文档库 最新最全的文档下载
当前位置:文档库 › 气举采油原理

气举采油原理

气举采油原理
气举采油原理

气举采油原理

一、气举采油基本原理

当地层能量不能将液体举升到地面或满足不了产量要求时,人为地把高压气体(天然气、N2、CO2)注入井内,依靠气体降低举升管中的流压梯度(气液混合物密度),并利用其能量举升液体的人工举升方法。

气举采油是基于“U”型管原理,通过地面向油套环空(反举)或油管(正举)注入高压气体,使之与地层流体混合,降低液柱密度和对井底的回压(井底流压),从而提高油井产量。

气举分为连续气举和间歇气举。连续气举是将高压气体连续地注入井内,排出井筒中液体。适应于供液能力较好、产量较高的油井。间歇气举是向井筒周期性地注入气体,推动停注期间在井筒内聚集的油层流体段塞升至地面,从而排出井中液体。主要用于油层供给能力差,产量低的油井。

气举采油产的井口和井下设备比较简单,管理比较方便,液量变化范围大,对于深井、油气比较高,出砂严重的井、斜井等较泵举方式更具优势。但气举采油方式要求有充足的高压气源,气举井的井底回压较高,而且注入气的温度较低,会引起井筒结蜡。

二、气举启动

气举采油的工作情况可以用环形进气的单层管方式加以说明。

停产时环空液面下降到油管鞋气体进入油管油井停产时,油管与套管的液面处于同一高度,当开始注气时,环形空间内的液面被挤压向下,环空中的液体进入油管,油管内液面上升。在此过程中,注气压力不断升高,当环形空间内的液面下降到油管鞋时,注气压力达到最大,称为启动压力。当压缩气体从油管鞋进入油管时,使油管内的油气混合,密度降低,液面不断上升,直至喷出地面。环形空间继续进气,混合气液的密度越来越低,油管鞋处的压力急剧下降,此时井底压力和注气压力也急剧下降。当井底压力低于地层压力

时,地层流体进入井底。由于底层出油使油管内的混气液密度又有增加,所以注气压力又有上升,经过一段时间后趋于稳定,此时井口的注气压力称为工作压力。

气举井启动时的压缩机压力随时间的变化曲线 环空液面到达管鞋,油管内液面情况

环空气体到达管鞋,液面已经到达井口,这种情况所需的启动压力最大,可以按下式估算:

环空气体到达管鞋(环空液体完全压入油管,忽略地层进液),油管液面未到达井口,这时启动压力可以按下式估算:

()

e L p g h h ρ=+?2

21ci ti D h h

d ??

?=- ???

2

2ci

e L L ti

D p g h gL

d ρρ=

≤停产时

油管液面到井口

L

油管液面未到井

△h

h

油管液面不变

D ci d ti

h

p

e L p L g

ρ=

环空气体到达管鞋(环空液体完全压入地层),油管液面不变,这时启动压力最小,可以按下式估算:

故气举系统启动压力范围为:

三、气举阀

由于气举启动压力较高,压缩机的额定输出压力较高。气举系统正常生产时的工作压力比启动压力小得多,造成压缩机功率的浪费,增加投入成本。

如果在油管不同深度上安装上阀孔,当注入高压气体时,气体从阀孔进入油管,从而降低阀孔上部油管内的混合油气密度,并排出上部液体;当油管内的压力下降到某一临界值时,阀孔关闭,高压气体又推动环空内的液面下行,达到第二个阀孔。依次类推,直至排出井筒内的积液使油井正常连续生产。这个阀孔就是气举阀,其作用就是降低启动压力和排出油套环空内的液体。

按压力控制方式分节流阀、气压阀或称套压操作阀、液压阀或称油压操作阀和复合控制阀。按气举阀在井下所起的作用分卸载阀、工作阀和底阀。按气举阀自身的加载方式分充气波纹管阀和弹簧气举阀。按气举阀安装作业方式分固定式气举阀和投捞式气举阀。

以充气波纹管气举阀为例,对气举阀的工作原理进行分析。 在波纹管内预先充入氮气,构成加载单元——由可伸缩的封包和充气室组成,起到类似于弹簧加载的作用。

打开阀的力

F o=p c(A b-A p)+p t A p 充气室保持阀关闭的力 F c=p d A b

当F o ≥F c 时,阀打开; 开启瞬间 F o= F c ,则 p d A b=p vo(A b-A p)+p t A p 套压欲打开阀的压力为 p vo=(p d A b-p t A p)/(A b-A p) TEF =A p/(A b -A p )

TEF 为油管效应(tubing effect )系数,表征阀对油压的敏感性。 令R =A p/A b ,则TEF =R /(1-R )

e L p gh

ρ=L e L gL p gh

ρρ>≥

c

充气室

因此套压欲打开阀的压力可以表示为:p vo=p d/(1-R)-p t TEF

设注气压力p c下促使气举阀关闭的压力p vc:

则p vc= p d

阀关闭压力仅与封包压力有关,与油压p t无关。

阀距

阀开启压力与关闭压力之差,为表征封包式气举阀工作特性的主要参数:

Δp v=p vo-p vc=(p d-p t)TEF

阀距随油管压力的增大而减小。

当p t=p d时为最小,且为零;

当p t=0时,阀距最大,且为p d TEF;

阀距还与油管效应有关,由于油管效应系数随阀孔径增大而增大,大孔径阀可提高阀距。

气举采油原理

气举采油原理 一、气举采油基本原理 当地层能量不能将液体举升到地面或满足不了产量要求时,人为地把高压气体(天然气、N2、CO2)注入井内,依靠气体降低举升管中的流压梯度(气液混合物密度),并利用其能量举升液体的人工举升方法。 气举采油是基于“U”型管原理,通过地面向油套环空(反举)或油管(正举)注入高压气体,使之与地层流体混合,降低液柱密度和对井底的回压(井底流压),从而提高油井产量。 气举分为连续气举和间歇气举。连续气举是将高压气体连续地注入井内,排出井筒中液体。适应于供液能力较好、产量较高的油井。间歇气举是向井筒周期性地注入气体,推动停注期间在井筒内聚集的油层流体段塞升至地面,从而排出井中液体。主要用于油层供给能力差,产量低的油井。 气举采油产的井口和井下设备比较简单,管理比较方便,液量变化范围大,对于深井、油气比较高,出砂严重的井、斜井等较泵举方式更具优势。但气举采油方式要求有充足的高压气源,气举井的井底回压较高,而且注入气的温度较低,会引起井筒结蜡。 二、气举启动 气举采油的工作情况可以用环形进气的单层管方式加以说明。 停产时环空液面下降到油管鞋气体进入油管油井停产时,油管与套管的液面处于同一高度,当开始注气时,环形空间内的液面被挤压向下,环空中的液体进入油管,油管内液面上升。在此过程中,注气压力不断升高,当环形空间内的液面下降到油管鞋时,注气压力达到最大,称为启动压力。当压缩气体从油管鞋进入油管时,使油管内的油气混合,密度降低,液面不断上升,直至喷出地面。环形空间继续进气,混合气液的密度越来越低,油管鞋处的压力急剧下降,此时井底压力和注气压力也急剧下降。当井底压力低于地层压力

气举采油设计方法

一、气举采油的概念 气举采油就是依靠地面注入井内的高压气体与油层产出流体在井筒中混合,利用气体的膨胀使井筒中的混合液密度降低,将流入到井内的原油举升到地面的一种采油方式。 二、气举采油的方式 气举采油主要分为连续气举、间歇气举、腔式气举与柱塞气举四类。 (1)连续气举方式 连续气举就是连续不断往井下注气,使油井持续稳定生产。连续气举适应产能较高的油井,产量可以适应16m3/d~11924m3/d。连续气举生产管柱可以分为开式管柱、半开式管柱与闭式管柱,如图1所示。对于开式管柱而言,可以环空注气,油管采油。也可以就是油管注气,环空采油。 图1 气举管柱的类型 (2)间歇气举方式 间歇气举就是间断地把气体注入油井中,通过气举阀进入油管,把气举阀上面的液柱段举升到地面。间歇气举可以就是半开式或闭式,一般采用闭式作为间歇气举。间歇气举由于具有单流阀可以达到很低的井底流压,一般适应于低压低产井,产量从0、16m3/d ~80 m3/d。 (3)腔式气举方式 腔式气举就是一种特殊的间歇气举,主要应用于低产能井。腔式气举的生产管柱下面有一个集液腔包,以便有足够的液柱,如图2所示。它的排液与举升与间歇气举相似。不同的就是当气举工作阀打开时,气体把腔包的液体往下推,由于下面有单流阀,迫使液体进入油管,气体把这段液柱举升到地面。这时地面控制阀(连续气举不存在)关闭,工作阀也关闭。环空(腔包)通过泄压孔与油管压力平衡,防止气

锁,这样腔包压力下降,单流阀打开,地层液体进入腔包。该过程不断循环进行腔式间歇气举。 图2 腔式气举生产管柱图3 柱塞气举生产管柱 (4)柱塞气举方式 柱塞气举就就是在举升的气体与液柱之间增加一个固体柱塞,防止液柱滑脱,以提高举升的效率。此外,柱塞气举还能起到油管清蜡的作用。柱塞气举把气体注入环空中,通过气举阀注入在柱塞下面,把柱塞上面的液柱举到地面。当柱塞到达地面时,与防喷器顶针相撞时,柱塞中间的阀门打开,柱塞上下压力平衡,由于重力作用,柱塞落到油管下面。当柱塞落到下面与单流阀上面的弹簧相撞,柱塞中间的阀门关闭,把柱塞上面的液体隔住,重复这个过程,不断把液柱举到地面。柱塞气举生产管柱如图3所示。这种气举方式不适用于井斜角较大与出砂的井。 三、气举阀 (1)气举阀使用的必要性 气举过程(环空注气,油管采油)中,当启动压缩机向环空中注入高压气体时,环空液面将被挤压下降,如不考虑液体被挤入地层,环空中液体将全部进入油管,油管内液面上升。随着压缩机压力的不断提高,环空内的液面最终将达到油管鞋处,井口注入压力达到的最高值称为启动压力。气举时压缩机压力随时间的变化曲线如图4所示。

不同采油方法的基本原理及各自优缺点

不同采油方法的基本原理及各自优缺点 摘要:采油工程中的采油方法有多种,从客观的地下能量来看,可分为自喷采油和人工举升两种。自喷采油就是原油从井底举升到井口,从井口流到集油站,全部都是依靠油层自身的能量来完成的,而由于地层的地质特点,有的油井不能自喷,人工举升就成为解决这个问题的主要途径。目前,利用人工举升将原油从井底举升到地面的方法可分为气举法和抽油法两大类,而每一种方式都有其优势的一面,和其劣势,在采油的过程中都扮演着不同的角色。 关键词:自喷采油人工举升气举抽油有杆泵采油无杆泵采油 一、自喷采油 自喷采油就是原油从井底举升到集油站,全部都是依靠油层自身的能量来完成的。自喷采油的能量来源是:第一、井底油流所具有的压力;第二、随同原油一起进入井底的溶解气所具有的弹性膨胀能量。油井自喷生产,一般要经过四种流动过程: (1)原油从油层流到井底; (2)从井底沿着井筒上升到井口; (3)原油到井口之后通过油嘴; (4)沿着地面管线流到分离器、计量站。 不论哪种流动过程,都是一个损耗地层能量的过程,四种流动过程压力损耗的情况因油藏而异,大致如下: 1.油层渗流 当油井井底压力高于油藏饱和压力时,流体为单相流动。当井底压力低于饱和压力时,流体在油井井底附近形成多相流动。井底流动压力可通过更换地面油嘴而改变,油嘴放大,井底压力下降,生产压差加大,油井产量增加。多数情况下,油层渗流压力损耗约占油层至井口分离器总压力损耗的10%~40%左右。 2.井筒流动 自喷井井筒油管中的流动,一般都是油、气两相或油、气、水混合物,必须克服三相混合物在油管中流动的重力和摩擦力,才能把原油举升到井口,并继续沿地面管线流动。井筒的压力损耗最大,约占总压力损耗的40%~60%左右。 3.油嘴节流

气举采油原理及油井举升系统设计方法

第二节气举采油原理及油井举升系统设计方法 一、教学目的 了解气举采油的基本原理、熟悉气举阀的工作原理以及气举的启动过程,掌握气举设计中注气量和注气点的确定方法。二、教学重点、难点 教学重点: 1、气举采油基本原理及气举的启动过程; 2、气举设计方法 教学难点: 1、气举启动过程; 2、气举设计中注气点和注气量的确定; 3、作图法确定气举阀的分布。 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的图形和动画。 四、教学内容 本节主要介绍五个方面的问题: 1.气举采油原理. 2.气举启动. 3.气举阀. 4.气举设计. 5.气举井试井. (一)气举采油原理

当地层供给的能量不足以把原油从井底举升到地面时,油井就停止自喷。为了使油井继续出油,人为地把气体(天然气或空气)压入井底,使原油喷出地面,这种采油方法称为气举采油法。 1、发展阶段: Brown将气举的发展归纳为下列各个阶段: (1)1864年以前:在实验室进行一或两项实际应用可能性试验。 (2)1864-1900年:用压缩空气举升井内流体,压缩空气注入环空或油管。 (3)1900-1920年:海湾沿岸出现“租用”热。例如美国的斯宾德脱普油田当时曾采用空气气举采油。 (4)1920-1929年:利用天然气进行垂直气举。例如美国俄克拉荷马州的塞米诺尔油田。 (5)1929-1945年:游动凡尔出现很大进展,生产率和配产效率的提高促进了游动凡尔的发展。 (6)1946-1967年:压力操纵凡尔的发展使其实际取代了所有其它类型的气举凡尔。 2、气举采油的优点和局限性 ①优点 a、气举井井下设备的一次性投资低,维修工作量小。 b、能延长油田开采期限,增加油井产量。 c、大多数气举装置不受开采流体中腐蚀性物质和高温的影响。 d、井下无摩擦件,均适宜于含砂、含蜡和高含水的井。

气举采油方法概述.

气举采油方法概述 学号:0803030103 姓名:徐贵萍 摘要;为了我们以后在学习采油工程的时候,对他有进一步的认识,特别是我们现在所学的气举采油方法的介绍。虽然上次已经做过类似的作业,但是经过了一个月的学习,我相信了解的知识会更全面一些,再加上我这次的工作也做了许多。最后得出,即使是气举采油,也有许多的不同! 关键词;气举采油;举升方法;气举阀;柱塞气举;腔室气举 前言;气举采油法时人工举升方法里面最常用的一类举升方法,随着油田的不断开发,地层能量逐渐消耗,油井最终会停止自喷。由于地层的地质特点,有的油井一开始就不能自喷,而这些井只能用气举法和抽油法。对于气举法,我国主要研究的是柱塞气举法,柱塞气举是通过在油管柱内上下循环运动的柱塞把地层产液举出地面的人工举升方法。 一气举采油的特点 气举采油是人工举升法的一种,它是通过向油套环空(或油管)注入高压气体,用以降低井筒液体的密度,在井底流动压力的作用下,将液体排出井口。同时,注入气在井筒上升过程中,体积逐渐增大,气体的膨胀功对液体也产生携带作用。因此,气举采油是油井停喷后用人工方法使其恢复自喷的一种机械采油方式,亦可作为油井自喷生产的能量补充。 气举采油具有以下特点: (1)举升度高,举升深度可达3600m 以上。 (2)产液量适应范围广,可适应不同产液量的油井。 (3)适用于斜井、定向井。 (4)特别适用于高气油比井。 (5)适应于液体中有腐蚀介质的井和出砂井。 (6)操作管理简单,改变工作制度灵活。 (7)一次性投资高,主要是建压缩机站费用,但由于气举井的维护费用少,其综合生产成本相对其他机械采油方式较低。 (8)必须有充足的气源,主要是天然气,注氮气成本高。 (9)适用于一个油田或一个区块集中生产,不适宜分散开采。 (10)安全性较其他采油方式差。 气举采油虽然具有上述特点,但由于我国油田缺乏充足的气源,加上建设费用高,因此,没有得到大面积推广,目前仅在中原、吐哈、塔里木等高气池比、油藏深的油田上使用。 二气举采油原理 气举法是指地层尚有一定能量,能够把油气驱动到井底,但地层供给的能量不足以把原油从井底举升到地面上时,需要人为地把气体注入井底,将原油举升出地面的人工举升采油方式。它的举升原理和自喷井相似,是通过向油套环空注入高压气体,并通过油管上的多组气举阀在不同压力、不同井段时让一部分气体迸入油管,用以降低井筒中液体的密度,在井底流动压力的作用下,将液体排出井口。同时,注入的高压气体在井筒上升的过程中,体积逐渐增大,气体的膨胀功对液体也产生携带作用。气举适用于油井供液能力较强、地层渗透率高的油井。海上采油、深井、斜井、含砂井、含气井和含有腐蚀性成分而不宜用其他人工举升采油方式开采的油井,都可采用气举采油。 三气举采油必备条件

自喷与气举采油

第二章自喷与气举采油 一、名词解释: 1、自喷:油层能量充足时,利用油层本身的能量就能将油举升到地面的方式称为自喷。 2、嘴流:对自喷井,原油流到井口后还有通过油嘴的流动。 3、采油方法:将流到井底的原油采到地面上所采用的方法,其中包括自喷采油法和人工举升两大类。 4、自喷采油法:利用油层自身的能量使油喷到地面的方法。 5、分层开采:在多油层条件下,为充分发挥各油层的生产能力,调整层间矛盾,而对各小层分别控制开采。可分为单管分采与多管分采两种井下管柱结构。 6、节点系统分析:简称节点分析。是指通过生产系统中各影响因素对节点处流入流出动态的敏感性分析,进行综合评价,实现目标产量并优化生产系统。 7、普通节点:节点本身不产生于流量相关的压力损失。 8、函数节点:压力不连续的节点称为函数节点,流体通过该节点时,会产生与流量相关的压力损失。 9、临界流动:流体的流速达到压力波在流体介质中的传播速度即声波速度时的流动状态。 10、气举采油:依靠从地面注入井内的高压气体,使井筒内气液混合物密度降低,而将原油举升到地面的方法。 11、气举阀打开压力:对于套压控制阀,指在实际工作条件下,打开阀所需的注气压力; 12、试验架打开压力:确定了气举阀的打开压力和关闭压力,就须在室内调试装置上把气举阀调节在某一打开压力,此压力相当于井下该气举阀所需的打开压力。 13、气举阀关闭压力:使气举阀关闭的就地(气举阀深度处)油压或套压。 14、转移压力:允许从较低的气举阀注气的压力,以实现从上一级阀转移到当前阀。 15、过阀压差:气体经过阀孔节流会产生压力损失,阀上、下游压差称为过阀压差。 16、老化处理:将阀置于老化器中,密闭加压,模拟井下承压加至2.987MPa,保持15min。 17、恒温处理:氮气压力受温度的影响很敏感,故调试过程中,需恒温以提高调试精度。 一、叙述题 1、人工举升或机械采油的方法是什么? 答案要点:当油层能量低不能自喷生产时,则需要利用一定的机械设备给井底的油流补充能量,从而将油采到地面。 2、采油树的主要作用是什么? 答案要点:井内全部油管柱重量;密封油、套管之间的环形空间;控制和调节油井的生产;录取油、套压力资料,测试,清蜡等日常管理;保证各项作业施工的顺利进行。 3、自喷井管理的基本内容是什么 答案要点:○1管好生产压差;○2取全取准资料;○3保证油井正常生产。 4、续气举设计所需基本参数有哪些? 答案要点:地层参数(包括地层压力、油藏温度、油井流入动态);井筒及生产条件(包括井深、油套管尺寸、地面管线尺寸、井口压力、分离器压力、注气设备能力、含水、生产气油比);PVT性质(包括油气水的高压物性参数) 5、注水开发过程中合理的工作制度是什么? 答案要点:○1保证较高的采油速度;○2保证注采平衡;○3保证注采指数稳定;○4证无水采油期长;○5应能充分利用地层能量,又不破坏地层结构;○6流饱压差合理 6、自喷井分层开采的原因是什么? 答案要点:多油层只用一个油嘴难以控制各小层,难使各小层均合理生产。因此在多油

气举采油

气举采油 当油层能量不足以维持油井自喷时,为使油井继续出油,人为地将天然气压入井底,使原油喷出地面,这种采油方法称为气举采油法。 一、气举采油原理 1、气举采油原理 气举采油原理:依靠从地面注入井内的高压气体与油层产出流体在井筒中的混合,利用气体的膨胀使井筒中的混合液密度降低,从而将井筒内流体举出。 2、气举方式 (1)气举按注气方式可分为连续气举和间歇气举。 连续气举就是从油套环空(或油管)将高压气体连续地注入井内,排出井筒中的液体。连续气举适用于供液能力较好、产量较高的油井。 间歇气举就是向油套环空内周期性地注入气体,气体迅速进入油管内形成气塞,推动停注期间在井筒内聚集的油层流体段塞升至地面,从而排出井中液体的一种举升方式。间歇气举主要用于井底流压低,采液指数小,产量低的油井。 (2)气举方式根据压缩气体进入的通道分为环形空间进气系统和中心进气方式系统环形空间进气是指压缩气体从环形空间注入,原油从油管中举出;中心进气方式与环形空间进气方式相反 3、井下管柱 按下入井中的管子数量,气举可分为单管气举和多管气举。 (1)开式管柱。它只适用于连续气举和无法下入封隔器的油井。 (2)半闭式管柱。它既可用于连续气举,也可用于间歇气举。 (3)闭式管柱。闭式管柱只适用于间歇气举。 二、气举启动压力 1、气举启动过程

开动压风机向油、套管环形空间注入压缩气体,环形空间内液面被挤压向下,油管内液面上升,在此过程中压风机的压力不断升高。 当环形空间内的液面下降到管鞋时,如图2—39(b)所示,压风机达到最大的压力,此压力称为气举井的启动压力 随压缩气进入油管,使油管内原油混气,因而使油管内混合物的密度急剧减小,液面不断升高直至喷出地面,如图2—39(c)所示。油管鞋压力急剧降低,此时,井底压力及压风机压力亦迅速下降。当井底压力低于油层压力时,液体则从油层流入井底。由于油层出油使油管内混气液体的密度稍有增加,因而使压风机的压力又有所上升,直到油层的油和环形空间的气体以不变的比例进入油管后压力趋于稳定,此时压风机的压力称为工作压力。

采油方式

气举采油相关知识 1.概念 气举采油就是当油井停喷以后,为了使油井能够继续出油,利用高压压缩机,人为地把天然气压入井下,使原油喷出地面,这种方法叫做气举采油。 2.原理 气举采油是基于U形管的原理,从油管与套管的环形空间,通过装在油管上的气举阀,将天然气连续不断地注入油管内,使油管内的液体与注入的高压天然气混合,降低液柱的密度,减少液柱对井底的回压,从而使油层与井底之间形成足够的生产压差,油层内的原油不断地流入井底,并被举升到地面。 3.工艺 气举采油,一般在油管管柱上安装5~6个气举阀,从井下一定的深度开始,每隔一定距离安装一个气举阀,一直安装到接近井底。 4. 优点 气举采油的优点是:(1)在不停产的情况下,通过不断加深气举,

使油井维持较高的产量;(2)在采用31/2’’气举管柱情况下,可以把小直径的工具和仪器,通过气举管柱下入井内,进行油层补孔、生产测井和封堵底水等;(3)减少井下作业次数,降低生产成本。 5.缺点 气举采油的缺点是:(1)需要压缩机站及大量高压管线,地面设备系统复杂,投资大;(2)气体能量利用率低,使其应用受到限制。 6.条件 气举采油必备条件是:(1)必须有单独的气层作为气源,或可靠的天然气供气管网供气;(2)油田开发初期,要建设高压压缩机站和高压供气管线,一次性投资大。 7.方式 一.按进气的连续性,气举可分为连续性气举和间歇性气举两大类 (1)连续性气举 适用性:适用于采油指数高和因井深造成井底压力较高的 井。 (2)间歇性气举 适用性:既可用于低产井,也可用于采油指数高井底压力 低,或者采油指数与井底压力低的井。 二.按进气的通路气举可分为环形空间进气(正举)和中心管进气(反举)两种。 适用性:中心管进气时,被举升的液体在环形空间的流速较低,

采油装置及工作原理

采油装置及工作原理 在油田开发过程中,当地层能量逐渐下降到不足以维持自喷或虽能自喷但产量过低,或一开始就不能自喷,就需要人工补充能量进行采油,即机械采油。其方法有气举采油和深井泵采油。而深井泵采油方法包括有杆泵采油及水力活塞泵、电动潜油泵及射流泵等无杆采油方法。有杆采油方法包括游梁式抽油机——深井泵装置和螺杆泵装置。在油田上广泛应用的是前者。地面部分——游梁式抽油机; 井下部分——抽油泵;中间部分——抽油杆柱。其工作原理是:由电动机经传动皮带将高速的旋转运动传递给减速箱;经三轴二级减速后,再由曲柄杆连杆机构将旋转运动变为游梁的上、下摆动。挂在驴头上的悬绳器通过抽油杆带动抽油泵柱塞作上、下往复运动,从而将原油抽至地面。 (1)抽油机装置及工作原理: 抽油机是有杆泵采油的主要地面设备,可分为有梁式和无梁式两种类型。前者在大庆被广泛采用,而后者为正在推广的新机型。有梁式抽油机又分为普通型(包括常规型和前置游梁式);变形游梁式(包括异相曲柄式、六连杆增程式、双驴头式、摇杆平衡游梁式、双摆增程式、游梁斜直井式)两类。它们的装置结构和工作原理大同小异。最常用的为常规游梁抽油机,其装置结构见图3。无游梁式抽油机包括链条式、增距式和宽带式等几种类型,它的特点为长冲程低冲次,适合于深井和稠油井采油。目前在大庆使用的较少。 抽油泵是有杆泵抽油系统中的主要设备,作业时安装在井下油管柱的下部,沉没在井筒中,通过抽油杆带动其工作。主要由工作筒(外筒和衬套)、柱塞及阀(游动阀和固定阀)组成(图4)。游动阀又叫做排出阀(或上部阀);固定阀又叫吸入阀(或下部阀)。泵的活塞上、下运动一次叫做一个冲程。活塞在每分钟内完成向上、下冲程的次数叫冲次,上冲程是油杆带动活塞向上运动,活塞上的游动阀受油管内液柱压力作用而关闭,泵内压力随之降低。固定阀在沉没压力与泵内压力构成的压差作用下,克服重力而被打开,原油进泵而井口排油。下冲程是抽油杆柱带动活塞向下运动,固定阀一开始就关闭,泵内压力逐渐升高。当泵内压力升高到大于活塞以上液柱压力和游动阀重力时,游动阀被顶开,活塞下部液体通过游动阀进入活塞上部,泵内液体排向油管。上、下冲程不断地交替进行,就使得原油不断地被举升到地面上来。 (2)有杆泵采油井口装置及井口流程 有杆泵井口装有采油树。应用较广泛有KY——250型和可转动偏心井口型两种。前者在大庆较常见,主要由套管法兰、套管四通、套管阀门、油管头上法兰、总阀门、油管四通、生产阀门、油嘴套等组成。 抽油井井口流程,主要有单管流程、双管掺热流程与三管热水伴随流程。口装置流程从油井生产出的油水混合物经过油嘴进入出油管线,然后通过集油干线进入计量站计量、汇集,输往转油站或联合站,它用于以下三种情况:油井出油温度达50~60℃以上;

采油工艺原理(完)

采油工艺原理 名词解释: 1采油方法:指将流到井底的原油采到地面上所采用的方法。 2自喷采油:利用油层本身的能量使油喷到地面的方法称自喷采油法。 3气举采油:为了使停喷井继续出油,人为地把气体压入井底,使原油喷出地面,这种采油方法为气举采油。 4机械采油:需要进行人工补充能量才能将原油采出地面的方法称机械采油法。5油井流入动态:是指油井产量与井底流压的关系,它反映了油藏向该井供油的能力。 6 IPR曲线:油井流入动态的简称,它是 表示产量与流压关系的曲线,也称指示曲线。 7采油指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。其数值等于单位压差下的油井产量。 8流动效率:理想情况的生产压降与实际情况的生产压降之比,反映了实际油井的完善性。 9产液指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产液量之间的关系。 10产水指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产水量之间的关系的综合指标,即反映油层向该井的供液能力。其数值等于单位生产压差下的产水量。 11井底流压:单相垂直管流的能量来自液体的压力 12流动型态:流动过程中,气液两相在管内的分布状态。 13滑脱现象:在气液两相垂直管流中,由于气、液的密度差导致气体超越液体流动的现象。 14滑脱损失由于滑脱现象而产生的附加压力损失。 15气相存容比:计算管段中气相体积与管段容积之比。 16液相存容比:计算管段中液相体积与管段容积之比。 17临界流动:流体通过油嘴时流速达到压力波在该介质中的传授速度时的流动状态。 18临界压力比:流体通过油嘴时,随着嘴后与嘴前压力比的减小流量不断增大,当流量达到最大值时所对应的压力。19节点系统分析:通过节点把从油藏到地面分离器所构成的整个油井生产系统按其计算压力损失的公式或相关式分成段,从而实现对整个生产系统进行分析的方法。 20节点:由不同压力损失公式或相关式所定义的部分设置。 21求解点:使问题获得解决的节点。 22功能节点:压力连续(存在压差)的节点。 23生产压差:油层静压与井底流压之差,称之为生产压差。 24采油指数:油井年采油量与地质储量的比值,是衡量油井开采速度的重要指标。 25分层开采:在多油层的条件下,为了在开发好高渗层的同时,充分发挥中低渗层的生产能力,调整层间矛盾,通过对各小层分别进行控制生产。 26单管分采:在井内只下一套油管柱,用单管多级封隔器将各个油层分隔开采,在油管与各油层对应的部位装一配产器,并在配产器内装一油嘴对各层进行控制采油。 27多管分采:在井内下入多套管柱,用封隔器将各个油层分隔开来,通过每一套管柱和井口嘴单独实现一个油层(或一个层段)的控制采油。 28气举启动压力:气举时,当环空中液面下降至管鞋处时,地面压风机所达最大压力称之为气举启动压力。 29气举工作压力:气举时,当启动地面压风机的压力趋于稳定时,该压力称做气举工作压力。 30平衡点:气举井正常生产时油套环形空间的液面位置。在此位置油套管内压力相等。 31冲次抽油机每分钟完成上下冲程的次数。 32初变形期:抽油机从上冲程和开始到液柱载荷加载完毕这一过程。 33泵效:抽油井的实际产量与泵的理论产量之比。 34充满系数:抽油泵上冲程进泵液体体积与活塞让出的体积之比。 35余隙比:抽油泵的余隙容积与上冲程活塞让出容积比。 36气锁:在抽汲时,由于气体在泵内压缩和膨胀,吸入和排出凡尔无法打开,出现抽不出油的 37防冲距:在下死点时,固定凡尔到游动凡尔之间的距离。为防止游动凡尔与固定凡尔碰撞,人为地将抽油杆上提一段距离。 38动液面:抽油井正常生产时环空中的液面。 39静液面:关井后,环空中的液面开始恢复,当液面恢复到静止不动时,称之为静液面。 40沉没度:泵吸入口至动液面的深度。41下泵深度:泵吸入口距井口(补心处)的距离。 42折算液面:把在一定套间压下测得的液面折算成套压为零时的液面。 43等强度原则:指多级杆组合时所遵循的一个原则,即各级杆上部断面处的折算应力相等。 44折算应力:最大应力与应力幅值乘积的平方根,表示为√σmaxσs。 45抽油杆使用系数:在应用修正古德曼图选择抽油杆时,所考虑到流体腐蚀性等因素而附加的系数。 46应力范围比:抽油杆应力范围与许用应力范围的百分比。 47曲柄平衡:平衡重加在曲柄上的一种平衡方式。 48游梁平衡:在游梁尾部加平衡重的一种平衡方式。 49复合平衡:在游梁尾部和曲柄上都加有平衡的一种混合平衡方式。 50气动平衡:通过游梁带动的活塞压缩气包中的气体,把下冲程中做的功储存为气体的压缩能的一种平衡方式。 51机械平衡:在下部程中,以增加平衡重块的位能来储存能量,在上冲程中平衡重降低位能,来帮助电动机做功的平衡方式。 52油井负荷扭矩:悬点载荷在曲柄轴上所产生的扭矩。 53曲柄平衡扭矩:曲柄平衡块在曲柄轴 上造成的扭矩。 54扭矩因数油井负荷扭矩与悬点载荷之 比。 55净扭矩:负荷扭矩与曲柄平衡扭矩之 差。 56有效平衡值:抽油机结构不平衡及平 衡重在悬点产生的平衡力,它表示了被 平衡掉的悬点载荷值。 57等值扭矩:用一个不变化的固定扭矩 代替变化的实际扭矩,使电动机的发热 条件相同,则此固定扭矩即为实际变化 的扭矩的等值扭矩。其本质是实际扭矩 的均方根值。 58水力功率:是指在一定时间内将一定 量的液体提升一定距离所需要的功率。 59光杆功率:通过光杆,来提升液体和 克服井下损耗所需要的功率。 60小层注水指示曲线:在分层注水情况 下,小层注入压力与注水量之间的关系 曲线。 61注水井指示曲线:表示在稳定流动条 件下,注入压力与注水量之间的关系曲 线。 62吸水指数:是在单位压差下的注水 量。 63比吸水指数:地层吸水指数除以地层 有效厚度,又称每米吸水指数。 64视吸水指数单位井口压力下的日注水 量。 65相对吸水量:指在同一注入压力下某 小层吸水量占全井吸水量的百分数。 66吸水剖面:在一定注入压力下,沿井 筒各射开层段的吸水量。 67正注:从油管注入的一种注水方式。 68合注:从油管和油、套环形空间同时注 水的一种注水方式。 69配注误差:实际注水量对于设计注水 量的相对百分误差。 70层段合格率:合格层段数占注水层段 数的百分数。 71欠注:当实际注入量小于设计注入量即 配注误差为“正”时,称之为欠注。 72超注:当实际注入量大于设计注入量即 配注误差为“负”时,称之为超注。 73破裂压力:进行水力压裂时,当地层 开始破裂时的井底压力。 74力延伸压:进行水力压裂时,地层破 裂后,维持裂缝向前延伸时的井底压力。 75有效垂向应力:垂向应力与地层(流 体)压力之差。 76破裂压力梯度地层破裂压力除以地层 深度。 77前置液:水力压裂初期用于造缝和降 温的压裂液。 78携砂液:水力压裂形成裂缝后,用于 将砂携入裂缝的压裂液。 79顶替液:水力压裂施工过程中或结束 时,将井筒中的携砂液顶替到预定位置 的压裂液,可分中间顶替液和后期顶替 液。 80压裂液造壁性:添加有防滤失剂的压 裂液在裂缝壁面上形成滤饼,有效地降 低滤失速度的性质。 81滤失系数:表征压裂液滤失程度的 系数。 82初滤失量:指具有造壁性的压裂液, 在形成滤饼的滤失量称作初滤失量。 83静滤失:压裂液在静止条件下的滤失。 84动滤失:压裂液在流动条件下的滤失。 85综合滤失系数:表征压裂液在各种滤 失机理综合控制下液滤失程度的系数。 86裂缝导流能力:填砂裂缝的渗透率与 裂缝宽度的乘积。 87闭合压力:水力压裂停泵后作用在裂 缝壁面上使裂缝处于似闭未闭时的压 力。 88干扰沉降:指颗粒群在沉降过程中, 相互存在着干扰,在这种条件下的沉降 称之为干扰沉降。 89增产倍数:措施后与措施前的才有指 数之比,反映了增产程度。 90滤失百分数:单位体积混砂压裂液所 滤失的体积与滤失后剩余体积的百分 比。 91平衡流速:在垂直缝沉降条件下,颗 粒的沉降与悬浮处于平衡时,在砂堤上 面的混砂液流速称为平衡流速,她是液 体携带颗粒的最小流速。 92酸-岩化学反应速度:单位时间内 酸浓度的降低值,或单位时间内岩石单 位反应面积的溶蚀量。 93扩散边界层:酸岩复相反应时,在岩 面附近由生成物堆积形成的微薄液层。 94H+的传质速度:氢离子透过边界 达到岩面的速度,称为氢离子的传质速 度。 95面容比:岩石反应表面积与酸液体积 之比。 96残酸:随着酸岩反应的进行,酸液浓度 逐渐降低,把这种基本上失去溶蚀能力 的酸液称为残酸。 97酸液的有效作用距离:酸液由活性 酸变为残酸之前所流经裂缝的距离。 98酸压有效裂缝长度:在依靠水力压裂 的作用所形成的动态裂缝中,只有在靠 近井壁的那一段裂缝长度内,由于裂缝 壁面的非均质性被溶蚀成为凹凸不平的 沟槽,当施工结束后,裂缝仍具有相当 导流能力。把此段裂缝的长度,称为裂 缝的有效长度。 99前置液酸压:在压裂酸化中,常用高 粘液体当作前置液,先把地层压开裂缝, 然后再注入酸液。这种方法称为前置液 酸压。 100多组分酸:一种或几种有机酸与盐酸 的混合物。 101缓蚀剂:指那些加到酸液中能大大减 少金属腐蚀的化学物质。 102稳定剂:为了减少氢氧化铁沉淀,避 免发生堵塞地层的现象,而加的某些化 学物质,叫做稳定剂。 103一种表面活性剂:在酸液加入活性 剂后,由于它们被岩石表面吸附,使岩 石具有油湿性。岩石表面被油膜覆盖后, 阻止了H+向岩面传递,降低酸岩反应速 度。用于此目的的活性剂称为缓速剂。 104悬浮剂:在酸液中加入活性剂后,由 于活性剂可以被杂质颗粒表面所吸 附,从而使杂质保持分散状态而不易 聚集。用于此目的的活性剂被称为悬浮 剂。 105土酸:由10%-15%浓度的盐酸和 3%-8%浓度的氢氟酸与添加剂所组成 的混合酸液,称之为土酸。 106逆土酸:土酸中,当盐酸浓度小于氢 氟酸浓度时,称之为逆土酸。 107砾石充填:防砂方法之一。先将割缝 补管或绕丝筛管下入井内面对防砂层 (井底),然后将经过选择粒径的砾石用 高质量的液体送至补管或筛管外面,使 之形成一定厚度的砾石层。当根据地层 砂的粒度选择砾石粒径得当的话,在砾 石层外形成一个由粗粒到细粒的滤砂 器,这种防砂方法称之为砾石充填。 108G-S比:砾石与地层砂粒径之比,简 称G-S比。 109人工井壁:从地面将支护剂和末固化 的胶结剂按一定比例拌和均匀,用液体 携至井下挤入油层出砂部位,然后使胶 结剂固化将支护剂胶固,于是在套管外 形成具有一定强度和渗透性的“人工井 壁”,可起到阻止油层砂子流入井内而不 影响油井生产的一种防砂方法。 110人工胶结:人工胶结砂层的方法是从 地面向油层挤入液体胶结剂及增孔剂, 然后使胶结剂固化,将井壁附近的疏松 砂层胶固,以提高砂层的胶结强度,同 时又不会使渗透率有较大的降低。 111冲砂:向井内打入液体,利用高速液 流将砂堵冲散,并利用循环上返的液流 将冲散的砂子带到地面,这类清砂方法 称之为冲砂。 112正冲:冲砂液沿冲砂管(即油管)向 下流动,在流出管口时以较高的流速冲 散砂堵,被冲散的砂和冲砂液一起沿冲 砂管与套管的环形空间返至地面,这种 冲帮方法叫正冲砂。 113反冲:冲砂液由套管和冲砂管的环形 空间进入,被冲起的砂随同砂液从冲砂 管返到地面,这种冲砂方法叫反冲砂。 114正反联合冲砂:用正冲的方式将砂 堵冲开,并使砂子处于悬浮状态。然后, 迅速改为反冲洗,将冲散的砂子从冲管 内返出地面,这样的冲砂方法称为正反 冲砂。为了充分发挥正反冲砂的优点, 常用联合冲砂管柱进行冲砂,即实行正 反联合冲砂。 115油井结蜡现象:溶有一定量石蜡的 原油,在开采过程中,随着温度、压力 的降低和气体的析出,溶解的石蜡便以 结晶析出,随着温度的进一步降低,石 蜡不断孤出,其结晶便长大聚集和沉积 在管壁上,这种现象叫结蜡现象。 116初始结晶温度:当温度降到某一数 值时,原油中溶解的蜡便开始析出,把 这个蜡开始析出的温度称为初始结晶温 度。 117选择性堵水:所采用的堵剂只与水起 作用,而不与油起作用,从而只堵水而 不堵油的一种化学堵水方法。 118非选择性堵水:所采用的堵剂对水 层和油层均可造成堵塞,而无选择性的 一种化学堵水方法。 简述题: 1采油指数的物理意义是什么?影响 采油指数的因素有哪些? (1)对于线性渗流,采油指数定义为单位 生产压差的日采油量;对于非线性渗流, 采油指数定义为油产量随流压下降的变化 率;(2)反映了油层性质、流体参数、泄 油面积及完井条件与产量之间的综合关 系;即反映了油层生产能力的大小。 2方程的基本假设有哪些? (1)圆形封闭油藏,油井位于中心;(2) 均质地层,含水饱和度恒定;(3)忽略重 力影响:忽略岩石和水的压缩性;(5)油、 气组成及平衡不变;(6)油气两相的、压 力相同;(7)拟稳态下流动,在给定的某 一瞬间,各点和脱气原油流量相同。 3试分析当水层压力高于油层压力 时,油井含水率随井底流压的变化? (1)当流压低于水层压力而大于油层压力 时,含水率为100%;(2)当流压低于油 层压力时,含水率低于100%;(3)当 流压低于油层压力时,随着流压的降低, 含水率下降。 4自喷井可能出现的流动形态自下而 上依次是什么?各流动形态有何特 点? (1)纯油流:单相液流;(2)泡流:气相 分散,液相连续,滑脱严重;(3)段塞流: 气相分散,液相连续,气举油效率高;(4) 环流:气相与液相均连续;(5)雾流:气 相连续,液相分散,摩阻消耗为主。 5按深度增量迭代求压力分布的步骤 有哪些? (1)已知任一点(井口或井底)压力P0 和温度T0作为起点,任选一个合适的压力 降ΔP(一般选0.5~1.0MPa)作为计算的 压力间隔。由此可计算出计算管段的平均 压力P;(2)估计一个与ΔP相对应的深 度增量Δh,根据起点温度和地温梯度计 算出计算管段的平均温度T;(3)计算在P、 T下,所需的全部流体性质参数;(4)计 算该管段的压力梯度dP/dh;(5)计算对 应于ΔP的该段管长(深度差)(Δh) i =ΔP/(dp/dh);(6)判别│(Δh)I -Δh│<ε,若满足条件,进行下一步计算; 若不满足条件,则以(Δh)i作为Δh的 估计值,重复(2)-(5);(7)计算该段 下端对应的深度L i和压力P i L i =∑(Δh) I ; P i =P0 +iΔP (i=1,2,3,….n);(8)以 L i处的压力为起点,重复(2)-(7)步, 计算下一段的深度L i+1和压力P i+1,直到各 段的累加深度等于或大于管长时为止。 6为子保持自喷井稳定生产,为什么 要使油嘴后的回压小于油嘴前油压 的一半? (1)研究表明,当压力比P2 1.5*1.0-4μm2 --m;(3)在注水开发的 油田里,油水井对应压裂并以注水为主 效果较好;(4)选井要注意井况,包括套 管强度,距边水、气顶的距离,有无较好 的遮挡层等。 51闭合压力高用砂子作支撑剂时,会 带来什么不利影响? (1)当砂子比缝壁面地层岩石还要硬,砂 子有可能嵌入到地层里;(2)当壁砂子 硬度大,闭合压力又大于砂子的强度,则 砂子被压碎;(3)这两种情况都会导致裂 缝闭合或渗透率很低,砂子起不到支撑裂 缝的作用。 52根据电模拟结果,压裂设计应遵 循的基本指导思想是什么? (1)对于低渗地层,闭合压力并不是很大 的情况下,容易得到较高的导流能力比值, 要提高增产倍数,应以加大裂缝长度为主。 (2)在较高渗透率的地层,而闭合压力以 较高,不易获得较高的导流能力,这时, 要得到好的压裂效果,主要是靠提高裂缝 的导流能力。(3)当裂缝长度受井网等因

相关文档