文档库 最新最全的文档下载
当前位置:文档库 › 二次函数之面积最大值、平行四边形存在性(作业)

二次函数之面积最大值、平行四边形存在性(作业)

二次函数之面积最大值、平行四边形存在性(作业)
二次函数之面积最大值、平行四边形存在性(作业)

12月13号 周六提高班作业

班级__________ 姓名__________ 学号

如图,抛物线23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 坐标为(1,0),OA =OC .

(1) 求抛物线的解析式;

(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD

(3)在抛物线上是否存在点M,使S△MAC=S△OAC ? 若存在,求点M

(4)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P 标;若不存在,请说明理由.

二次函数与平行四边形存在性问题

老师 姓名 学生姓名学管师 学科 名称 年级上课时间月日_ _ :00-- __ :00 课题 名称 二次函数与平行四边形的存在问题 教学 重点 教学过程【知识梳理】 1、平行四边形的性质是什么? 2、在坐标系中,平行四边形又有哪些性质? 3、解决问题的策略: ①根据要求画出满足要求的图形,然后根据几何性质计算未知量 ②分类讨论,根据对角线“共中点”的性质直接计算。 1.(2011?盘锦)如图,二次函数y=ax2+bx的图象经过A(1,﹣1)、B(4,0)两点. (1)求这个二次函数解析式; (2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.

2.(2010?陕西)在平面直角坐标系中,抛物线A(﹣1,0),B(3,0),C(0,﹣1)三点. (1)求该抛物线的表达式; (2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标. 3.(2011?阜新)如图,抛物线y=x2+x﹣与x轴相交于A、B两点,顶点为P. (1)求点A、B的坐标; (2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积,若存在,求出符合条件的点E的坐标;若不存在,请说明理由; (3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形,直接写出所有符合条件的点F的坐标.

4.(2007?玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的 图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上。 (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P点作x轴的垂线交二次函数图象于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,求点P的坐标;若不存在,请说明理由。

专题:二次函数中的动点问题2(平行四边形存在性问题)

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2;当l1⊥l2时k1·k2= -1 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

二次函数面积最大值

二次函数面积最大值 教学目标: 1.通过本节课学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性质,理解顶点 与最值的关系,会求解最值问题。 2.通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 1、正确构建数学模型 2、对函数图象顶点与最值关系的理解与应用 教学过程: 一、复习旧知: 1.二次函数y=ax 2+bx+c 的图象是一条,它的对称轴是,顶点坐标是 . 当 a>0时,抛物线开口向,有最点,函数有最值,是_____;当a<0时,抛物线开口向,有最点,函数有最值,是. 2.二次函数y=2x 2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最值,是. 二、创设情境: 小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD 究竟应为多少米才能使花圃的面积最大? (设计意图:寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,加深对知识的理解,做到数与形的完美结合,既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。) 三、讲解新知: 有一块三角形余料如图所示,∠A=90°,AM=30cm ,AN=40cm ,要利用这块余料截出一个矩形,怎样截取矩形的面积最大?

二次函数中考平行四边形含答案

二次函数(平行四边形) 1.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标; (2)求DE的长? (3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形? 解答:解:(1)当m=2时,y=(x﹣2)2+1, 把x=0代入y=(x﹣2)2+1,得:y=2, ∴点B的坐标为(0,2). (2)延长EA,交y轴于点F, ∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE, ∴△AFC≌△AED, ∴AF=AE, ∵点A(m,﹣m2+m),点B(0,m), ∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2, ∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°, ∴△ABF∽△DAE, ∴=,即:=, ∴DE=4. (3)①∵点A的坐标为(m,﹣m2+m), ∴点D的坐标为(2m,﹣m2+m+4), ∴x=2m,y=﹣m2+m+4, ∴y=﹣?++4, ∴所求函数的解析式为:y=﹣x2+x+4, ②作PQ⊥DE于点Q,则△DPQ≌△BAF,

(Ⅰ)当四边形ABDP为平行四边形时(如图1), 点P的横坐标为3m, 点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4, 把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得: ﹣m2+m+4=﹣×(3m)2+×(3m)+4, 解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2), 点P的横坐标为m, 点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4, 把P(m,m+4)的坐标代入y=﹣x2+x+4得: m+4=﹣m2+m+4, 解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.

二次函数与平行四边形综合.

【例1】 已知:如图,在平面直角坐标系xOy 中,直线3 64 y x =-+与x 轴、y 轴的交点分 别为A B 、, 将OBA ∠对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点.C (1)直接写出点C 的坐标,并求过A B C 、、三点的抛物线的解析式; (2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC 的交点为T Q , 为线段BT 上一点,直接写出QA QO -的取值范围. 【例2】 如图,点O 是坐标原点,点(0)A n ,是x 轴上一动点(0)n <.以AO 为一边作矩形AOBC ,点C 在第二象限,且2OB OA =.矩形AOBC 绕点A 逆时针旋转90?得矩形AGDE .过点A 的直线y kx m =+(0)k ≠交y 轴于点F ,FB FA =.抛物线2y ax bx c =++过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM x ⊥轴,垂足为点M . ⑴ 求k 的值; ⑵ 点A 位置改变时,AMH ?的面积和矩形AOBC 的面积的比值是否改变?说明你的理由. 【例3】 如图1,Rt ABC ?中,90A ∠=?,3 tan 4 B = ,点P 在线段AB 上运动,点Q 、R 分别在线段BC 、AC 上,且使得四边形APQR 是矩形.设AP 的长为x ,矩形APQR 的面积为y ,已知y 是x 的函数,其图 象是过点()1236,的抛物线的一部分(如图2所示). (1)求AB 的长; (2)当AP 为何值时,矩形APQR 的面积最大,并求出最大值. R Q B C A 二次函数与平行四边形综合

求二次函数中三角形面积最大值压轴题专题汇编

M N B C x A O y 求二次函数中三角形面积最大值压轴题专题汇编 28.( 甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作 //NM AC ,交AB 于点M ,当AMN ?面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++, 得:4240 64840a b a b -+=??++=? , 1分 解得:1 4 a =-,32 b =. ∴该二次函数的表达式为 213 442 y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8), 则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10. 令0x =,解得:4y =, ∴点A (0,4),OA =4,

∵MN ∥AC , ∴ 810 AM NC n AB BC -== . 4分 ∵OA =4,BC =10, ∴1 14102022 ABC S BC OA =?=??=V . 5分 11 22222 810ABN AMN ABN S BN OA n+n+S AM CN n , S AB CB = ?=?-===()4=()又V V V Q ∴2811 (8)(2)(3)51055 AMN ABN n S S n n n -= =-+=--+V V . 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7 分 (3)当N (3,0)时,N 为BC 边中点. ∴M 为AB 边中点,∴12 OM AB.= 8分 ∵AB = AC ∴12AB AC,= 9分 ∴1 4 OM AC =. 10分 24( 海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = + 相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。

二次函数平行四边形存在性问题例题(最新整理)

二次函数平行四边形存在性问题例题 一.解答题(共9小题) 1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. 2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x

轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F 在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由. 4.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围. 5.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠

中考数学复习指导:解二次函数中三角形面积最值问题

解二次函数中三角形面积最值问题 一、灵割巧补,间接转化求最值 这里的割补法分为两部分,割是指将图形分解成几部分分别求解,补是指将所求图形填上一部分然后用补后的图形面积减去所补的部分面积.两种做法的实质都是间接的求出所求图形的面积. 例1 在如图所示的直角坐标系中,有抛物线2424455 y x x =-+.连接AC ,问在直线AC 的下方,是否在抛物线上存在一点N ,使NAC V 的面积有最大值?若存在请求出此值;若不存在请说明理由. 解析 设N 点坐标为2424(,4)55 a a a -+,(0,5)a ∈,如图所示过点A 作直线平行于x 轴,过点N 作直线平行于y 轴,与x 轴交于点F ,与AC 相交于点G ,两直线相交于点D .容易求得直线 AC 的方程445y x =- +,得出G 点坐标(4(,4)5a a -+,求出NG 的长为2445 a a -+,111222 ACN ANG CGN S S S NG OF NG CF NG OC =+=?+?=?V V V 2210a a =-+,故当52a =时三角形面积有最大值252,此时N 点的坐标为5(,3)2-. 点拨 本题中将三角形割开求解的方法在应用中是较为常见的,此种方法也可视为是铅垂法,即三角形的面积等于三角形的水平宽与铅垂高的积的一半,本题中就是演示了整个的推理以及求解过程. 二、直线平移,化为切线求最值 切线法体现了数学中最为常见的数形结合思想,即通过平移直线,当直线与抛物线只有一个交点时(此时就是相切)存在长度的极值,借此来直接求出点的坐标.此法不用求出面积的解析式就可直接求解,是解题的新思路. 例2 如图所示,在平面直角坐标系中,有一抛物线2142 y x x =+-,在第三象限的抛物线上是否存在一动点M ,使ABM V 面积存在最大值?若存在,求出最值;若不存在,说明理由.

二次函数中三角形面积最大值综合题

精心整理 2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题 28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)AB 于 点M (3∴ 810 AM NC n AB BC -== .4分 ∵OA =4,BC =10, ∴11 4102022ABC S BC OA =?=??=V .5分 ∴2811(8)(2)(3)51055 AMN ABN n S S n n n -==-+=--+V V .6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点.

∴M 为AB 边中点,∴12 OM AB.=8分 ∵2241625AB OB OA =+=+=, 22641645AC OC OA =+=+=, ∴12AB AC,=9分 ∴1 4 OM AC =.10分 24(2017海南).抛物线23y ax bx =++经过点()和点()。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = +相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有 = 或 = 两种情况,利用P 点坐标,可分别表示出线段的长, 可得到关于P 点坐标的方程,可求得P 点坐标. 【解答】解: (1)∵抛物线y=ax 2+bx +3经过点A (1,0)和点B (5,0), ∴,解得, ∴该抛物线对应的函数解析式为y=x 2﹣x +3; (2)①∵点P 是抛物线上的动点且位于x 轴下方, ∴可设P (t ,t 2﹣ t +3)(1<t <5), ∵直线PM ∥y 轴,分别与x 轴和直线C D 交于点M 、N ,

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

二次函数中动点问题——平行四边形(练习)

2018年04月28日187****6232的初中数学组卷 一.解答题(共5小题) 1.如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3). (1)求抛物线的解析式和顶点E的坐标; (2)点C是否在以BE为直径的圆上?请说明理由; (3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R 的坐标,若不存在,请说明理由. 2.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D. (1)求抛物线的解析式; (2)设点M(1,m),当MB+MD的值最小时,求m的值; (3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E 作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.

3.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2. (1)求A,B两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值; (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ 的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由. (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由. 4.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).

二次函数综合题二次函数与平行四边形

学习好资料欢迎下载 二次函数与平行四边形2,3),与y轴交于点C(0,﹣)【例1】(2011湛江)如图,抛物线y=x+bx+c的顶点为D(﹣1,﹣4 .B,两点(点A在点B的左侧)与x轴交于A )求抛物线的解析式;(1 AD,试证明△ACD为直角三角形;,(2)连接ACCD,为顶点的的四边形FE,A3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以,B,(F的坐标;若不存在,请说明理由.为平行四边形?若存在,求出所有满足条件的点 17521xx???y?与【例y轴交于A点,过点2011】2(广东)如图,抛物线A的直线与抛物线 44. 学习好资料欢迎下载 交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0). (1)求直线AB的函数关系式; (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t

的函数关系式,并写出t的取值范围; (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时, . 请说明理由值,平行四边形BCMN是否菱形?四边形BCMN为平行四边形?问对于所求的t yy xx轴C中,正方形OCBA的顶点A、分别在【例3】(2010茂名)如图,在直角坐标系O 轴、2c??bxaxy?1?3ab??,坐标为(上,点B66BA经过点),抛物线、两点,且.cab的值;,,)求1(. 学习好资料欢迎下载 (2)如果动点E、F同时分别从点A、点B出发,分别沿A→B、B→C运动,速度都是每秒1个?EBFt的面、F随之停止运动.设运动时间为秒,E单位长度,当点到达终点B时,点E积 为S. t之间的函数关系式,并求出S的最大值;S与①试求出②当S取得最大值时,在抛物线上是否存在点R,使得以E、B、R、F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理

二次函数中的平行四边形存在性问题

二次函数中的平行四边形存在性问题 目标:1、通过本节课的学习,提高学生分析问题,解决问题的能力。 2、能总结出解决平行四边形存在性问题的一般方法和思路。重点:解决平行四边形存在性问题的一般方法及思路。 难点:根据条件求平行四边形的顶点坐标。 过程: 一、复习 1、平行四边形的性质 角: 边; 对角线: 2、二次函数的相关知识点 表达式、顶点坐标、对称轴、增减性 二、探索新知 1、単动点(知3点求1点) (1)已知平面上有不在同一条直线上的三点A、B、C,点D是平面上任一点,若此四点能构成平行四边形则符合条件的D点有几个? ()

学生画图说明 思考:如何找第四点?找第四点的方法? (2)类题 (1)已知抛物线与坐标轴分别交于A(-1、0)、B (3、0)、C (0、3)三点,能否在平面内在找一点D使得它们四点围成的四边形为平行四边形? 学生分析总结规律、思路。 ①、根据平行四边形的边、对角线的性质(对边平行且相等, 对角线互相平分)我们可以选择一种情况作为画图的依据。 ②、在求点的坐标时(以边为例)我们先满足对边平行再用对 边相等求出要求的点的坐标。

2、 双动点(知2点求2点) (1) 学生再次画图说明(给出两点画出另外两点) (2)类题 如图,抛物线y= 13 x 2-mx+n 与x 轴交于A 、B 两点,与y 轴交于点C (0.-1).且对称轴x=l . ① 求出抛物线的解析式及A 、B 两点的坐标; ② 点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,请求出所有满足条件的点P 的坐标。

点A,点B是定点 点P,点Q是动点 分两种情况:AB为边,AB为对角线 3、小结 4、布置作业 5、

二次函数与平行四边形

我们先思考三个问题: 1.已知A、B、C三点,以A、B、C、D为顶点的平行四边形有几个,怎么画? 2.在坐标平面,如何理解平行四边形ABCD的对边AB与DC平行且相等? 3.在坐标平面,如何理解平行四边形ABCD的对角线互相平分? 如图1,过△ABC的每个顶点画对边的平行线,三条直线两两相交,产生三个D。 如图2,已知点A(0,3),B(-2,0),C(3,1),如果四边形ABCD是平行四边形,怎样求点D的坐标呢? 点B先向右平移两个单位,再向上平移3个单位与点A重合,因为BA与CD平行且相等,所以点C先向右平移2个单位,再向上平移3个单位得到点D(5,4)。 如图3,如果平行四边形ABCD的对角线交于点G,那么过点G画任意一条直线(一般与坐标轴垂直)。点A、C到这条直线的距离相等,点B、D到这条直线的距离相等。 关系式和有时候用起来很方便。 1.(倒一)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式; (2)猜想△EDB的形状并加以证明; (3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

2.(倒二)在同一直角坐标系中,抛物线C1:y=ax2-2x-3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧. (1)求抛物线C1,C2的函数表达式; (2)求A、B两点的坐标; (3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由. 3.(宿迁倒一)如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC. (1)求曲线N所在抛物线相应的函数表达式; (2)求△ABC外接圆的半径; (3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标. 4.(倒一)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式; (2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;

二次函数有关平行四边形的存在性问题

有关平行四边形的存在性问题一.知识与方法积累: 1.已知三个定点,一个动点的情况 在直角坐标平面内确定点M,使得以 点M、A、B、C为顶点的四边形是平行四边形, 请直接写出点M的坐标。

二.例题解析: 如图,抛物线32++=bx ax y 与y 轴交于点C ,与x 轴交于A 、B 两点,3 1tan =∠OCA ,6=?ABC S . (1)求点B 的坐标; (2)求抛物线的解析式及顶点坐标; (3)设点E 在x 轴上,点F 在抛物线上,如果A 、C 、E 、F 构成平行四边形,请求出点E 的坐标. 巩固练习: 1. 已知抛物线322 ++-=x x y 与x 轴的一个交点为 A(-1,0),与y 轴的正半轴交于点C . 问坐标平面内是否存在点M ,使得以点M 和抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 2. 若点P 是x 轴上一点,以P 、A 、D 为顶点作平行四边形,该平行四边形的另一顶点E 在y 轴上,写出点P 的坐标. C A B O y x

3.如图,抛物线2 23y x x =-++与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连接BC PF DE ∥为平行四边形? 4. 已知抛物线y =2 x =别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N . 在抛物线2 2y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.

二次函数中平行四边形通用解决方法

●探究 (1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________; ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程; ●归纳 无论线段AB处于直角坐标系中的哪个位置, 当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=_________,y=___________;(不必证明) ●运用 在图2中,一次函数y=x-2与反比例函数的图象交点为A,B。 ①求出交点A,B的坐标; ②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。

图 2 图 3 图1 以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题. 1 两个结论,解题的切入点 数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。 1.1 线段中点坐标公式 平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,2 21y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P = 2 21x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +). 1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D . 证明: 如图2,连接AC 、BD ,相交于点E . ∵点E 为AC 的中点, ∴E 点坐标为(2C A x x +,2 C A y y +). 又∵点E 为B D 的中点, ∴ E 点坐标为( 2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D . 即平行四边形对角线两端点的横坐标、纵坐标之和分别相等. 2 一个基本事实,解题的预备知识 如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .

二次函数线段、周长、面积最值问题

1. 如图,对称轴为直线x=-1的抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)若a=1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC .求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于 点D ,求线段QD 长度的最大值. 2.如图,二次函数y=ax 2-32 x+c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知点A (-1,0),点C (0,-2).(1)求抛物线的函数解析式;(2)若点M 是线段BC 下方的抛 物线上的一个动点,求△MBC 面积的最大值以及此时点M 的坐标. 3.如图,二次函数y=ax 2 +bx 的图象与一次函数y=x+2的图象交于A 、B 两点,点A 的横坐标是-1,点B 的横坐标是2.(1)求二次函数的表达式;(2)设点C 在二次函数图象的OB 段上,求四边形OABC 面积的最大值.

4.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 5.如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴与x轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.求S与m的函数关系式。S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

二次函数中三角形面积最大值综合题

二次函数中三角形面积 最大值综合题 Revised by Petrel at 2021

2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题 28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点 ()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作 //NM AC ,交AB 于点M ,当AMN ?面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++, 得:4240 64840 a b a b -+=?? ++=?,1分 解得:14a =-,32 b =. ∴该二次函数的表达式为21 344 2 y x x =-++.3分 (2)设点N 的坐标为(n ,0)(-2<n <8), 则2BN n =+,8CN n =-. ∵B (-2,0),C (8,0), ∴BC =10. 令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴ 810 AM NC n AB BC -== .4分 ∵OA =4,BC =10, ∴11 4102022 ABC S BC OA =?=??=.5分

∴2811 (8)(2)(3)510 55 AMN ABN n S S n n n -= =-+=--+.6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点. ∴M 为AB 边中点,∴1 2 OM AB.=8分 ∵2241625AB OB OA =+=+=, 22641645AC OC OA =+=+=, ∴12AB AC,=9分 ∴1 4 OM AC =.10分 24(2017海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = +相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有 = 或 = 两种情况,利用P 点坐标,可 分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.

相关文档
相关文档 最新文档