文档库 最新最全的文档下载
当前位置:文档库 › az91d镁合金压铸件之表面缺陷分析nb上盖

az91d镁合金压铸件之表面缺陷分析nb上盖

az91d镁合金压铸件之表面缺陷分析nb上盖
az91d镁合金压铸件之表面缺陷分析nb上盖

AZ91D 镁合金压铸件之表面缺陷分析— NB 上盖

由于镁合金具有优异的刚性、散热能力和良好的电磁遮蔽效果等好处,所以现在已被广泛运用在3C 电子产品上。而在众多的镁合金成形制程中又以压铸制程最被广为采用,因此本文将针对以热室机压铸法所制造NB 上盖产品(AZ91D) ,由现场取得具表面缺陷的不良品,如热裂模、表面氧化、热裂、顶出变形、流纹等,然后藉由外观和微观分析找出各个缺陷确切的形态,再配合上统计缺陷位置分布和成分分析,以证实缺陷发生的原因。前言镁合金具有质轻、高比强度、耐震等优点,以此在航空器材、运输工具、信息产品上均有相当广泛的应用实例;另外,镁合金与工程塑料比较,也具有优异的刚性、散热能力和良好的电磁遮蔽效果,所以近年来在3C (计算机、通讯、消费性电子) 可携式产品大展光芒。目前镁合金零组件制造方式大多是以压铸法为主,例如:热室机压铸法或冷室机压铸法,虽然近年来还有以半固态射出成形为主的触变成形(Thixo-molding) 及流变成形(Rheo-molding) 等新制程的推出,但由于技术上仍无法突破,所以一般还是以压铸法生产镁合金为主。在各种不同镁合金种类当中,都含有相当比例的铝元素(铝含量约介于1-10% )以作为主要添加合金元素,它与镁元素会析出的B相,使基地具有散布强化的效果,以便提升铸造性能、抗腐蚀能力以及机械性能。其它次要添加合金元素,例如:锌元素的添加亦会提升机械性质和铸造性能;锰元素则会和铝形

成化合物,同时固溶铁、钴、镍元素,可将Fe+Ni+Co/Mn 控制在一定值之下,并改善耐蚀性;添加铍元素则可以有效减少熔融时氧化物的形成,提升熔汤的清净度。此外,控制少量重金属元素的添加,也可有效提升镁合金抗腐蚀的效果。而目前利用镁合金作成的3C 产品(NB 机壳、手机外壳、PDA 等),仍以

AZ91D(Mg-9%Al-1%Zn) 镁合金为主,主要是因为其机械性、铸造性、耐蚀性均能满足产品的需求,所以最常被采用。但在以压铸法生产此类镁合金产品时,却面临了良率无法提升的重大问题,其最主要原因是表面的质量不良,必须靠后段表面研磨修整、补土等程序来补正,而耗费大量成本与时间。因此,本文将针对AZ91D 的压铸缺陷做探讨,包括成因、种类与对策等,期能对镁合金压铸产品的缺陷有所了解,并提升镁合金产品的竞争力。表一AZ91D 铸锭成分实验方法本次压铸用镁合金AZ91D 成分如表一,产品为笔记型计算机LCD 上盖,采用热室机压铸法(HotChamberMa- chine) 制造,压铸参数如表二所示。压铸后收集现场各种含表面缺陷的不良品来加以统计分析。表二压铸参数首先以现场初步巨观判定不良品缺陷种类,再由SEM 观察试片缺陷的微观形态,并使用EDS 作定性分析,得知缺陷位置的元素成分。透过SEM 和EDS 的观察分析再与现场判定作一比对,然后配合巨观以及微观的方式得知各个缺陷真正的形态、发生原因和最常发生位置,并提出解决表面缺陷发生的对策。结果与讨论

针对从现场所收集到的压铸镁合金产品,归纳分析后发现其常见

的缺陷有:热裂模、表面氧化、热裂、顶出变形、流纹等,以下就这些铸造缺陷做分析讨论。1.热裂模

其巨观形态如图一所示,铸件表面具有类似网状的结构,而从统计分析发现此类缺陷最常发生的位置大多集中在进模口附近。若从微观上观察,可以明显看出有凸起的连续网状组织形成,如图二所示。若以EDS 分析热裂模发生的区域与基地的成分,发现两者的成分几乎相同,如图三(b) ,(c) 所示。推究此缺陷发生的原因,可能是因为近模口附近的金属熔液流速较快且温度高,容易造成铸模的冲蚀,或因为温度的变动,发生交替的压张应力而产生表面裂纹。图三热裂模区域之显微结构与成分分析2. 表面氧化在镁合金的NB 压铸件表面常可发现有许多小黑点,并散布在表面的任何位置,如图四所示。藉由SEM 观察表面黑色位置的组织,则呈现出许多白色的颗粒,如图五。若再以EDS 分析这些白色小颗粒并与基地作比对分析,发现在颗粒上的氧元素比例相对的高出许多,如图六所示,因此很有可能是一些氧化物的生成,如MgO 、Al2O3 等。由于镁的活性极高,容易与氧元素键结反应,所以在镁锭熔解炉内会通入保护气体,目前通常是以

SF6+CO2 当作保护气氛,Mg 和SF6 的反应式:SF6+ Mg(1)+ A ir — MgO(s)+MgF2(s)+SF6 f 其中Mg 和SF6 反应会产生MgO 和MgF2 的氧化层在镁汤表面,以防止熔融镁液遭受氧化。一旦保护气氛SF6 浓度不够,镁汤会很容易氧化,而在浇铸过程将这些氧化物带入铸件中。

3. 热裂从巨观来看,此缺陷有着深浅不一且不规则外形的黑色裂缝(图七) ,有时甚至会穿透过铸件的背面(图八) ,因此对于铸件的质量有很大的影响。进一步以SEM 观察裂缝,则可以很明显看到裂缝是沿着晶粒界破坏,如图九,而且在裂缝边缘的组织也较为松散,有许多小的微裂缝。依据统计分析发现,热裂大都发生在铸件断面改变处或凹角的地方,这是因为此处在凝固收缩时容易受到模具的局限而产生应力使之变形,而若这个区域又是较晚凝固的部分,则很容易产生松缩组织,使得材料强度降低,因而产生热裂。此外,从裂缝显微组织来看,也常发现夹杂有非镁材料基地相的元素之颗粒存在,而其可能的来源有如:模具表面

涂模剂中的有机化合物、保护气体SF6 与镁材料反应生成的MgS 或MgF2 、氧化生成物MgO 或CaO、防止镁汤液面燃烧加入的助熔剂等等,任何会与镁反应生成的不纯物。

因此其真正的原因相当复杂,仍待进一步研究。由图十裂缝中的夹杂物及EDS 分析结果得知,其具有相当高含量的

Ca 存在。综合以上论点,热裂发生位置大多都是在凝固收缩时受限于模具然后产生应力之处,而在这些位置若又是最后凝固或充填的区域,其本身就较容易形成松缩组织或夹杂物,再配合应力的促使,使铸件从晶界上开始变形生成裂缝。4.顶出变形由于缺陷巨观型态与热裂相当类似,所以通常此类缺陷易与热裂混淆。其巨观上与热裂最明显的不同点在于它的裂缝大部分看似白白亮亮,并不像热裂的黑色裂缝,但若顶出变形的裂缝很深,则无法

第一时间判断出为何种缺陷。此外,其发生位置多集中在顶出销附近,与热裂不同。若从微观组织来看就可以清楚分辨出来,如图十一所示,在靠近裂缝两旁的基地有层状的迭纹,而且裂缝中也没有明显的白色颗粒;反观,在靠近热裂的裂缝两旁 (图九),它的基地均沿着晶粒间破断并且向下延伸,所以才有不规则的破断面。另外,顶出变形造成的裂缝深度一般也比热裂来得浅,甚至还可以看见裂缝底部的晶粒。

图十热裂纹中夹杂特成分分析利用EDS 分析裂缝附近成分元素,其成分也与基地相成分一致,如图十一(b) 所示,所以在此也可以与热裂做一个分野。虽然有时无法从现场直接分辨出热裂或顶出变形,但藉由观察显微组织和成分分析即可确切地辨识出为何种缺陷。5. 流纹对于本次取样的NB

压铸薄件来说,流纹为发生机率较高的表面缺陷,通常发生在薄件之水平表面。从巨观照片来看,其缺陷所在位置具有不规则的折纹,痕迹犹如流线波浪一般,如图十二所示,是为镁液在模内流动所造成的纹路,有时严重的话,表面还会有凹凸不平。从SEM 观察发现,这些流纹亦会造成微小的裂缝,如图十三,虽然它的裂缝破断方式也是沿着晶界方向行进(与热裂裂缝破断方式一致),但是裂缝的深度相当浅。而且在裂缝中并没有发现类似热裂的夹杂氧化物存在,所以流纹所产生的裂缝成因并不是夹杂氧化物所造成。从现场经验得知,当喷洒离型剂不足的话,容易造成流纹产生,或是以模具设

计来看,当浇道设计不良,转角太直,镁液在流动到转角时会形成

乱流,亦会产生流纹的缺陷。结论虽然至目前为止镁合金压铸品已被大量的应用在各种3C 产品上,但因受镁合金的高活性、热含量低及产品厚度极薄等因素的影响,其压铸技术仍有待改进,以提升产品的良品率。因此我们有必要针对现场的产品缺陷做一有系列的收集、统计,再经由研究分析找出个中的原因。本次讨论压铸镁合金的表面缺陷包括有:热裂模、表面氧化、热裂、顶出变形以及流纹。其中热裂模缺陷发生的可能原因是在进模口的金属熔液流速较快且温度高,容易造成模具冲蚀,或是因温度变动发生交替的压张应力;表面氧化发生有可能是因为镁汤内含的氧

化物或与铸模涂模剂的反应物;

热裂缺陷主要发生在容易形成松缩组织或夹杂物且应力集

中的位置;顶出变形成因在于顶出销顶出的时间不当,才

造成顶出销附近形成裂缝;流纹缺陷的成因则为喷洒离型剂不足或浇道设计不良造成转角太直,使镁液流动时会形

成乱流。经由以上分析,我们知道压铸镁合金的缺陷种类相当多,其发生原因也很复杂,常常是多项因素造成;因此如果可以配合现场制程参数、缺陷收集及学理研究,做有系列的探讨,应该对镁合金压铸技术的提升有所帮助。本文作者:卓学渊、黄士龙、林惠娟

az91d镁合金压铸件之表面缺陷分析nb上盖

AZ91D 镁合金压铸件之表面缺陷分析— NB 上盖 由于镁合金具有优异的刚性、散热能力和良好的电磁遮蔽效果等好处,所以现在已被广泛运用在3C 电子产品上。而在众多的镁合金成形制程中又以压铸制程最被广为采用,因此本文将针对以热室机压铸法所制造NB 上盖产品(AZ91D) ,由现场取得具表面缺陷的不良品,如热裂模、表面氧化、热裂、顶出变形、流纹等,然后藉由外观和微观分析找出各个缺陷确切的形态,再配合上统计缺陷位置分布和成分分析,以证实缺陷发生的原因。前言镁合金具有质轻、高比强度、耐震等优点,以此在航空器材、运输工具、信息产品上均有相当广泛的应用实例;另外,镁合金与工程塑料比较,也具有优异的刚性、散热能力和良好的电磁遮蔽效果,所以近年来在3C (计算机、通讯、消费性电子) 可携式产品大展光芒。目前镁合金零组件制造方式大多是以压铸法为主,例如:热室机压铸法或冷室机压铸法,虽然近年来还有以半固态射出成形为主的触变成形(Thixo-molding) 及流变成形(Rheo-molding) 等新制程的推出,但由于技术上仍无法突破,所以一般还是以压铸法生产镁合金为主。在各种不同镁合金种类当中,都含有相当比例的铝元素(铝含量约介于1-10% )以作为主要添加合金元素,它与镁元素会析出的B相,使基地具有散布强化的效果,以便提升铸造性能、抗腐蚀能力以及机械性能。其它次要添加合金元素,例如:锌元素的添加亦会提升机械性质和铸造性能;锰元素则会和铝形

成化合物,同时固溶铁、钴、镍元素,可将Fe+Ni+Co/Mn 控制在一定值之下,并改善耐蚀性;添加铍元素则可以有效减少熔融时氧化物的形成,提升熔汤的清净度。此外,控制少量重金属元素的添加,也可有效提升镁合金抗腐蚀的效果。而目前利用镁合金作成的3C 产品(NB 机壳、手机外壳、PDA 等),仍以 AZ91D(Mg-9%Al-1%Zn) 镁合金为主,主要是因为其机械性、铸造性、耐蚀性均能满足产品的需求,所以最常被采用。但在以压铸法生产此类镁合金产品时,却面临了良率无法提升的重大问题,其最主要原因是表面的质量不良,必须靠后段表面研磨修整、补土等程序来补正,而耗费大量成本与时间。因此,本文将针对AZ91D 的压铸缺陷做探讨,包括成因、种类与对策等,期能对镁合金压铸产品的缺陷有所了解,并提升镁合金产品的竞争力。表一AZ91D 铸锭成分实验方法本次压铸用镁合金AZ91D 成分如表一,产品为笔记型计算机LCD 上盖,采用热室机压铸法(HotChamberMa- chine) 制造,压铸参数如表二所示。压铸后收集现场各种含表面缺陷的不良品来加以统计分析。表二压铸参数首先以现场初步巨观判定不良品缺陷种类,再由SEM 观察试片缺陷的微观形态,并使用EDS 作定性分析,得知缺陷位置的元素成分。透过SEM 和EDS 的观察分析再与现场判定作一比对,然后配合巨观以及微观的方式得知各个缺陷真正的形态、发生原因和最常发生位置,并提出解决表面缺陷发生的对策。结果与讨论 针对从现场所收集到的压铸镁合金产品,归纳分析后发现其常见

常见铸件缺陷分析

常见铸件缺陷分析缺陷种类,缺陷名称生产原因 多肉类飞翅(飞边) 1.砂型表面不光洁,分型面不增整 2.合理操作xx准确 3.砂箱未固紧 4.未放压铁,或过早除去压铁 5.芯头与芯座间有空隙 6.压射前机器调整、操作不正确 7.模具镶块、活块已磨损或损坏,锁紧元件失效8.模具强度不够,发生变形 9.铸件投影面积过大,锁模力不够 10.型壳内层有裂隙,涂料层太薄 毛刺 1.合型操作不准确 2.砂箱未固紧 3.芯头与芯座间有空隙 4.分型面加工精度不够 5.参考飞翅内容 抬箱 1.砂箱未固紧

2.压铁质量不够,或过早除去压铁 胀砂 1.砂型紧实度低: 壳型强度低 2.砂型表面硬度低 3.金属液压头过高 冲砂 1.砂型紧实度不够,型壳强度不够 2.浇注系统设计不合理 3.金属流速过快,充型不稳定 4.压射压力过高,压射速度过快 5.金属液头过高 掉砂 1.合型操作不正确 2.型砂紧实度不够 3.型壳强度不够,发生破裂 铸件缺陷分析 缺陷种类缺陷名称产生原因 多肉类外渗物(外渗豆)内渗物(内渗豆) 1.铸型、型号、型芯发气最大,透气性低,排气不畅2.合金液有偏析倾向

3.凝固温度范围宽或凝固速度过慢 xx类气孔、针孔 1.铸件结构设计不正确,热节过多、过大 2.铸型、型壳、型芯、涂料等发气量大,透气性低,排气不畅 3.凝固温度范围宽,凝固速度数低 4.合金液含气量高,氧化夹杂物多 5.凝固时外压低 6.冷铁表面未清理干净,未挂涂料或涂料烘透 7.铜合金脱氧不彻底 8.浇注温度过高,浇注速度过快 缩孔 1.铸件结构设计不合理,壁厚悬殊,过渡外圆角太小: 热节过多、过大 2.浇注系统、冷铁、冒口安放不合理,不利于定向凝固 3.冒口补缩效率低 4.浇注温度过高 5.压射建压时间长,增压不起作用撮终补压压力不足,或压室的充满度不合理 6.比压太小,余料饼术薄,补压不起作用 7.内浇道厚度过小,溢流槽容量不够 8.熔模的模组分布不合理,造成局部散热困难

铸件外观缺陷图

铸件常见缺陷 常见缺陷 缺陷的分类:铸件常见缺陷分为孔眼、裂纹、表面缺陷、残缺类缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格六大类。 1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、等。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:其表面一般比较光滑,主要呈梨形\圆形和椭圆形.一般在铸件表面露出,大孔常孤立存在,小孔则成群出现。(如图) 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔壁粗糙并带有技状晶,常出现在铸件最后凝固的部位,广义的缩孔包括缩松。(如图)

产生的原因是:金属在液体及凝固期间由于补缩不良而产生的孔洞,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:铸件断面上出现的分散而细小的缩孔.助高倍放大镜才能发现的缩松称为显微缩松,铸件有缩松的部位,在气密性实验时易渗漏。(如图) 产生的原因同以上缩孔。 1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。

渣眼的特征是:铸件浇注位置上表面的非金属夹杂物。通常在加工后发现与气孔并存,孔径大小不一,成群集结。(如图) 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:铸件内部或表面带有砂粒的孔洞(如图)。 。

压铸件的缺陷分析及检验

压铸件的缺陷分析及检验 一、流痕 ( 条纹 )( 抛光法去除 )A. 、模温低于 180( 铝合金 )b 、填充速度太高 c 、涂料过量 D 。金属流不同步。对 a 采取措施:调整内浇口面积 二、冷接: A 料温低或模温低, B ,合金成份不符,流动性差。 C ,浇口不合理,流程太长 D 。填充速度低 E 。排气不良。 F 、比压偏低。 三、。擦伤(扣模、粘模、拉痕、拉伤): A 型芯铸造斜度太小。 B ,型芯型壁有压伤痕。 C ,合金粘附模具。 D ,铸件顶出偏斜,或型芯轴线偏斜。 E ,型壁表面粗糙。 F ,脱模水不够。 G ,铝合金含铁量低于 0 。 6 %。措施:修模,增加含铁量。 四、凹陷(缩凹,缩陷,憋气,塌边) A .铸件设计不合理,有局部厚实现象,产生节热。 B ,合金收缩量大。 C ,内浇口面积太小。 D ,比压低。 E ,模温高 五、,气泡(皮下): A ,模温高。 B ,填充速度高。 C ,脱模水发气量大。 D ,排气不畅。 E ,开模过早。 F ,料温高。 六、气孔: A ,浇口位置和导流形状不当。 B ,浇道形状设计不良。 C ,压室充满度不够。 D ,内浇口速度太高,产生湍流。 E ,排气不畅。 F ,模具型腔位置太深。 G ,脱模水过多。 H ,料不纯。 七、缩孔: A ,料温高。 B ,铸件结构不均匀。 C ,比压太低。 D ,溢口太薄。 E ,局部模温偏高 八、花纹: A ,填充速度快。 B ,脱模水量太多。 C ,模具温度低。 九、裂纹: A ,铸件结构不合理,铸造圆角小等。 B ,抽芯及顶出装置在工作中受力不均匀,偏斜。 C ,模温低。 D ,开模时间长。 E ,合金成份不符。(铅锡镉铁偏高:锌合金,铝合金:锌铜铁高,镁合金:铝硅铁高 十、欠铸 A ,合金流动不良引起。 B ,浇注系统不良 C ,排气条件不良 十一、印痕(镶块或活动块及顶针痕等) 十二、网状毛刺: A ,模具龟裂。 B ,料温高。 C ,模温低。 D ,模腔表面不光滑。 E ,模具材料不当或热处理工艺不当。 F ,注射速度太高。

铸件常见缺陷修补及检验

铸件常见缺陷的鉴别、起因、修补及检验----------------------------------------------福联造型,呋喃树脂、酚醛树脂、覆膜砂专家 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。 缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。

产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。 1.1.4渣眼

渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆 铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。

常见铸件缺陷

常见铸件缺陷

铸件缺陷分析、铸件质量检测数据处理一、铸件缺陷分析的分类(在GB/T5611-1998《铸造名词术语》中 归结为8类102种)。 二、铸件缺陷的分析。 1.气孔是气体聚集在铸件表面,皮下和内部而形成的空洞。气孔的 孔壁光滑,稍带氧化彩色,无一定形状,尺寸和位置。 ⑴.侵入性,由于浇注过程中液态金属对铸型激烈的热作用,使型砂 和芯砂中的发气物(水分、粘接剂和附加物)汽化、分解和燃烧,生存大量气体,以及型腔中原有的气体。侵入液态金属内部不能逸出所产生的空洞。(尺寸大)。 ⑵.析出性,溶解在液态金属气体中,在冷却凝固过程中,由于溶解 度降低而产生的。(数量多、尺寸小)。 ⑶.反应性:液态金属与铸型界面之间、液态金属与渣之间发生化学 反应形成的孔洞。 2.夹砂结疤,沟槽、鼠尾(由于型砂腔表面受热膨胀引起的)。 3.粘砂(一般是厚壁部分) 类别序号名称特征 一、多肉类缺陷1-5 冲砂 砂型或砂芯表面局部型砂 被金属液冲刷掉,在铸件表面 的相应部位上形成粗糙、不规 则的金属瘤状物。其常位于浇 口附近,被冲刷了的型砂往往 在铸件的其它部位形成砂眼 1-6 掉砂 砂型或砂芯的局部砂块在 机械力的作用下掉落,使铸件 表面相应部位形成的块状金属 突起物。其外形与掉落的砂块

很相识。在铸件其它部位 二、孔洞类缺陷2-1 气孔 铸件内由气体形成的孔洞类 缺陷。其表面一般比较光滑, 主要呈梨形、圆形和椭圆形。 一般不在铸件表面露出,大孔 常孤立存在,小孔则成群出现2-2 气缩 孔 指分散性气孔与缩孔和缩松合 并而成的孔洞类铸造缺陷 2-5 皮下 气孔 位于铸件表皮下的分散性气 孔。为金属液与砂型之间发生 化学反应产生的反应性气孔, 形状有针状、蝌蚪状、球状、 梨状等,大小不一,深度不等。 通常在机械加工或热处理后才 发现 2-7 缩孔 铸件在凝固过程中,由于补 缩不良二产生的孔洞。形状极 不规则,孔壁粗糙并带有枝状 晶。常出现在铸件最后凝固的 部位 2-8 缩松 铸件断面上出现的分散而 细小的缩孔。借助高倍放大镜

压铸件常见缺陷和处理

铸件常见缺陷和处理 一、飞边: 飞边就是铸件在分型面上(或活动部位处)突出过多的金属薄片。产生的原因有: 1.压射前机器的调整、操作不合适。 2.模具及滑块损坏,闭锁原件损坏 3.模具镶块及滑块磨损 4.模具强度不够造成变形 5.分型面上杂物未清理干净 6.投影面积计算不正确,超过锁模力 二、气泡 铸件表面下,聚齐气体因热胀将表面鼓起的泡,称为气泡。产生的原因: 1.模具温度过高 2.金属液卷入气体过多 3.涂料过多,浇入前未燃净,使挥发气体被包在铸件表面。 4.排气不畅 5.开模过早 三、孔穴 孔穴包括气孔和缩孔 气孔,气孔有两种:一种是金属液卷入气体形成内表面光亮和光滑、形状较为规则的孔洞,另一种是合金熔炼不正

确或精炼不够,气体溶解于合金中。压铸时,激冷甚剧,凝固很快,溶于金属中的气体来不及析出,使金属内的气体留在铸件内形成孔洞。产生的原因有: 1.浇口位置选择和导流不当,导致金属液进入型腔产生正面撞击及漩涡。 2.流道形状设计不良, 3.压室充满度不够 4.内浇口速度太高,形成端流。 5.排气不畅 6.模具型腔位置太深 7.机械加工于量太大 8.涂料过多,在填充前未燃尽 9.炉料不干净,精炼不良 缩孔,铸件在凝固过程中,由于金属补充不足形成的暗色、形状不规则的孔洞。产生的原因有: 1.合金规范不合适,浇入温度过高 2.金属液过热时间太长 3.比压太低 4.余料柄太薄,最终补压不到作用 5.内浇口截面积过小(主要是厚度不够) 6.溢流槽位置不对或容量不够

7.铸件结构不合理,有热节部位,并且该处无法用溢流槽解决 8.铸件的壁厚变化太大 四、夹杂 夹杂又称为夹物、砂眼、夹渣。在铸件表面或内部形成不规则的孔穴部分或全部充塞着杂物,产生的原因有: 1.炉料不干净 2.合金精炼不够,熔渣未除净 3.舀取金属液时带入熔渣及金属氧化物 4.模具未清里干净 5.涂料中石墨太多 五、冷豆 冷豆也称铁豆,其表现是嵌在铸件表面,未和铸件完全融合的金属颗粒,产生的原因有: 1.浇注系统设置不当 2.填充速度过快 3.金属过早进入型腔 六、麻面 产生的原因是由于填充时,金属液分散成密集液滴,高速撞击型壁,结果形成具有强烈流向的细小、密集的麻点区域。 七、印痕

铸件常见缺陷的产生原因及防止方法梳理

铸件常见缺陷的产生原因及防止方法梳理 热裂 热裂是裂纹外形弯弯曲曲,断口很不规则呈藕断丝连状,而且表面较宽,越到里面越窄,属热裂其机理是:钢水注入型腔后开始冷凝,当结晶骨架已经形成并开始线收缩后,由于此时内部钢水并未完成凝固成固态使收缩受阻,铸件中就会产生应力或塑性变形,当它们超过在此高温下的材质强度极限时,铸件就会开裂。 热裂纹的形貌和特征 热裂纹是铸件在凝固末期或凝固后不久尚处于强度和塑性很低状态下,因铸件固态收缩受阻而引起的裂纹。热裂纹是铸钢件、可锻铸铁件和某些轻合金铸件生产中常见的铸造缺陷之一。热裂纹在晶界萌生并沿晶界扩展,其形状粗细不均,曲折而不规则。裂纹的表面呈氧化色,无金属光泽。铸钢件裂纹表面近似黑色,而铝合金则呈暗灰色。外裂纹肉眼可见,可根据外形和断口特征与冷裂区分。 热裂纹又可分为外裂纹和内裂纹。在铸件表面可以看到的热裂纹称为外裂纹。外裂纹常产生在铸件的拐角处、截面厚度急剧变化处或局部疑固缓慢处、容易产生应力集中的地方。其特征是表面宽内部窄,呈撕裂状。有时断口会贯穿整个铸件断面。热裂纹的另一特征是裂纹沿晶粒边界分布。内裂纹一般发生在铸件内部最后凝固的部位裂纹形状很不规则,断面常伴有树枝晶,通常情况下,内裂纹不会延伸到铸件表面。 热裂纹形成的原因 形成热裂纹的理论原因和实际原因很多,但根本原因是铸件的凝固方式和凝固时期铸件的热应力和收缩应力。 液体金属浇入到铸型后,热量散失主要是通过型壁,所以,凝固总是从铸件表面开始。当凝固后期出现大量的枝晶并搭接成完整的骨架时,固态收缩开始产生。但此时枝晶之间还存在一层尚未凝固舶液体金属薄膜(液膜),如果铸件收缩不受任何阻碍,那么枝晶骨架可以自由收缩,不受力的作用。当枝晶骨架的收缩受到砂型或砂芯等的阻碍时,不能自由收缩就会产生拉应力。当拉应力超过其材料强度极限时,枝晶之间就会产生开裂。如果枝晶骨架被拉开的速度很慢,而且被拉开部分周围有足够的金属液及时流入拉裂处并补充,那么铸件不会产生热裂纹。相反,如果开裂处得不到金属液的补充,铸件就会出现热裂纹。 由此可知,宽凝固温度范围,糊状或海绵网络状凝固方式的合金最容易产生热裂。随着凝固温度范围的变窄,合金的热裂倾向变小,恒温凝固的共晶成分的合金最不容易形成热裂。热裂形成于铸件凝固时期,但并不意味着铸件凝固时必然产生热裂。主要取决于铸件凝固时期的热应力和收缩应力。铸件凝固区域固相晶粒骨架中的热应力,易使铸件产生热裂或皮下热裂;外部阻碍因素造成的收缩应力,则是铸件产生热裂的主要条件。处于凝固状态的铸件外壳,其线收缩受到砂芯、型砂、铸件表面同砂型表面摩擦力等外部因素阻碍,外壳中就会有收缩应力(拉应力),铸件热节,特别是热节处尖角所形成的外壳较薄,就成为收缩应力集中的地方,铸件最容易在这些地方产生热裂。

锌合金压铸件缺陷及原因

压铸件常见缺陷分析 一、锌合金压铸件表面有花纹,并有金属流痕迹产生原因: 1、通往铸件进口处流道太浅。 2、压射比压太大,致使金属流速过高,引起金属液的飞溅。 调整方法:1、加深浇口流道。2、减少压射比压。 二、锌合金压铸件表面有细小的凸瘤产生原因: 1、表面粗糙。 2、型腔内表面有划痕或凹坑、裂纹产生。 调整方法:1、抛光型腔。2、更换型腔或修补。 三、铸件表面有推杆印痕,表面不光洁,粗糙产生原因: 1、推件杆(顶杆)太长; 2、型腔表面粗糙,或有杂物。 调整方法:1、调整推件杆长度。2、抛光型腔,清除杂物及油污。 四、锌合金压铸件表面有裂纹或局部变形产生原因: 1、顶料杆分布不均或数量不够,受力不均: 2、推料杆固定板在工作时偏斜,致使一面受力大,一面受力小,使产品变形及产生裂纹。 3、铸件壁太薄,收缩后变形。 调整方法: 1、增加顶料杆数量,调整其分布位置,使铸件顶出受力均衡。 2、调整及重新安装推杆固定板。 五、锌合金压铸件表面有气孔产生原因: 1、润滑剂太多。 2、排气孔被堵死,气孔排不出来。 调整方法:1、合理使用润滑剂。2、增设及修复排气孔,使其排气通畅。 六、铸件表面有缩孔产生原因: 压铸件工艺性不合理,壁厚薄变化太大。金属液温度太高。 调整方法:1、在壁厚的地方,增加工艺孔,使之薄厚均匀。2、降低金属液温度。 七、铸件外轮廓不清晰,成不了形,局部欠料产生原因: 1、压铸机压力不够,压射比压太低。 2、进料口厚度太大; 3、浇口位置不正确,使金属发生正面冲击。 调整方法: 1、更换压铸比压大的压铸机; 2、减小进料口流道厚度; 3、改变浇口位置,防止对铸件正面冲击。 八、铸件部分未成形,型腔充不满产生原因: 1、压铸模温度太低; 2、金属液温度低; 3、压机压力太小, 4、金属液不足,压射速度太高; 5、空气排不出来。 调整方法:1、提高压铸模,金属液温度;2、更换大压力压铸机。3、加足够的金属液,减小压射速度,加大进料口厚度。 九、压铸件锐角处充填不满产生原因: 1、内浇口进口太大; 2、压铸机压力过小; 3、锐角处通气不好,有空气排不出来。 调整方法:1、减小内浇口。2、改换压力大的压铸机。3、改善排气系统 十、铸件结构疏松,强度不高产生原因: 1、压铸机压力不够; 2、内浇口太小; 3、排气孔堵塞。

铸件常见缺陷和处理

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。

缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。 产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。

1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆

压铸件常见缺陷和处理

压铸件常见缺陷和处理Last revision on 21 December 2020

铸件常见缺陷和处理 一、飞边: 飞边就是铸件在分型面上(或活动部位处)突出过多的金属薄片。产生的原因有: 1.压射前机器的调整、操作不合适。 2.模具及滑块损坏,闭锁原件损坏 3.模具镶块及滑块磨损 4.模具强度不够造成变形 5.分型面上杂物未清理干净 6.投影面积计算不正确,超过锁模力 二、气泡 铸件表面下,聚齐气体因热胀将表面鼓起的泡,称为气泡。产生的原因: 1.模具温度过高 2.金属液卷入气体过多 3.涂料过多,浇入前未燃净,使挥发气体被包在铸件表面。 4.排气不畅 5.开模过早 三、孔穴 孔穴包括气孔和缩孔 气孔,气孔有两种:一种是金属液卷入气体形成内表面光亮和光滑、形状较为规则的孔洞,另一种是合金熔炼

不正确或精炼不够,气体溶解于合金中。压铸时,激冷甚剧,凝固很快,溶于金属中的气体来不及析出,使金属内的气体留在铸件内形成孔洞。产生的原因有: 1.浇口位置选择和导流不当,导致金属液进入型腔产生正面撞击及漩涡。 2.流道形状设计不良, 3.压室充满度不够 4.内浇口速度太高,形成端流。 5.排气不畅 6.模具型腔位置太深 7.机械加工于量太大 8.涂料过多,在填充前未燃尽 9.炉料不干净,精炼不良 缩孔,铸件在凝固过程中,由于金属补充不足形成的暗色、形状不规则的孔洞。产生的原因有: 1.合金规范不合适,浇入温度过高 2.金属液过热时间太长 3.比压太低 4.余料柄太薄,最终补压不到作用 5.内浇口截面积过小(主要是厚度不够) 6.溢流槽位置不对或容量不够

常见铸件缺陷及方案改善对策讲解

常见铸件缺陷及方案改善对策(内部培训资料) 2006-6-3

常见铸件缺陷及方案改善对策 一、拔模不良 目视特征:造型作业时模板上有粘砂,型腔有拔裂、 掉砂、浮砂等现象。 形成原因: A.模板预热不充分 B.离型液喷洒不均匀 C.型砂太干 D.拔模斜度太小或吃砂量太少 E.排气不畅,射砂不实 F.模型或流路的光洁度不够,存在倒拔模的情况 G.模板背面有异物或配件损坏,DISA装板时不垂直 H.D ISA平行度跑偏,导致型板不垂直 I.模板生锈 方案改善对策: A.修补R角,仔细打磨方案,提高光洁度 B.检查配件,损坏的及时更换 C.必要时增加拔模斜度,若流路拔模不良,用补土补大斜度或使用2a铝流路 D.增加透气孔(网)数量,避免射砂不实造成拔模不

良 E.用气铣刀抛光拔模不良部位 F.在通孔内粘贴橡胶头 G.直径较小、深度大的孔内建议镶铜套 H.最好的方案设计 二、砂眼、挤砂 目视特征:铸件表面或内部包容着砂粒的孔穴或明显少肉 形成原因: A.流路或模具拔模不良,有拔裂、掉砂 B.流路设计不当,浇注时铁水冲刷造成砂眼 C.设计不当,冲型时间长,长时间的烘烤及“水分迁移”造成局部型砂强度低,形成砂眼D.型砂含水量低 E.型腔内有“落砂”,如造型室磨损,浇口杯下沉,压型(实)器压到浇口或造型室上方有落砂F.造型室磨损,反板抬起时有“甩砂”现象 G.砂芯有毛刺或浮砂,下芯时未吹干净 H.M ASK下芯时铲砂或合模时挤砂 I.模板变形,造成挤砂、落砂 J.模型镶板时没装平,造成型腔挤砂 K.D ISA夹板或因有凸起物把砂模夹裂,将砂型挤

压变形,造成挤砂或砂眼 方案改善对策: A.重新计算方案,建议尽量减少冒口入水,以利砂渣上浮 B.抛光模型、打磨流路,减少因拔模不良造成的砂渣眼 C.方案设计时采用综合浇注系统,提高浇注系统的挡渣效果 D.若浇注时间太长或不能同时冲型,重新计算方案 E.增加底注或侧入水 F.模具配件若有磨损及时更换 G.若有挤砂,确认镶板无问题时,在挤砂位置合模线处R角或做出防压条 H.造型时,若型板后面喷砂、甩砂,确认模板尺寸,磨损严重时进行焊补维修 I.减薄入水片或压边量,提高挡渣能力 J.若下芯铲砂时调整MASK,确认芯钉过盈量K.改变入水口位置,避开易冲砂部位(入水不要做在砂芯吹砂口上) L.在方案上做出集渣包 M.横流路用4A流路,以利浮渣

压铸件常见缺陷及处理1

压铸件常见缺陷及处理 一、飞边: 飞边就是铸件在分型面上(或活动部位处)突出过多的金属薄片。产生的原因有: 1.压射前机器的调整、操作不合适。 2.模具及滑块损坏,闭锁原件损坏 3.模具镶块及滑块磨损 4.模具强度不够造成变形 5.分型面上杂物未清理干净 6.投影面积计算不正确,超过锁模力 二、气泡 铸件表面下,聚齐气体因热胀将表面鼓起的泡,称为气泡。产生的原因: 1.模具温度过高 2.金属液卷入气体过多 3.涂料过多,浇入前未燃净,使挥发气体被包在铸件表面。 4.排气不畅 5.开模过早 三、孔穴 孔穴包括气孔和缩孔 气孔,气孔有两种:一种是金属液卷入气体形成内表面光亮和光滑、形状较为规则的孔洞,另一种是合金熔炼不正确或精炼不够,气体溶解于合金中。压铸时,激冷甚剧,凝固很快,溶于金属中的气体来不及析出,使金属内的气体留在铸件内形成孔洞。产生的原因有: 1.浇口位置选择和导流不当,导致金属液进入型腔产生正面撞击及漩涡。 2.流道形状设计不良, 3.压室充满度不够 4.内浇口速度太高,形成端流。 5.排气不畅 6.模具型腔位置太深 7.机械加工于量太大 8.涂料过多,在填充前未燃尽 9.炉料不干净,精炼不良 缩孔,铸件在凝固过程中,由于金属补充不足形成的暗色、形状不规则的孔洞。产生的原因有: 1.合金规范不合适,浇入温度过高 2.金属液过热时间太长 3.比压太低 4.余料柄太薄,最终补压不到作用 5.内浇口截面积过小(主要是厚度不够) 6.溢流槽位置不对或容量不够 7.铸件结构不合理,有热节部位,并且该处无法用溢流槽解决 8.铸件的壁厚变化太大 四、夹杂

夹杂又称为夹物、砂眼、夹渣。在铸件表面或内部形成不规则的孔穴部分或全部充塞着杂物,产生的原因有: 1.炉料不干净 2.合金精炼不够,熔渣未除净 3.舀取金属液时带入熔渣及金属氧化物 4.模具未清里干净 5.涂料中石墨太多 五、冷豆 冷豆也称铁豆,其表现是嵌在铸件表面,未和铸件完全融合的金属颗粒,产生的原因有: 1.浇注系统设置不当 2.填充速度过快 3.金属过早进入型腔 六、麻面 产生的原因是由于填充时,金属液分散成密集液滴,高速撞击型壁,结果形成具有强烈流向的细小、密集的麻点区域。 七、印痕 顶出原件引起:表现是在铸件表面上出现凹痕或凸痕,产生原因: 1.顶出原件调整不正确 2.推杆端部模损 3.推杆面积太小 4.开模过早 镶件或活动部分引起:表现在铸件平整的表面上出现阶梯痕迹,产生的原因有: 1.镶件部分松动 2.活动部分松动或磨损 3.镶件的侧壁表面由动定模互相穿插的镶件所形成 八、裂纹 铸件的基体被破坏或断开,形成细长的缝隙,呈不规则线性,在外力的作用下有发展的趋势,这种缺陷称为裂纹 原因: 铸件结构和形状引起的: 1.铸件的壁厚处与壁薄相接处转变剧烈 2.铸件上的转折处圆角不够 3.铸件上能安装推杆的位置不够,造成推杆分布不均衡 4.铸件设计上考虑不周收缩时产生应力而撕裂 模具的成型零件表面质量不好,装固不稳引起的: 1.成型表面沿出模方向有凹陷(或凹坑),铸件脱出撕裂 2.凸的成型表面其根部加工痕迹未能消除,铸件被撕裂 3.成型零件装固有偏斜,阻碍铸件脱出 顶出造成的: 1.模具的顶出原件安置不合理(位置或个数) 2.顶出机构偏斜,顶出力不均衡 3.模具的顶出机构与压铸机上的顶出器的连接不合理,或有歪斜,或动作不协调 4.顶动顶出时的机器顶杆长短不一致,液压顶出的顶棒长短不一致 合金的成分引起:

简要分析常见压铸产品问题及原因

简要分析常见压铸产品问题及原因 流痕:在表面出现波浪或条纹,原因为流入模具内的熔汤熔融状态不充分。 缺料:由于模具充填不充分或入料口、溢料口设计不当而导致。 裂缝:由于外力产生微小的裂纹。原因为铸件凝固收缩,或脱模时模具有轻微的移动。 缩水:材料有像火山口一样的凹陷。原因为铸件在肉厚处的收缩。 起泡:铸件表面的砂孔,有像水泡或肿块凸起,为铸件开模或热处理时膨胀。积炭:熔汤熔着模具表面,使得铸件表面产生缺肉或粗糙的现象。 热裂纹:模具表面有热裂纹的伤痕时使得铸件表面产生同样形状的伤痕。 冲蚀:熔汤高温高速冲蚀模具,使得铸件产生与模具相同的伤痕。 脱皮:铸件表面部分剥离的现象,最易发生在表面光滑的铸件上。 针孔:针状细小的砂孔,或因卷入气体而产生小孔状的内部缺陷,此缺陷有时出现在表面上。 擦伤:由于磨损使表面不理想,有比较长的痕迹。 缩孔:因熔汤凝固收缩而产生的内部砂孔。 气孔:因卷入气体或空气导致铸件内部存在的砂孔。 玷污:其它材料或其它材料的加入使表面变色,如机器润滑油,离型剂等。 隔层:铸件层剥皮。 变形:塑料在模具中部分变形。 凹陷:由于不同的材料的结合度和收缩率不同,引起表面凹陷。 拉伤:铸件表面的磨损或磨擦使得表面不理想。 腐蚀:在材质表面有不连续的痕迹,由氧化引起。 凹痕:由于挤压或撞击而产生的凹坑。 毛刺:在孔或边有粗糙和锋利的棱角(相对于材料的厚度和凸起的高度)。 结合线:在两处或更多的材料融合点有线条(并且终止了结合或流动) 分模线:在模具的两块或镶块之间有一条明显的线,例如:如果模具安装不当,在模 具的主要部分能明显的看到明显的看到微小的凸起的线条 模具制作工艺流程: 审图—备料—加工—模架加工—模芯加工—电极加工—模具零件加工—检验—装配—飞模—试模—生产 A:模架加工:1打编号,2 A/B板加工,3面板加工,4顶针固定板加工,5底板加工 B:模芯加工:1飞边,2粗磨,3铣床加工,4钳工加工,5CNC粗加工,6热处理,7精磨,8CNC精加工,9电火花加工,10省模 C:模具零件加工:1滑块加工,2压紧块加工,3分流锥浇口套加工,4镶件加工 模架加工细节

常见铸件缺陷分析

常见铸件缺陷分析 缺陷种类,缺陷名称生产原因 多肉类飞翅(飞边) 1.砂型表面不光洁,分型面不增整 2.合理操作朱准确 3.砂箱未固紧 4.未放压铁,或过早除去压铁 5.芯头与芯座间有空隙 6.压射前机器调整、操作不正确 7.模具镶块、活块已磨损或损坏,锁紧元件失效 8.模具强度不够,发生变形 9.铸件投影面积过大,锁模力不够 10.型壳内层有裂隙,涂料层太薄 毛刺 1.合型操作不准确 2.砂箱未固紧 3.芯头与芯座间有空隙 4.分型面加工精度不够 5.参考飞翅内容 抬箱 1.砂箱未固紧 2.压铁质量不够,或过早除去压铁 胀砂 1.砂型紧实度低:壳型强度低 2.砂型表面硬度低 3.金属液压头过高 冲砂 1.砂型紧实度不够,型壳强度不够 2.浇注系统设计不合理 3.金属流速过快,充型不稳定 4.压射压力过高,压射速度过快 5.金属液头过高 掉砂 1.合型操作不正确 2.型砂紧实度不够 3.型壳强度不够,发生破裂 铸件缺陷分析 缺陷种类缺陷名称产生原因 多肉类外渗物(外渗豆)内渗物(内渗豆) 1.铸型、型号、型芯发气最大,透气性低,排气不畅

2.合金液有偏析倾向 3.凝固温度范围宽或凝固速度过慢 孔洞类气孔、针孔 1.铸件结构设计不正确,热节过多、过大 2.铸型、型壳、型芯、涂料等发气量大,透气性低,排气不畅 3.凝固温度范围宽,凝固速度数低 4.合金液含气量高,氧化夹杂物多 5.凝固时外压低 6.冷铁表面未清理干净,未挂涂料或涂料烘透 7.铜合金脱氧不彻底 8.浇注温度过高,浇注速度过快 缩孔 1.铸件结构设计不合理,壁厚悬殊,过渡外圆角太小:热节过多、过大2.浇注系统、冷铁、冒口安放不合理,不利于定向凝固 3.冒口补缩效率低 4.浇注温度过高 5.压射建压时间长,增压不起作用撮终补压压力不足,或压室的充满度不合理 6.比压太小,余料饼术薄,补压不起作用 7.内浇道厚度过小,溢流槽容量不够 8.熔模的模组分布不合理,造成局部散热困难 缩松疏松 1.合金的凝固温度范围宽,或凝固速度低 2.合金液体含气量高,透气性差 3.参见缩孔类 裂纹、冷隔类冷裂 1.铸件结构设计不合理,如易变形产品道部位未加工艺加强肋,未给出预变形量:壁厚悬殊等 2.铸型、型壳、砂芯、模具等退让性差 3.铸件冷却过程中,冷却不均匀 4.铸型、型壳、模具温度过低 5.钢液中含氧量过高 6.铸件落砂过早 7.水爆温度过高 热裂 1.铸件结构设计不合理,壁厚悬殊,造成过渡区应力集中 2.铸型、型壳、型芯,模具退让性差 3.压铸件留模时间过长 4.浇注温度过高:晶粒粗大 5.合金液中气体、夹杂含量过高

铝合金压铸常问题及解决办法要点

铝合金压铸问题大全及解决办法 1、表面铸造缺陷 1.1 拉伤 (1)特征: ①沿开模方向铸件表面呈线条状的拉伤痕迹,有一定深度,严重时为整面拉伤;②金属液与模具表面粘和,导致铸件表面缺料。 (2)产生原因: ①模具型腔表面有损伤;②出模方向无斜度或斜度过小;③顶出不平衡; ④模具松动:⑤浇铸温度过高或过低,模具温度过高导致合金液粘附;⑥脱模剂使用效果不好:⑦铝合金成分含铁量低于O.8%;⑧冷却时间过长或过短。 (3)处理方法: ①修理模具表面损伤;②修正斜度,提高模具表面光洁度;③调整顶杆,使顶出力平衡;④紧固模具;⑤控制合理的浇铸温度和模具温度1 80-250。;⑥更换脱模剂: ⑦调整铝合金含铁量;⑧调整冷却时间;⑨修改内浇口,改变铝液方向。 1.2 气泡 (1)特征: 铸件表面有米粒大小的隆起表皮下形成的空洞. (2)产生原因

①合金液在压室充满度过低,易产生卷气,压射速度过高;②模具排气不良;③熔液未除气,熔炼温度过高;④模温过高,金属凝固时间不够,强度不够,而过早开模顶出铸件,受压气体膨胀起来;⑤脱模剂太多;⑥内浇口开设不良,充填方向交接。 (3)处理方法 ①改小压室直径,提高金属液充满度;②延长压射时间,降低第一阶段压射速度,改变低速与高速压射切换点;③降低模温,保持热平衡;④增设排气槽、溢流槽,充分排气,及时清除排气槽上的油污、废料;⑤调整熔炼工艺,进行除气处理;⑥留模时间适当延长:⑦减少脱模剂用量。 1.3 裂纹 (1)特征: ①铸件表面有呈直线状或波浪形的纹路,狭小而长,在外力作用下有发展趋势;②冷裂隙开裂处金属没被氧化;③热裂一开裂处金属已被氧化。 (2)产生原因: ①合金中铁含量过高或硅含量过高;②合釜有害杂质的含量过高,降低了合金的塑性;③铝硅铜合金含锌量过高或含铜量过低;④模具,特别是模腔整体温度太低; ⑤铸件壁厚、薄存有剧烈变化之处收缩受阻,尖角位形成应力;⑥留模时间过长,应力大; ⑦顶出时受力不均匀。 (3)处理方法: ①正确控制合金成分,在某些情况下可在合金中加纯铝锭以降低合金中含镁量或铝合金中加铝硅中间合金以提高硅含量;②改变铸件结构,加角,改变出模斜度,

压铸件有哪些缺陷

压铸件有哪些缺陷?为什么会产生这些缺陷? 深圳威劲压铸机配件有限公司专业生较压同配件,提供一些与压铸相关的信息。 压铸生产中遇到的质量问题很多,其原因也是多方面。生产中必须对产生的质量问题作出正确的判断。找出真正的原因,才能提出相应切实可行的有效的改进措施,以便不断提高铸件质量。 压铸件生产所出现的质量问题中,有关缺陷方面的特征、产生的原因(包括改进措施)分别叙述于后。 一、欠铸 压铸件成形过程中,某些部位填充不完整,称为欠铸。当欠铸的部位严重时,可以作为铸件的形状不符合图纸要求来看待。通常对于欠铸是不允许存在的。 造成欠铸的原因有: 1)填充条件不良,欠铸部位呈不规则的冷凝金属 ?当压力不足、不够、流动前沿的金属凝固过早,造成转角、深凹、薄壁(甚至薄于平均壁厚)、柱形孔壁等部位产生欠铸。 ?模具温度过低 ?合金浇入温度过低 ?内浇口位置不好,形成大的流动阻力 2)气体阻碍,欠铸部位表面光滑,但形状不规则 ?难以开设排溢系统的部位,气体积聚 ?熔融金属的流动时,湍流剧烈,包卷气体 3)模具型腔有残留物 ?涂料的用量或喷涂方法不当,造成局部的涂料沉积 ?成型零件的镶拼缝隙过大,或滑动配合间隙过大,填充时窜入金属,铸件脱出后,并未能被完全带出而呈现片状夹在缝隙上。当之种片状的金属(金属片,其厚度即为缝隙的大小)又凸于周围型面较多,便在合模的情况下将凸出的高度变成适为铸件的壁厚,使以后的铸件在该处产生穿透(对壁厚来说)的沟槽。这种穿透的沟槽即成为欠铸的一种特殊形 式。这种欠铸现象多在由镶拼组成的深腔的情况下出现。

?浇料不足(包括余料节过薄)。 ?立式压铸机上,压射时,下冲头下移让开喷嘴孔口不够,造成一系列的填充条件不良。 二、裂纹 铸件的基体被破坏或断开,形成细长的缝隙,呈现不规则线形,在外力作用下有发展的趋势,这种缺陷称为裂纹。在压铸件上,裂纹是不允许存在的。 造成裂纹的原因有: 1.铸件结构和形状 ?铸件上的厚壁与薄壁的相接处转变避剧烈 ?铸件上的转折圆角不够 ?铸件上能安置推杆的部位不够,造成推杆分布不均衡 ?铸件设计上考虑不周,收缩时产生应力而撕裂。 2.模具的成型零件的表面质量不好,装固不稳 ?成型表面沿出模方向有凹陷,铸件脱出撕裂 ?凸的成型表面其根部有加工痕迹未能消除,铸件被 ?成型零件装固有偏斜,阻碍铸件脱出。 3.顶出造成 ?模具的顶出元件安置不合理(位置或个数) ?顶出机构有偏斜,铸件受力不均衡 ?模具的顶出机构与机器上的液压顶出器的连接不合理,或有歪斜或动作不协调 ?顶针顶出时的机器顶杆长短不一致,液压顶出的顶棒长短不一致。 4.合金的成分 1)对于锌合金

铝合金压铸件常见缺陷及产生原因

铝合金压铸件常见缺陷及产生原因 压铸件的缺陷特征,产生原因,防止方法 名称流痕及花纹网状毛翅脆性裂纹缩孔缩松 特征及检查方法外观检查:铸件表面上有与金属液流动方向一致的条纹,有明显可见的与金属基体颜色不一样无方向性的纹路,无发展趋势。外观检查:压铸件表面上有网状发丝一样凸起或凹陷的痕迹,随压铸次数增加而不断扩大和延伸外观检查或金相检查:合金晶粒粗大或极小,使铸件易断裂或碰碎外观检查:将铸件放在碱性溶液中,裂纹处呈暗灰色金属基体的破坏与裂开呈直线或波浪形,纹路狭小而长,在外力作用下有发展趋向裂纹有穿透和不穿透两种解剖外观检查或探伤检查;缩孔表面呈暗色并不光滑,形状不规则的孔洞,大而集中的为缩孔,小而分散的为缩松 产生原因1,首先进入型腔的金属液形成一个极薄的而又不完全的金属层后,被后来的金属液所弥补而留下的痕迹。2,模温过低3,内浇道截面积过小及位置不当产生喷溅。4,作用于金属液上的压力不足花纹:涂料用量过多。1,压铸模型腔表面龟裂2,压铸模材质不当或热处理工艺不正确3,压铸模冷热温差变化太大4,浇注温度过高5,压铸模预热不足6,型腔表面粗糙7,压铸模壁薄或有尖角1,合金过热太大或保温时间过长2,激烈过冷,结晶过细3,铝合金含有锌铁等杂质太多4,铝合金中含铜超出规定范围在铸件上由于应力或外力而产生的裂纹1,锌合金铸件的裂纹(1)锌合金中有害杂质铅,锡,铁和镉的含量超过了规定范围(2)铸件从压铸模中取出过迟(3)型芯的抽出或推出受力不均(4)铸件的厚薄相接处转变剧烈(5)熔炼温度过高2,铝合金铸件的裂纹(1)合金中铁含量过高或硅含量过低(2)合金中有害杂质的含量过高,降低了合金的的可塑性(3)铝硅合金:铝硅铜合金含锌或含铜量过高;铝镁合金中含镁量过多(4)模具,特别是型芯温度太低(5)铸件壁厚有剧烈变化之处(6)留模时间过长(7)顶出时受力不均3,镁合金铸件的裂纹(1)合金中铝硅含量高(2)模具温度低(3)铸件壁厚薄变化剧裂(4)顶出和抽芯受力不均匀4,铜合金铸件的裂纹(1)黄铜中锌的含量过高(冷裂)或过低(热裂)(2)硅黄铜中硅的含量高(3)开模时间晚,特别是型芯多的铸件缩孔是压铸件在冷凝过程中,内部补偿不足而造成的孔穴1,浇注温度过高2,压射比压低3,铸件在结构上有金属积聚的部位和截面变化剧烈4,内浇道较小 防止方法1,提高模温2,调整内浇道截面积或位置3,调整内浇道速度及压力4,适当地选用涂料及调整用量1,正确选用压铸模材料及热处理工艺2,浇注温度不宜过高尤其是高熔点合金3,模具预热要充分4,压铸模要定期或压铸一定次数后退火,打磨成型部分表面1,合金不宜过热2,提高模具温度,降低浇注温度3,严格控制合金成分在允许的范围内1,合金材料的配比要注意杂质含量不要超过起点要求2,调整好开模时间3,要使推杆受力均匀4,改变壁厚不均匀性1,正确控制合金成分,在某些情况下:可在合金中加纯铝锭以降低合金中含镁量;或在合金中加铝硅中间合金以提高硅含量2,提高模具温度3,改变铸件结构4,调整抽芯机构或使推杆受力均匀1,合金中加纯镁以降低铝硅含量2,模具温度要控制在要求的范围内3,改进铸件结构消除厚薄变化较大的截面4,调整好型芯和推,杆使之受力均衡1,保证合金的化学成分合金元素取其下限:硅黄铜在配制时,硅和锌的含量不能同时取上限2,提高模具温度3,适当控制调整开模时间1,改变铸件结构消除金属积聚及截面变化大处2,在可能条件下降低浇注温度3,提高压射比压4,适当改善浇注系统,使压力更好的传递

相关文档
相关文档 最新文档