作用在拱

肋、桥面及吊杆上的横向水平力、必须在两片拱肋之间

设置横撑。

?横撑的数量及布置形式对全桥侧倾、扭转及两拱肋独立

侧倾振型的影响较大,而对面内竖弯基频影响很小。

?横撑的存在可以大大提高全桥的面外刚度与扭转刚度。

?拱顶处设置横撑对提高全桥刚度的效果比拱脚处设置横

撑的效果要好。

装配式公路钢桥(贝雷桥)

装配式公路钢桥(贝雷桥) 在快速抢修中的应用 王新荣 (中铁十七局集团五公司青藏铁路项目) 摘要:工程实际施工过程中,经常需要进行快速抢修,本文介绍了贝雷桥拼装及架设,用于水毁工程紧急抢修。 关键词: 贝雷桥快速抢修 在工程实际施工过程中,经常遇到一些突发事件,如桥梁被洪水冲毁等,这就需要进行快速抢修,以保证两岸交通不受阻,装配式公路贝雷桥就是较好的选择。在青藏铁路施工道路施工中,就采用贝雷桥进行了快速抢修保通,只用4天时间便搭设成功2座便桥,确保了部领导按时顺利通过,现将此桥的现场应用做一些介绍。 1.概述 装配式公路钢桥为半穿式桥梁,主梁由各节3m长的桁架用销子连接而成,两主梁间用横梁联系,每节桁架的下弦杆上设置两根横梁。横梁上放置桥面板本保证,用销子将桥面板与横梁连接,每节桁架用2根斜拉杆交叉连接,用以控制左右桁架间的距离及增加横向刚度。 为增加桥梁强度,主梁可以数排并列或双层堆置,或在桁架上下弦杆另加设加强弦杆。若跨度在30m之内采用后者便可满足要求。 桥梁两边内排桁架的中距为4.2m,桥面净宽3.7m。每次

只准一辆车通过,限速5Km。 贝雷桥的最大特点,在于部件轻巧,各部件间用销子或螺栓连接,装拆方便,用简单的工具和人力就能迅速建成适用于水毁紧急抢收修。 2.部件及其用途 2.1桁架及销子 桁架结构由上下弦杆、竖杆及斜杆焊接而成,上下弦杆的一端为阴头,另端为阳头。阴阳头上都有销栓孔。两节桁架连接时,将一节的阳头插入另一节的阴头内,对准销子孔,插上销子。 2.2加强弦杆 加强弦杆是为了提高桥梁的抗弯能力,发挥桁架腹杆的抗剪作用。加强弦杆用螺栓与主桁架上下弦杆连接。 2.3横梁 横梁置于桁架下弦杆之上,表面各有3个凹眼,套入桁架上横梁垫板的栓钉,使横梁在桁架上就位。凹眼的间距与桁架的间距相同,即内中眼相距0.45m,中外两眼相距0.25m。因此横梁就位之后,桁架的间距也就固定下来。 2.4桥面板 桥面板为钢板制成,其上有螺栓孔,用螺栓将其与横梁连接。 2.5支撑连接结构

钢桥施工方案

目录 一.编制依据和编制原则 (1) 二、XXX钢桥施工方案 (1) 三.质量目标、质量保证体系 (7) 四.工期保证措施........................................... 20 五.雨季施工安排........................................... 22 六.安全保证措施........................................... 22 七.文明施工保证措施....................................... 25 八. 环境保护保证措施...................................... 27

一.编制依据和编制原则 1.1编制依据 1.1.2 xxx钢桥工程施工图纸; 1.1.3我单位对施工现场踏勘和调查的情况; 1.1.4本工程执行的施工规范及验收标准等; 1.1.5我单位的人员和机械设备等综合实力,以往类似工程的施工经验。 1.2编制原则 1.2.1本着“百年大计,质量第一”的原则。严格按照ISO9002质量管理体系对工程进行质量管理,科学组织施工,把好各施工工序的施工质量关,以高标准的工序质量标准来确保全部工程的施工质量。 1.2.2坚持以设备保工艺,以工艺保质量的原则。以先进施工设备保证先进的施工工艺,以先进的施工工艺保证施工质量,从根本上保证工程质量目标的实现。 1.2.3确保本工程按期完工的原则。优化资源、设备、人员的配置以满足施工工期和施工质量的要求;科学组织施工,合理安排施工进度,搞好工序衔接,采用平行作业、流水作业和交叉作业法组织施工,突出重点,确保工期。 1.2.4搞好环境保护,实行安全生产,文明施工。 1.2.5优化施工方案,采取技术组织和管理措施降低工程成本。 二、xxx钢桥施工方案 2.1工程简介 2.1.1工程概况 xx钢桥为xxxxx工程xxx单位工程之中的工程,为方便村民出行及社

48m钢桥设计

48m钢桁架铁路桥设计 学院:土木工程学院 班级:土木0906 姓名:张宇 学号:1801090603 指导老师:方海 整理日期:2012年01月07日

——目录—— 第一章设计依据 (2) 第二章主桁架杆件内力计算 (4) 第三章主桁杆件设计 (10) 第四章弦杆拼接计算 (14) 第五章节点板设计 (16) 第六章节点板强度检算 (16)

48m钢桁架桥课程设计 一、设计目的: 跨度L=48米单线铁路下承载式简支栓焊钢桁梁桥部分设计 二、设计依据: 1. 设计《规范》 铁道部1986TB12-85《铁路桥涵设计规范》简称《桥规》。 2. 结构基本尺寸 计算跨度L=48m;桥跨全长L=48.10m;节间长度d=8.00m; 主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m; 主桁高度H=12.00m;纵梁高度h=1.35m;纵梁中心距b=2.00m; 3. 钢材及其基本容许应力: 杆件及构件——16Mnq;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。 4. 结构的连接方式: 桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接; 人行道托架采用精制螺栓连接; 焊缝的最小正边尺寸参照《桥规》; 高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm; 5. 设计活载等级——标准中活载 6. 设计恒载 主桁P3=16kN/m;联结系P4=2.76kN/m;桥面系P2=6.81kN/m; 高强螺栓P6=(P2+P3+P4)×3%; 检查设备P5=1.00kN/m; 桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%。 计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。 三、设计内容: 1. 主桁杆件内力计算,并将计算结果汇整于2号图上; 2. 围绕E2节点主桁杆件截面选择及检算; 3. 主桁E2节点设计及检算; 4. 绘制主桁E2节点图(3号图)。 四、提交文件: 1.设计说明书; 2. 2、3号图各一张 要求:计算正确,书写条理清楚,语句通顺;结构图绘制正确,图纸采用的比例恰当,线条粗细均匀,尺寸标准清晰。

钢桥作业题库免财富值共享

钢桥作业题库免财富值共 享 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

钢桥作业 姓名 学号: 班级: 专业:土木工程

钢桥主观题作业 作业一: 1、钢桥的主要特点是什么?其适用范围如何 答:主要优点:与常用的其它建筑材料相比,钢材是一种抗拉、抗压和抗剪强度均较高的匀质材料,而其重量则相对较轻。因此,钢桥具有很大的跨越能力;钢材有良好的塑性和韧性,是理想的弹塑性体,完全符合目前所采用的计算方法和基本概念。因此,钢桥计算准确性好,可靠性高;钢桥构件重量轻,便于运输和拼装,加上便于机械化制造,因此钢桥的施工期较短,可尽快发挥投资的经济效益;钢桥在受到破坏后,易于修复和更换;钢的塑性和韧性好,适于承受冲击和 动力荷载,有较好的抗震性能。(对于铁路桥梁尤为重要)主要缺点:钢材易锈蚀,需要经常除锈、油漆,养护费用高;铁路钢桥采用明桥面时噪声大,不适用于人口密集区。 适用范围:由于目前我国钢材紧缺,因此在一般情况下,大、中跨度的桥梁才以采用钢桥为主。 2、铁路下承式简支桁架桥的横向联结系的作用是什么常用的几何图 式有哪些 答:横向联结系的作用:承受并传递横向力,增加结构的横向抗扭刚度,使桥跨形成空间的稳定结构,并使两片主桁受力均匀。 常用几何图式有: 3、对简支梁桥,支座的布置原则是什么? 答:一端设置固定支座,一端设置活动支座。对坡道上的桥梁,固定支座应设在较低一端。 4、简述正交异性板的概念。 答:在钢桥面板(或钢箱梁上翼缘)下布设纵向及横向的、开口或闭口的加劲肋而形成的一种构造。由于加劲肋在平面纵横两个方向正交,又桥面板在两个方向的抗弯刚度不同,故得此名。正交异性板具有很高承载能力,可以显著减轻钢梁的自重。 5、斜拉桥的主要受力构件有哪些?漂浮体系的斜拉桥是什么意 思? 答:斜拉桥的主要受力构件有主梁、斜拉索和索塔。在竖向荷载作用下,梁以受弯为主,塔以受压为主,斜索则承受拉力。对墩塔固结、塔梁分离的斜拉桥,若将中间支点的支承改为吊索,就称为漂

临时钢桥设计方案

钢桥设计方案 一、概述 1.1工程概况 由我单位承建的阿克肖水库导流兼冲沙洞工程,因导流洞进口引渠段土石方开挖弃料拉运及为后期工程施工创造交通便利所修建的临时2#道路横跨阿克肖河,建立一座简易钢结构便桥。根据现场的地形地貌并结合载荷使用要求,经现场勘查我部架设的钢桥规模为长12m共两跨,钢桥外宽4.5m,桥面净宽4m,单项行车道。 1.2 地理位置 设计钢桥位于阿克肖河床中心段,距导流洞进口引渠段开挖范围约0.35km,距2#弃渣场约1.6km,距瑙阿巴提塔吉克乡约3km。 1.3 阿克肖河水文概况 钢桥处址多年平均流量6.46m3/s,多年平均径流量2.038×106m3。阿克肖河的洪水主要分为春洪和夏洪两大类。一般春洪多以季节性积雪融水型为主的洪水类型出现,夏洪多以高山冰雪融水为主的洪水类型出现,此外,还有与山区发生的暴雨洪水相叠加而产生的混合型洪水。根据资料提供,十年一遇洪水流量约为60m3/s 二、设计标准

①设计车速:5km/h ②设计载荷:80t ③桥跨设计:12m两跨简易钢桥 ④桥面布置:桥面净宽4m ⑤设计过水流量:51.12m3/s 三、钢桥设计方案 3.1 钢桥基础设计 钢桥基础均为向河床原地面下挖2m,长6.8m宽3m,C20混凝土浇筑。两端为直立型桥台长4.5m宽1.8m高2m,钢筋混凝土结构。中间桥台为梯形上4.5m,上底宽1m下底宽2m高2m,钢筋混凝土结构。台帽为长4.5m下底宽0.8m上底宽0.3m高0.7m,钢筋混凝土结构。 3.2 桥梁设计 桥梁采用八根热轧型56b“工”字钢,长度为12m。设计间距35cm,每根“工”钢用Φ25钢筋焊接相连,形成一个整体。 3.3 桥面设计 桥面采用4m的热轧型20槽钢进行满铺,间距为10cm并与“工”字钢进行焊接。再用0.5mm钢板进行桥面找平。 3.4 防护结构设计 桥面采用50钢管做成护栏进行防护,栏杆高度1.2m,栏杆纵向3m一根立柱(与桥面槽钢焊接)、高度方向设置两道横杆。

日本的耐候钢桥技术

日本的耐候钢桥技术 2010年l2月汪磊等:日本的耐候钢桥技术2010年第6期 日本的耐候钢桥技术 汪磊,刘向南 (云南省交通规划设计研究院,云南昆明650011) 摘要:介绍日本耐候钢桥的发 展背景历程和现状,基本原理,设计 施工及维持管理要点,希望能对国内 日益推广发展的铜桥设计和建造等方 面拓宽思路.并为中国桥梁早日全面 赶超世界桥梁先进水平提供一些借鉴 和帮助 关键词:日本公路桥梁;耐候铜 桥:免涂装技术:腐蚀机理 0引言 耐候钢(在日本也称为免涂装 钢)是随着高强钢材的出现,材质轻 薄化和防腐蚀要求相应提高而发展起 来的.早在20世纪初,欧美各国制钢 业就已经相继发现在炼钢时掺入微量 的Cu等其他金属元素,可以提高钢材 在大气中的耐腐蚀性.以此为契机, 大规模的钢材添加合金元素后的耐腐 蚀性的调查开展起来,很快就积累了 一 定的经验数据.1967年美国在世界 上首次将耐候钢材用于"裸桥"方式

建设的钢桥.并在1977年建成了世界上最大跨度的上承式耐候钢拱桥——新河峡大桥(NewRiverGorge Bridge1.其后耐候钢桥在世界范围内得到很快推广.目前已成为发达国家 钢桥的一种发展趋势. 13本属于岛国,直接濒临海洋的 区域占国土的绝大部分,这些地区的 空气中携含有大量的海盐成分(75% 为NaC1,其他也均为金属盐类),这些盐分在空气中达到吸湿临界湿度后即会在附近固态物表面结露.促使其腐 蚀反应的发生.另外13本冬季寒冷, 为消融公路路面积冰而抛洒的大量融54 雪剂,同样会造成公路钢构造物的腐 蚀加剧,所以在日本钢桥的防腐蚀工 作显得尤为重要而艰巨. 1969年日本建成其国内第一座完 全真正的耐候钢桥,并于1985年制定了《无涂装耐候性桥梁设计施工要领》,还在1993年进行了修订,确定了耐候钢桥适用海岸环境飞来盐分的判断标准:飞来盐分量<0.05mg/i00em? d(0.05mmd).经过四十多年的不断 积累和发展,目前已经形成了耐候钢 材生产加工,耐候钢桥设计建造及维 护维修各方面一整套较为先进成熟的体系,在桥型上也涵盖了梁桥,桁架

中南大学钢桥作业题库

钢桥主观题作业 作业一: 1、钢桥的主要特点是什么?其适用围如何? 答:主要优点:与常用的其它建筑材料相比,钢材是一种抗拉、抗压和抗剪强度均较高的匀质材料,而其重量则相对较轻。因此,钢桥具有很大的跨越能力;钢材有良好的塑性和韧性,是理想的弹塑性体,完全符合目前所采用的计算方法和基本概念。因此,钢桥计算准确性好,可靠性高;钢桥构件重量轻,便于运输和拼装,加上便于机械化制造,因此钢桥的施工期较短,可尽快发挥投资的经济效益;钢桥在受到破坏后,易于修复和更换;钢的塑性和韧性好,适于承受冲击和动力荷载,有较好的抗震性能。(对于铁路桥梁尤为重要)主要缺点:钢材易锈蚀,需要经常除锈、油漆,养护费用高;铁路钢桥采用明桥面时噪声大,不适用于人口密集区。 适用围:由于目前我国钢材紧缺,因此在一般情况下,大、中跨度的桥梁才以采用钢桥为主。 2、铁路下承式简支桁架桥的横向联结系的作用是什么?常用的几何 图式有哪些? 答:横向联结系的作用:承受并传递横向力,增加结构的横向抗扭刚度,使桥跨形成空间的稳定结构,并使两片主桁受力均匀。 常用几何图式有: 3、对简支梁桥,支座的布置原则是什么? 答:一端设置固定支座,一端设置活动支座。对坡道上的桥梁,固定支座应设在较低一端。 4、简述正交异性板的概念。 答:在钢桥面板(或钢箱梁上翼缘)下布设纵向及横向的、开口或闭口的加劲肋而形成的一种构造。由于加劲肋在平面纵横两个方向正交,又桥面板在两个方向的抗弯刚度不同,故得此名。正交异性板具有很高承载能力,可以显著减轻钢梁的自重。 5、斜拉桥的主要受力构件有哪些?漂浮体系的斜拉桥是什么意 思? 答:斜拉桥的主要受力构件有主梁、斜拉索和索塔。在竖向荷载作用下,梁以受弯为主,塔以受压为主,斜索则承受拉力。对墩塔固结、塔梁分离的斜拉桥,若将中间支点的支承改为吊索,就称为漂浮体系的斜拉桥。它可以减小索塔支点处梁的负弯矩,但梁的横向变位应加以约束。 6、图示说明悬索桥的组成及各组成部分的作用。

钢桥课程设计

《钢桥》课程设计任务书《钢桥》课程设计指导书 青岛理工大学土木工程学院 道桥教研室 指导老师:赵建锋 2010年12月

《钢桥》课程设计任务书 一、设计题目 单线铁路下承式简支栓焊钢桁架桥上部结构设计 二、设计目的 1. 了解钢材性能及钢桥的疲劳、防腐等问题; 2. 熟悉钢桁架梁桥的构造特点及计算方法; 3. 通过单线铁路下承式简支栓焊钢桁架桥上部结构设计计算,掌握主桁杆件内力组合及计算方法;掌握主桁杆件截面设计及验算内容; 4. 熟悉主桁节点的构造特点,掌握主桁节点设计的基本要求及设计步骤; 5. 熟悉桥面系、联结系的构造特点,掌握其内力计算和强度验算方法; 6. 熟悉钢桥的制图规范,提高绘图能力; 7. 初步了解计算机有限元计算在桥梁设计中的应用。 三、设计资料 1. 设计依据:铁路桥涵设计基本规范(TB1000 2.1-2005) 铁路桥梁钢结构设计规范(TB10002.-2008) 钢桥构造与设计 2. 结构轮廓尺寸: 计算跨度L= m ,节间长度d= 8 m ,主桁高度H= 11m ,主桁中心距B= 5.75m ,纵梁中心距b= 2.0m 。 3. 材料:主桁杆件材料Q345qD ,板厚≤40mm ,高强度螺栓采用M22。 4. 活载等级:中-活载。 5. 恒载: (1)主桁计算 桥面m kN p =1,桥面系m kN p =2,每片主桁架m kN p = 3, 联结系m kN p =4; (2)纵梁、横梁计算 纵梁(每线) m kN p = 5 (未包括桥面),横梁(每片) m kN p = 6。 6. 风力强度0.1,25.13212 0==K K K m kN W 。

钢桥连接

钢桥连接 1020104403 土木1014 彭一龄 一、钢桥的连接方式 1.焊接 焊接是现代钢桥最主要的连接方式。栓焊桥(工厂制造为焊接,工地拼接为高强度螺栓连接)和全焊桥(工厂制造和工地拼接均为焊接)。栓焊桥和全焊桥统称为焊接桥。 ⑴优点 焊接刚度较大,密封性较好;对钢材从任何方位、角度和形状相交都能方便使用;一般不需要附加连接板、连接角钢等零件;一般不需要在钢材上开孔,不使截面受削弱。 ⑵缺点 焊接塑性和韧性较差,脆性较大,疲劳强度较低;焊接附近钢材因焊接的高温作用而形成热影响区,其金相组织和机械性能发生变化,某些部位材质变脆;焊接过程中钢材受到不均匀的高温和冷却,使结构产生焊接残余应力和残余变形,影响结构的承载力、刚度和使用性能;焊接可能出现气孔、夹渣、咬边、弧坑裂纹、根部收缩、接头不良等,影响结构疲劳强度。 2.螺栓连接 螺栓连接分为普通螺栓连接和高强螺栓连接。普通螺栓连接用普通扳手拧紧,通过螺杆承受剪力和杆件孔壁压力或者螺杆受拉来传力;高强度螺栓连接用高强度钢材制成并经热处理,用特制的、能控制扭矩或螺栓拉力的扳手拧紧,使螺栓用较高的预拉应力值,相应的高度夹紧被连接的板件,使部件接触面产生很大的摩擦力,主要通过摩擦力或者板件间的预压力来传力。 ⑴优点 安装方便,特别适用于工地安装连接;普通螺栓便于拆卸。适用于需要装拆的结构连接和临时性连接;高强螺栓强度高、对螺孔加工精度要求较低、连接构件间不宜产生滑动、刚度

大。适合构件间的工地现场安装连接。 ⑵缺点 需要在板件上开孔和拼装时对孔,增加制造工作量;螺栓孔会削弱构件截面;被连接板件需要互相搭接或另加角钢或拼接板等连接件,多费钢材。 ⑶普通螺栓连接 ①C级螺栓连接 经过未加工的圆钢制成,材料性能属于4.6、4.8级,采用Q235BF。尺寸不很准确,孔径比螺栓直径大1~2mm,结构装配和螺栓装拆方便,比较适用于承受拉力。受剪性能较差,各个螺栓受力较不均匀。常用于承受拉力的安装螺栓连接、次要结构和可拆卸结构的受剪性能、安装时的临时连接。 ②A、B级螺栓连接 采用45号钢或35号钢,材料性能属于8.8级,螺杆经过加工,表明光滑尺寸准确,按尺寸规格又分为A、B两级。直径d≤24mm,长度l ≤150mm和10d,为A级;直径d>24mm,长度l >150mm和10d,为B级。加工精度高、尺寸准确和杆壁接触紧密;可承受较大的剪力、拉力;抗疲劳性能较好;连接变形较小。但制造、安装较费工,价格昂贵,目前在钢桥中很少采用,已经被摩擦型高强度螺栓代替。 ⑷高强度螺栓连接 高强螺栓的杆身、螺帽和垫圈都用抗拉强度很高的钢材制成。 ①摩擦型 高强度螺栓的摩擦连接是用拧紧高强度螺栓使部件间产生摩擦力来传力的连接方法。由于它是以较大的面积来传力,所以有效的缓解了螺孔附近的应力集中现象,从而耐疲劳性能和接头的刚度显著提高。孔径比螺栓直径大1.5~2mm,靠螺栓拧紧力所提供的摩擦力作为抵抗外载方式。产生急剧变形(主滑动)时的荷载作为设计强度标准。整体性和刚度好、变形小、受力可靠、耐疲劳,但是螺栓的高强度没被充分利用。 ②承压型 承压型高强度螺栓连接孔径比螺栓直径大1~1.5mm,靠被连接板件间的预压力作为抵抗外载方式。以杆身剪切或孔壁承压破坏时的荷载作为连接受剪的极限承载力作为设计强度标准。螺栓的高强度得到充分利用,设计承载力>摩擦型,但是整体性和刚度差,变形大。 3.铆钉连接 铆钉连接在受力和设计上与普通螺栓连接相仿。钢结构中一般用热铆,即把预制的一端带有铆钉头的铆钉加热到1000℃左右,插入铆钉孔,然后用压缩空气铆钉枪连续锤击或压铆机挤压形成另一端的钉头。

日本钢结构桥资料

日本钢结构桥资料

日本钢桥新技术资料 日本是钢桥的王国,钢桥的结构形式随着时代的发展而不断地进行着改进。教科书里介绍的结构形式有许多已经过时,日本桥梁建设协会的资料是实际工程设计的参考资料。 少数主梁桥 少数主梁桥是通过采用大跨度的合成桥面板或PC桥面板,达到减少主梁数目,并使横梁,风撑结构简素化以至于省略的新形桥梁。近年来已经成为一种常见的钢桥形式。适用于曲率半径大于700米的场合,经济跨径30到80米。特长:由于采用合成桥面板或PC桥面板,提高了桥面板的跨度。合成桥面板的底钢板同时兼做混凝土的模板。现场打设的PC桥面板或工厂预制的桥面板均可对应。由于桥面板跨度的增大,减少了主梁数目。横梁的间隔也达到10米程度,横梁可以直接使用型材。通过桥面板抵抗横方向的荷重,省略了下风撑。除去强风地域,一直到70米均可保证抗风安全性。跨径再大的话需要对抗风做特别的考虑。

狭小箱梁桥 狭小箱梁桥的主梁比从前的箱梁窄,翼缘的板厚较大,纵向加强肋的设置个数少,省略了横向加强肋,并且通过使用大跨度的合成桥面板,PC桥面板,简化了床组结构。适用于曲率半径大于300米的场合,经济跨径60-110米。特长:纵加强肋的设置个数大大减少,或者省略横加强肋。较大跨径时,虽然箱梁断面较宽,箱内结构也可以简素化。例如最大跨径97.6米,梁高3.1米,腹板间隔2.5米的狭小箱梁,但纵加强肋只设了一处。 当上下线一体化时狭小箱梁

开断面箱梁桥 适用于曲率半径大于300米的场合,经济跨径50-90米。 当上下线一体化时开断面箱梁 合理化钢床板少数I梁桥 适用于曲率半径大于700米的场合,经济跨径60-110米。采用大尺寸的U形加强肋。

钢桥作业

西南交通大学网络教育学院2011—2012学年第一学期 钢桥作业 姓名:马琳 学号:10821463 班级:2010春季道桥班 专业:土木工程

钢桥主观题作业 作业一: 1、钢桥的主要特点是什么?其适用范围如何? 答:主要优点:与常用的其它建筑材料相比,钢材是一种抗拉、抗压和抗剪强度均较高的匀质材料,而其重量则相对较轻。因此,钢桥具有很大的跨越能力;钢材有良好的塑性和韧性,是理想的弹塑性体,完全符合目前所采用的计算方法和基本概念。因此,钢桥计算准确性好,可靠性高;钢桥构件重量轻,便于运输和拼装,加上便于机械化制造,因此钢桥的施工期较短,可尽快发挥投资的经济效益;钢桥在受到破坏后,易于修复和更换;钢的塑性和韧性好,适于承受冲击和动力荷载,有较好的抗震性能。(对于铁路桥梁尤为重要)主要缺点:钢材易锈蚀,需要经常除锈、油漆,养护费用高;铁路钢桥采用明桥面时噪声大,不适用于人口密集区。 适用范围:由于目前我国钢材紧缺,因此在一般情况下,大、中跨度的桥梁才以采用钢桥为主。 2、铁路下承式简支桁架桥的横向联结系的作用是什么?常用的几何 图式有哪些? 答:横向联结系的作用:承受并传递横向力,增加结构的横向抗扭刚度,使桥跨形成空间的稳定结构,并使两片主桁受力均匀。 常用几何图式有: 3、对简支梁桥,支座的布置原则是什么? 答:一端设置固定支座,一端设置活动支座。对坡道上的桥梁,固定支座应设在较低一端。 4、简述正交异性板的概念。 答:在钢桥面板(或钢箱梁上翼缘)下布设纵向及横向的、开口或闭口的加劲肋而形成的一种构造。由于加劲肋在平面纵横两个方向正交,又桥面板在两个方向的抗弯刚度不同,故得此名。正交异性板具有很高承载能力,可以显著减轻钢梁的自重。 5、斜拉桥的主要受力构件有哪些?漂浮体系的斜拉桥是什么意思?答:斜拉桥的主要受力构件有主梁、斜拉索和索塔。在竖向荷载作用下,梁以受弯为主,塔以受压为主,斜索则承受拉力。对墩塔固结、塔梁分离的斜拉桥,若将中间支点的支承改为吊索,就称为漂浮体系的斜拉桥。它可以减小索塔支点处梁的负弯矩,但梁的横向变位应加以约束。

日本桥梁介绍

日本的城市大跨径桥梁介绍 在考察中,我们对日本在城市大跨径桥梁建设中的成就和创新理念留下了深刻的印象,其桥梁结构主要采用悬索桥和斜张桥,下面分别介绍东京彩虹大桥、明石海湾大桥、港大桥下津井濑户大桥、因岛大桥、多多罗大桥和生口大桥的相关情况。 1 日本东京彩虹大桥 图1系东京著名的彩虹大桥。人们来到东京第一个观赏的地标式建筑应是彩虹桥。这是一座连接东京台场和芝浦的全长918 m的悬索结构桥,是日本首都东京一条横越东京湾北部,连接港区芝浦及台场的大桥。东京彩虹大桥的结构为三跨二铰加劲桁梁式悬索桥,其正名称为“首都高速道路11号台场线东京港联络桥”,于1987年动工,1993年8月26日建成通车。 图1 东京著名的彩虹大桥 彩虹大桥全长798 m,主桥跨径为570 m。桥梁分为上下两层,上层为首都高速道路11号台场线,下层的中央部分为新交通临海线(东京临海新交通临海线)的路轨,两侧为一般道路,包括国道357号行车道及行人道。单车及50cc以下的机车禁止使用彩虹大桥,桥上设有人行道,游人可伴着徐徐的海风漫步在彩虹桥上,饱览东京的景色。 如今东京彩虹桥优美的白色桥体结构,早已成为东京临海的重要景观。在桥梁工程筹建之时设计者就充分考虑了景观要求,并将夜景照明作为其桥梁主体规划的重要内容。大桥的照明分4个部分,主要是主塔悬索大梁和抛锚处。这些部分的照明优美协调并形成一个完整的统一体,同时又不失各自的特点。景观照明随季节日期和时间作相应变化,并创造出丰富的景观效果。从生态平衡的角度充分考虑了节能,其主塔日光下的光色随季节发生变化(夏季白色,冬季暖白),其感官在心理上可产生非视觉上的效果。两座支撑大桥的桥塔使用白色设计,令彩虹大桥与周围的景色相协调和共融。在悬索桥面的缆索上设置有红、白、绿3 色光源,并采用日间收集来的太阳能作为能源,在晚上来点缀彩虹大桥。彩虹大桥的景色已成为日本近年一个新兴的观光胜地,其下层外侧的行人道,让行人可徒步过桥。

装配式公路钢桥使用管理

装配式公路钢桥使用管理 一、概述 装配式公路钢桥是国防交通储备物资的重要组成部分,以其结构简单、构件轻巧、互换性好、适应性强的特点,在历年重大军事行动交通保障和公路桥梁抢修中都发挥了重要作用。在保证国防交通储备器材正常储备的情况下,可以适当开展租凭业务,支援国民经济建设,收取的租凭费用用于钢桥的维护保养,达到“以物养物”的目的。 目前,我国有321型装配式公路钢桥和200型装配式公路钢桥两种定型产品。321型钢桥与200型钢桥外观上没有多大的区别,只是将桁架的高度由1.4m(321型)提高到2.134m(200型),并有公制和英制两种尺寸。经过这一改动,大大提高了桥梁的抗弯能力和刚度,减小了桥梁的竖向变形,节约了钢材。200型装配式公路钢桥加强四排单层,可以代替321型钢桥加强三排双层的使用,321型只可组装单车道(行车道宽3.7米),200型还可以组装双车道桥梁(单车道行车道宽4.2米,双车道行车宽7.35米),扩大了装配式式公路钢桥的使用范围。 二、使用和管理 321型公路钢桥由桁架式主梁,桥面系,链接系,构属4部分组成,并配有专门的架设工具。最大跨径可达69米,车行道宽度3.7米,允许轮式车以30公里/小时,履带式车辆以5公里/小时的速度通过。组合形式有:单排单层(SS)、双排单层(DS)、三排单层(TS)、双排双层(DD)、三排双层(TD)、加强的单排单层(SSR)、加强的双

排单层(DSR)、加强的三排单层(TSR)、加强的双排双层(DDR)、加强的三排双层(TDR),分别可适用于汽车-10级、汽车-15级、汽车-20级、履带-50级、挂车-80级、公路-I级、公路-II级等荷载。 321型装配式公路钢桥结构示意图 200型装配式钢桥与321型装配式钢桥相似,螺栓连接构件采用导向套定位固定的方法增加了产品连接精度,导向套受剪,螺栓受拉,提高了螺栓的使用寿命,保证了装配式钢桥的安全性。抗风拉杆制作成整体式,并与横梁连接,提高装配式钢桥的整体稳定性。水平支撑架与桁架片之间是跨接固定,这样可保证整桥没有侧弯,整桥架好后并带预拱度。组合形式有:单排单层(SS)、双排单层(DS)、三排单层(TS)、四排单层(QS)、加强的单排单层(SSR)、加强的双排单层I型(DSR)、加强的双排单层II型(DSR2)、加强的三排单层II型(TSR2)、加强的三排单层III型(TSR3)、加强的四排单层III型(QSR3)、加强的四排单层IV型(QSR4),分别可适用于汽车-10级、汽车-15级、

公路钢桥规范

公路桥涵钢结构设计规范 第一节总则 第1.1.1条本章适用于一般的公路工程钢结构设计。对本规范未涉及的港结构,可参考国家批准的专门规范或有关的先进技术资料进行设计。 第1.1.2条采用规范进行设计时,荷载按《公路桥涵设计通用规范》的规定执行。有关抗震的计算和规定,按《公路工程抗震设计规范》执行。 第1.1.3条钢结构设计要与架设方案统筹考虑,应以经济合理,便于加工,方便运输安装和检查养护为准。第1.1.4条钢结构一般采用工厂焊接(或铆接)构件,工地现场拼装(高强螺栓连接)而成。 第1.1.5条由汽车荷载(不计冲击力)所引起的竖向挠度,不应超过表1.1.4所列的容许值。用平板挂车或履带车验算时容许竖向挠度可以增加20%。 如车辆荷载在一个桥跨内移动,因而产生正负两个方向的挠度时计算挠度应为其正负挠度的最 大绝对值之和。 对于临时或特殊结构,其竖向挠度容许值,可与有关部门协商确定。 第1.1.6条桥跨结构应设预拱度,其值等于结构重力和1/2静活载产生的竖向挠度和,起拱应做成平顺曲线。如桥面在竖曲线上,预拱度应与竖曲线纵坡一致。 当结构重力和静活载产生的竖向挠度不超过跨经的1/1600时,可不设预拱度。 第1.1.7条设计钢梁时,应分析施工吊装和调整支座等受力状况,起顶设施及结构本身都应按起顶重力增加30%验算。 表1.1.4 容许挠度值 结构形式容许挠度值 简支或连续桁架L/800 简支或连续板梁L/600 梁的悬臂端部L/300 悬索桥L/400 第二节一般规定 (Ⅰ)材料 第1.2.1条钢桥所用的主要材料为: 一、主体结构符合国标(GB)1591-79要求的16锰钢(16Mn)或其他使用于桥梁的普通低合 金钢。 符合国标(GB)1591-79要求的3号钢(A3)或其他使用于桥梁的普通碳素结构钢。 二、铸件符合国标(GB)1591-67要求且不小于铸钢-25II(ZG25II)的碳素钢。16锰钢(16Mn) 或其他使用于桥梁的普通低合金钢。 三、 第1.2.2条用以制造高强螺栓、粗制螺栓和铆钉的主要钢材为: 第1.2.3条用以焊接的材料为: 第1.2.4条钢材的弹性模量规定如下: 弹性模量E 2.1x105Mpa 剪切模量G 0.81x105MPa 悬索桥的钢丝绳弹性模量,当缺乏资料时,可取1.6x105Mpa

钢桥安装方案

第一章编制依据及说明 一、编制依据 本吊装及运输方案编制依据见下表: 安装方案编制依据表 二、编制说明 1、本安装方案在编制过程中充分考虑了现场的施工特点和难度,本着优化施工方案、强化质量管理、合理降低工程造价、缩短施工工期、确保施工与交通安全等原则,为工程设置了施工组织和施工技术管理机构,并对工程作出施工程序规划。 2、本工程施工区域环境较复杂,且河道明年开春要正常通水。因此如何保证快速施工、减少占用道路时间是优先考虑的问题, 同时确保安全施工也是一个重点,将在吊装及运输方案中重点策划。 3、钢箱梁吊运是专业性非常强、机械化程度高的施工过程,要求工程总承包方和制作吊装单位密切配合、相互沟通、及时联系,才能高质量、高效率、按时圆满完成任

务。 4、在文明施工、环境保护、消防安全等具体措施中,贯彻了当地有关部门对加强建筑施工现场管理的精神和要求。 5、本吊装及运输方案报请业主和监理单位、设计单位同意后方可实施。

第二章工程概况 一、建设概况 1、本工程主桥采用30m+40m+30m斜腿钢结构连续钢-混组合梁,主桥桥墩采用钢制V 形斜撑,斜撑与主梁焊接相连形成整体,桥面横坡由墩(台)帽上设置三脚垫层来调平。 2、项目情况 2.1 工程名称: 克拉玛依市油建路南北贯通工程 2.2 项目名称: 克拉玛依市油建路南北贯通工程钢箱梁安装工程 2.4 设计单位: 新疆公路规划勘察设计研究院 2.5 钢结构制作单位: 北京北雄首建钢结构有限公司 2.6 项目范围: 克拉玛依市油建路南北贯通工程钢箱梁安装 二、设计概况 1、主要技术参数 1.1 设计荷载: 1.2 桥梁宽度: 1.3 地震设防烈度: 2、主要工程量表 三、运输吊装特点及难点 本工程中钢桥数量多,现场作业空间较为狭小,为了减少现场二次搬运,必须优化施工方案,计算好运输车次,做好施工组织、施工准备、施工协调工作,确保钢梁吊运万无一失。

321 钢桥设计基本参数

“321” 钢桥设计基本参数 简介:装配式公路钢桥(简称“321”钢桥)是在原英制贝雷桁架桥的基础上,结合我国国情和实际情况研制而成的快速组装桥梁,材料为16Mn。 “321”钢桥属临时性桥梁结构,钢材的容许应力按基本容许应力提高30%,本桥设计时采用的容许应力按下列确定: 16锰钢的拉应力、压应力及弯应力: 1.3×210=273 MPa 16锰钢的剪应力: 1.3×120=156 MPa 销子为30铬锰钛,插销为弹簧钢 30铬锰钛的拉应力、压应力及弯应力 0.85×1300=1105 MPa 30铬锰钛的剪应力 0.45×1300=585 MPa 2、钢梁截面特性 (1)、桁架上下弦杆系由各两根10号热轧槽钢背靠背组合而成,腹杆由8号工字钢组成; (2)、“321”钢桥在大多数情况下,最大跨径是由容许弯矩控制,但在个别情况下,是由剪力控制。 桥梁几何特性表 (表中数值为半边桥之值,全桥时应乘2) 几何特性 W(cm3) I(cm4) 结构构造 单排单层不加强 3578.5 250497.2 加强 7699.1 577434.4

双排单层不加强 7157.1 500994.4 加强 15398.3 1154868.8 三排单层不加强 10735.6 751491.6 加强 23097.4 1732303.2 双排双层不加强 14817.9 2148588.8 加强 30641.7 4596255.2 三排双层不加强 22226.8 3222883.2 加强 45962.6 6894382.8 桁架容许内力表 桥型不加强桥梁加强桥梁 容许内力单排单层双排单层三排单层双排双层三排双层单排单层双排单层三排单层双排双层三排双层 弯矩(KN·M) 788.2 1576.4 2246.4 3265.4 4653.2 1687.5 3375.0 4809.4 6750.0 9618.8 剪力(KN) 245.2 490.5 698.9 490.5 698.9 245.2 490.5 698.9 490.5 6 98.9 “321”钢桥 弦杆截面积A(cm2):2×12.74=25.48 弦杆惯矩Ix(cm4):396.6 弦杆截面模量Wx(cm3):79.4 自由长度Lp(cm):75 长细比λ= Lp/r :19 纵向弯曲系数φ:0.953 弦杆纵向容许受压荷载(KN):663 1、容许内力指的是跨中弯矩和支点剪力; 2、桁架销子双剪状态容许剪力550KN(销子直径为49.5mm);

日本钢结构桥资料

日本钢桥新技术资料 日本是钢桥的王国,钢桥的结构形式随着时代的发展而不断地进行着改进。教科书里介绍的结构形式有许多已经过时,日本桥梁建设协会的资料是实际工程设计的参考资料。 少数主梁桥 少数主梁桥是通过采用大跨度的合成桥面板或PC桥面板,达到减少主梁数目,并使横梁,风撑结构简素化以至于省略的新形桥梁。近年来已经成为一种常见的钢桥形式。适用于曲率半径大于700米的场合,经济跨径30到80米。特长:由于采用合成桥面板或PC桥面板,提高了桥面板的跨度。合成桥面板的底钢板同时兼做混凝土的模板。现场打设的PC桥面板或工厂预制的桥面板均可对应。由于桥面板跨度的增大,减少了主梁数目。横梁的间隔也达到10米程度,横梁可以直接使用型材。通过桥面板抵抗横方向的荷重,省略了下风撑。除去强风地域,一直到70米均可保证抗风安全性。跨径再大的话需要对抗风做特别的考虑。

狭小箱梁桥的主梁比从前的箱梁窄,翼缘的板厚较大,纵向加强肋的设置个数少,省略了横向加强肋,并且通过使用大跨度的合成桥面板,PC桥面板,简化了床组结构。适用于曲率半径大于300米的场合,经济跨径60-110米。特长:纵加强肋的设置个数大大减少,或者省略横加强肋。较大跨径时,虽然箱梁断面较宽,箱内结构也可以简素化。例如最大跨径97.6米,梁高3.1米,腹板间隔2.5米的狭小箱梁,但纵加强肋只设了一处。 当上下线一体化时狭小箱梁

适用于曲率半径大于300米的场合,经济跨径50-90米。 当上下线一体化时开断面箱梁 合理化钢床板少数I梁桥 适用于曲率半径大于700米的场合,经济跨径60-110米。采用大尺寸的U形加强肋。

06年-07年二学期西南交大钢桥-5问答题..

钢桥第1次作业 6.?钢桥的主要特点是什么?其适用范围如何 答: 主要优点:?与常用的其它建筑材料相比,钢材是一种抗拉、抗压和抗剪强度均较高的匀质材料,而其重量则相对较轻。因此,钢桥具有很大的跨越能力;钢材有良好的塑性和韧性,是理想的弹塑性体,完全符合目前所采用的计算方法和基本概念。因此,钢桥计算准确性好,可靠性高;钢桥构件重量轻,便于运输和拼装,加上便于机械化制造,因此钢桥的施工期较短,可尽快发挥投资的经济效益;钢桥在受到破坏后,易于修复和更换;钢的塑性和韧性好,适于承受冲击和动力荷载,有较好的抗震性能。(对于铁路桥梁尤为重要) 主要缺点:钢材易锈蚀,需要经常除锈、油漆,养护费用高;铁路钢桥采用明桥面时噪声大,不适用于人口密集?区。 适用范围:由于目前我国钢材紧缺,因此在一般情况下,大、中跨度的桥梁才以采用钢桥为主。 7.?铁路下承式简支桁架桥的横向联结系的作用是什么?常用的几何图式有哪些? 答: 横向联结系的作用:承受并传递横向力,增加结构的横向抗扭刚度,使桥跨形成空间的稳定结构,并使两片主桁受力均匀。 常用几何图式有: 8.?对简支梁桥,支座的布置原则是什么? 答: 一端设置固定支座,一端设置活动支座。对坡道上的桥梁,固定支座应设在较低一端。 9.?简述正交异性板的概念。 答: 在钢桥面板(或钢箱梁上翼缘)下布设纵向及横向的、开口或闭口的加劲肋而形成的一种构造。由于加劲肋在平面纵横两个方向正交,又桥面板在两个方向的抗弯刚度不同,故得此名。正交异性板具有很高承载能力,可以显着减轻钢梁的自重。 10.?斜拉桥的主要受力构件有哪些??漂浮体系的斜拉桥是什么意思? 答: 斜拉桥的主要受力构件有主梁、斜拉索和索塔。在竖向荷载作用下,梁以受弯为主,塔以受压为主,斜索则承受拉力。 对墩塔固结、塔梁分离的斜拉桥,若将中间支点的支承改为吊索,就称为漂浮体系的斜拉桥。它可以减小索塔支点处梁的负弯矩,但梁的横向变位应加以约束。 11.?图示说明悬索桥的组成及各组成部分的作用。

外文翻译---日本钢桥建筑的近期发展趋向

外文资料翻译 Considerations on recent trends insteel bridge construction in Japan Abstract In this paper, consideration is given on recent trends in, steel bridge construction in Japan. As far as recent trends are concerned, it is observed that the construction of long and big steel bridges has practically been completed. Consequently, the focus of recent main works is the maintenance of superannuated (averaged) bridges and the seismic retrofitting of existing bridges. The refreshment and regeneration of some superannuated bridges is also needed recently in order to mitigate the uncomfortable influence of these bridges on their surrounding environment. For this purpose, maintenance and retrofitting works should be economically reasonable jobs. The necessity and importance of these works should be understood by the nation through retrofitting existing bridges against disasters and mitigating the unfavorable influence of bridge structures on the bridge environment on the basis of the code of ethics for civil engineers promulgated by JSCE. Moreover, bridge engineers should seek better social status and the bridge engineering field should become attractive to young students who will bear the future of this field. 1.1 Construction trend In Japan, many bridges were intensively constructed in the 1960s–80s, during the period of high economic growth, with the number of bridges constructed per year decreasing recently to half of the overall peak. More specifically, the steel bridge industry reached the golden age in the latter half of the 1960s. However, the latest data indicates that the recent number of constructed steel bridges has declined to approximately 40% of its peak, though the number of constructed RC and PC bridges remains almost constant from the beginning of 1960 to date. After the construction of many bridges as one of the important infrastructures, bridges were constructed predominantly in places of direct need. Recently, it is observed that various kinds of damage have occurred to many bridges mainly constructed in the 1960s.

相关文档