文档库 最新最全的文档下载
当前位置:文档库 › 全概率公式和逆概率公式

全概率公式和逆概率公式

全概率公式和逆概率公式
全概率公式和逆概率公式

新乡医学院教案首页

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计公式大全

第1章 随机事件及其概率 例1.16 设某人从一副扑克中(52张)任取13张,设A 为“至少有一张红桃”,B 为“恰有2张红桃”,C 为“恰有5张方块”,求条件概率P (B |A ),P (B |C )解 13 52 1339 1352135213391)(1)(C C C C C A P A P -=-=-=13 52 11 39 213)(C C C AB P ?=13 39 135211392131352 13 39135213521139 213)() ()(C C C C C C C C C C A P AB P A B P -=-==1352 839 513)(C C C C P =13 52626213513)(C C C C BC P =8 39 6262131352 8395131352626 213513)() ()(C C C C C C C C C C C P BC P C B P === 某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的这种动物活到25岁的概率. 解设A 表示事件“活到20岁以上”,B 表示事件“活到25岁以上”,显然A B ?7.0)(=A P 56.0)(=B P 56 .0)()(==B P AB P 8.07 .056 .0)()()(=== A P A B P A B P

例1.21 某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不 超过4件,且具有如下的概率:一批产品中的次品数0 1 2 3 4 概率0.1 0.2 0.4 0.2 0.1 现进行抽样检验,从每批中随机抽取10件来检验,若发现其中有次品,则认 为该批产品不合格。求一批产品通过检验的概率。4 ()()() k k k P B P A P B A == ∑解设B 表示事件“一批产品通过检验”,A i (i =0,1,2,3,4)表示“一批产品含有i 件次品”,则A 0,A 1, A 2, A 3, A 4组成样本空间的一个划分, 00()0.1,()1 P A P B A ==1099 1110100 ()0.2,()0.900 C P A P B A C ===1098 2210100 ()0.4,()0.809 C P A P B A C ===1097 3310100 ()0.2,()0.727 C P A P B A C ===1096 4410100 ()0.1,()0.652 C P A P B A C ===814.0652 .01.0727.02.0809.04.0900.0.021.0≈?+?+?+?+=顾客买到的一批合格品中,含次品数为0的概率是 0004 ()(|) 0.11(|)0.123 0.814 ()(| ) i i i P A P B A P A B P A P B A =??= = ≈?∑类似可以计算顾客买到的一批合格品中,含次品数为1、2、3、4件的概率分别约 为0.221、0.398、0.179、0.080。 贝叶斯公式(Bayes) 1 ()() ()1,2,,()() k k k n i i i P A P B A P A B k n P A P B A =?= =∑L 第二章 随机变量及其分布 1离散型 随机变量 P(X=x k )=p k ,k=1,2,…, (1)0≥k p , (2)∑∞ ==1 1 k k p 2连续 型随机变量概 ? ∞-=x dx x f x F )()( (1)0)(≥x f ;(2) ? +∞ ∞ -=1 )(dx x f 。 ()=()F x f x '? =-=≤

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

条件概率公式

条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者或者。 边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。 例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。 考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A ∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则?E∈σ(S),可以定义集函数PX|A如下: PX|A(E)=PX(A∩E)/PX(E)。 易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。

独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。 若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。

条件概率公式

条件概率 示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 若只有两个事件A,B,那么,P(A|B) = P(AB)/P(B)。 条件概率示例:就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率:表示两个事件共同发生的概率。A与B的联合概率表示为P(AB) 或者P(A,B),或者P(A∩B)。 边缘概率:是某个事件发生的概率,而与其它事件无关。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。条件概率公式例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 定理1

设A,B 是两个事件,且A不是不可能事件,则称 为在事件A发生的条件下,事件B发生的条件概率。一般地,,且它满足以下三条件: (1)非负性;(2)规范性;(3)可列可加性。 定理2 设E 为随机试验,Ω为样本空间,A,B 为任意两个事件,设P(A)>0,称 为在“事件A 发生”的条件下事件B 的条件概率。 上述乘法公式可推广到任意有穷多个事件时的情况。 设A1,A2,…An为任意n 个事件(n≥2)且P(A1A2…An-1)>0,则P(A1A2…An)=P(A1)P(A2|A1)…P(An|A1A2…An-1)定理3(全概率公式1) 设B1,B2,…Bn是一组事件,若(1)BiBj≠j,i≠j,i,j=1,2,…,n;(2)B1∪B2∪…∪Bn=Ω则称B1,B2,…Bn样本空间Ω的一个部分,或称为样本空间Ω的一个完备事件组。 定理4(全概率公式2) 设事件组B1,B2是样本空间Ω的一个划分,且P(Bi)>0(i=1,2,…n),则对任一事件B,有

概率统计复习提纲百度文库讲解

《概率论与数理统计》总复习提纲 第一块随机事件及其概率 内容提要 基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验. 1、随机试验、样本空间与随机事件 (1)随机试验:具有以下三个特点的试验称为随机试验,记为. 1)试验可在相同的条件下重复进行; 2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果; 3)每次试验前不能确定哪一个结果会出现. (2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为. (3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算 (1)包含关系与相等:“事件发生必导致发生”,记为或;且. (2)互不相容性:;互为对立事件且. (3)独立性: (1)设为事件,若有,则称事件与相互独立. 等价于:若 (). (2)多个事件的独立:设是n个事件,如果对任意的,任意的 ,具有等式,称个事件相互独立. 3、事件的运算 (1)和事件(并):“事件与至少有一个发生”,记为. (2)积事件(交):“事件与同时发生”,记为或.

(3)差事件、对立事件(余事件):“事件发生而不发生”,记为称为与的差事件; 称为的对立事件;易知:. 4、事件的运算法则 1) 交换律:,; 2) 结合律:,; 3) 分配律:,; 4) 对偶(De Morgan)律:,, 可推广 5、概率的概念 (1)概率的公理化定义: (2)频率的定义:事件在次重复试验中出现次,则比值称为事件在次重复试验中出现的频率,记为,即. (3)统计概率:称为事件的(统计)概率. 在实际问题中,当很大时,取 (4)古典概率:若试验的基本结果数为有限个,且每个事件发生的可能性相等,

概率论知识点总结归纳

欢迎共阅 概率论知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件 样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差 互斥事件对立事件=?B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC (4)对偶律(摩根律):B A B A ?=?B A B A ?=? 第二节事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时 概率的性质:

(1)P(Φ)=0 (2)有限可加性:n A A A ??? 21两两不相容时 当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB) (5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节古典概率模型 1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为 2落在区域把μ相互独立. 总结:1.3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。 第二章一维随机变量及其分布 第二节分布函数 分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F 第三节离散型随机变量

条件概率公式

条件概率公式 条件概率: 设A、B是两个事件,在A事件发生的条件下,B事件发生的概率,其中P(A)>0。说明A事件发生的概率大于0,表示A事件是必然发生的。记为:P(B|A)=P(AB)/P(A) 。 注意事件A作为条件,分母必定是条件概率,所以A事件的概率必定在分母上,分子P(AB)表示事件A与B相交的概率,记作P(A∩B)。 举例说明:将一枚硬币抛两次,观察正反面,正面记H,反面记T. 样本空间Ω=(HH, HT,TH,TT) 设事件A:至少一次为正面,即事件A=(HH,HT,TH) 设事件B:两次为同一面,即事件B=(HH,TT) 求事件A发生条件下,事件B发生的概率?即求P(B|A)。 (例子来自浙大版概率与统计第四版) 从已知条件可知,总样本Ω为4个,A事件有3个,B事件有2个。 所以可以直接求出A的概率与B的概率。即P(A)=3/4 , A事件与B事件相交事件只有一个即HH。 即P(AB)=1/4.有公式1可知 P(B|A)=P(AB)/P(A)=(1/4)/(3/4)=1/3. 1.2 乘法公式:把式1条件概率公式P(B|A)=P(AB)/P(A)

把P(AB)相交概率移到式子左边,把P(B|A)条件概率移动式子右边。即得到乘法公式。如式P(AB)=P(B|A) P(A)。 全概率公式: 在条件概率中引入(A∩B)积事件的概念。积事件概率表示相交事件的概率只有在A与B事件同事发生情况下才会发生。P(A∩B)表示A和B相交的概率。而在全概率公式中将引入∪和事件概念. 有个小窍门,其实可以把积事件理解为数字电路的与门、把和事件理解为数字电路的或门。比如样本空间S,可以划分样本B1,B2...B6组成,即S=(B1∪B2∪ (6)

9条件概率公式

条件概率编辑讨论上传视频 本词条由“科普中国”科学百科词条编写与应用工作项目审核。 条件概率是指事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在B的条件下A的概率”。条件概率可以用决策树进行计算。条件概率的谬论是假设P(A|B) 大致等于P(B|A)。数学家John Allen Paulos 在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。中文名条件概率外文名Conditional probability分类数学表示P(A|B)计算决策树定理贝叶斯公式 目录 1 基本概念 2 基本定理 3 统计独立性 4 互斥性 5 其它 6 著名谬论 基本概念编辑 条件概率 条件概率是指事件A在事件B发生的条件下发生的概率。条件概率表示为:P(A|B),读作“A在B发生的条件下发生的概率”。若只有两个事件A,B,那么,。

概率测度 如果事件B 的概率P(B) > 0,那么Q(A) = P(A | B) 在所有事件A 上所定义的函数Q 就是概率测度。如果P(B) = 0,P(A | B) 没有定义。条件概率可以用决策树进行计算。[1] 联合概率 表示两个事件共同发生的概率。A与B的联合概率表示为P(AB) 或者P(A,B),或者P(A∩B)。[2] 边缘概率 是某个事件发生的概率,而与其它事件无关。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 条件概率公式 条件概率公式 需要注意的是,在这些定义中A与B之间不一定有因果或者时间顺序关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。[3] 基本定理编辑 定理1

概率统计公式大全

概率统计公式大全

————————————————————————————————作者:————————————————————————————————日期:

第1章随机事件及其概率 (1) 排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2) 加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3) 一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4) 随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5) 基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6) 事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=Φ,则表示A与B不可能同时发

条件概率、全概率公式与贝叶斯公式

条件概率、全概率公式与贝叶斯公式 一、背景 一个随机事件的概率,确切地说,是指在某些给定的条件下,事件 发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的. [例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一位,换一句话说,发生之后,发生的概率(暂且记为) 自然是. [例2] 将一枚硬币抛掷,观察其出现正反面的情况.设事件为“两次掷出同一面”,事件为“至少有一次为正面H”.现在来求已知事件已经发生的条件下事件发生的概率. 这里,样本空间.易知此属于古典概型问题.已知事件已发生,有了这一信息,知道不可能发生,即知试验所有可能结果所成的集合就是.中共有3个元素,其中只有属于.于是,在发生的条件下,发生的概率为

对于例1,已知 容易验证在发生的条件下,发生的概率 对于例2,已知 容易验证发生的条件下,发生的概率 对一般古典概型, 容易验证:只要,则在发生的条件下, 发生的概率, 总是成立的. 在几何概率场合,如果向平面上单位正方形内等可能任投一点,则当发生的条件下, 这时发生的概率为

由此可知对上述的两个等可能性的概率模型,总有成立. 其实,还可以验证, 这个关系式对频率也是成立的.于是,从这些共性中得到启发,引入下面的一般定义. 二、条件概率 若是一个概率空间,,若,则对于任意的,称 为已知事件发生的条件下, 事件发生的条件概率. [例3] 一盒子中装有4只产品,其中有3只是一等品,1只是二等品.从中取产品两次,每次任取一只,作不放回抽样,设事件为“第二次取到的是一等品”,事件为“第一次取到的是一等品”,试求条件概率 解:易知此属古典概型问题.将产品编号:1,2,3号为一等品,4号为二等品.以表示第一次、第二次分别取到第号、第号产品.试验E (取产品两次,记录其号码)的样本空间为 ={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4), (4,1),(4,2),(4,3)} ={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4)} ={(1,2),(1,3), (2,1),(2,3), (3,1),(3,2)} 由条件概率公式得,

条件概率及全概率公式练习题

二、计算题 1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 解.设事件A表示“甲取到的数比乙大”, 设事件B表示“甲取到的数是5 的倍数”. 则显然所要求的概率为P(A|B). 根据公式 而P(B)=3/15=1/5 , , ∴P(A|B)=9/14. 2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”, 设事件B表示“掷出的三个点数都不一样”. 则显然所要求的概率为 P(A|B). 根据公 式 , , ∴

P(A|B)=1/2. 3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件A i表示“第i次取到白球”. (i=1,2,…,N) 则根据题意P(A1)=1/2 , P(A2|A1)=2/3, 由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3. 而P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/ 4 . 由数学归纳法可以知道 P(A1A2…A N)=1/(N+1). 4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”, 事件B表示“最后取到的是白球”. 根据题意: P(B|A)=5/12 , , P(A)=1/2. ∴ . 5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放解.设事件A i表示“从甲袋取的2个球中有i 个白球”,其中i=0,1,2 .

概率论公式总结

概率公式整理 1.随机事件及其概率吸收律:A AB A A A A =?=??Ω =Ω?)( A B A A A A A =???=??=Ω?)()(AB A B A B A -==- 反演律: B A B A =? B A A B ?= n i i n i i A A 1 1 === n i i n i i A A 1 1 === 2.概率的定义及其计算:)(1)(A P A P -= 若B A ? )()()(A P B P A B P -=-? 对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=? )()()(B P A P B A P +≤? )() 1()()()()(211 111 1 n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++ - = ∑∑∑ 3.条件概率 ()=A B P ) ()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P ()() ) 0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 ∑ == n i i AB P A P 1 ) ()( ) ()(1 i n i i B A P B P ?= ∑ =Bayes 公式 ) (A B P k ) ()(A P AB P k = ∑== n i i i k k B A P B P B A P B P 1 ) ()() ()( 4.随机变量及其分布 分布函数计算)()() ()()(a F b F a X P b X P b X a P -=≤-≤=≤< 5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k (2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n k k n ,,1,0, ) 1()( =-==- *Possion 定理 0lim >=∞ →λn n np 有 ,2,1,0! ) 1(lim ==---∞ →k k e p p C k k n n k n k n n λ λ (3) Poisson 分布 ) (λP ,2,1,0,! )(===-k k e k X P k λ λ 6.连续型随机变量 (1) 均匀分布 ),(b a U ?? ? ??<<-=其他 ,0,1 )(b x a a b x f ??? ?? ??--=1, ,0)(a b a x x F (2) 指数分布 )(λE ???? ?>=-其他 , 00, )(x e x f x λλ ???≥-<=-0 , 10, 0)(x e x x F x λ (3) 正态分布 N (μ , σ 2 ) +∞ <<∞-= -- x e x f x 22 2)(21)(σ μσ π ? ∞ --- = x t t e x F d 21)(2 2 2)(σ μσ π *N (0,1) — 标准正态分布 +∞ <<∞-= - x e x x 2 2 21)(π ?

概率论知识点的总结(良心出品必属精品)

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为 随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全 体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。

事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。 运算律: 设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC (4)德摩根律: Y= A I B A B

概率论公式总结

概率论公式总结

第一章 P(A+B)二P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时,P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 P(AB) P(B)P(A| B) P(A)P(B| A) 全概率公式:从原因计算结果 n P(A) P(B k )P(A|B k ) k 1 Bayes 公式:从结果找原因 P(B k |A) P(B i )P(A|B i ) n P(B k )P(A|B k ) k 1 第二章 二项分布(Bernoulli 分布) ------- X~B(n,p) P(X k) C k p k (1 p)nk ,(k 01 …n) 泊松分布一一X~P(入) P(A|B) P(AB) P(B) F(x) P(X x) P(X k) k x

概率密度函数 P(a X b) 怎样计算概率 b P(a X b) f (x)dx a 均匀分布 X~U(a,b) f(x) (a x b) 指数分布X~Exp () x 对连续型随机F(x) P(X x) f(t)dt变量 分布函数与密度函数的重要关系: x F(x) P(X x) f (t)dt 二元随机变量及其边缘分布 分布规律的描述方法联合密度f(x,y)函数联合分F(x,y)布函数 f(x, y) 0 f(x,y)dxdy 1

联合密度与边缘密度 f x (x) f(x,y)dy f Y (y) f(x,y)dx 离散型随机变量的独立性 P{X i,Y j} P{X i}P{Y j} 连续型随机变量的独立性 f(x, y) f x (x)f Y (y) 第三章 数学期望 离散型随机变量,数学期望定义 E(a)=a ,其中a 为常数 E(a+bX)二a+bE(X),其中 a 、b 为常数 E(X+Y)二E(X)+E(Y) ,X 、丫为任意随机变量 常用公式 E(X) X k P k k 连续型随机变量,数学期望定义 E(X) x f(x)dx 随机变量g(X)的数学期望 E(g(X)) g(xQP k k

概率论知识点总结

概率论知识点总结 第一章 随机事件及其概率 第一节 基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示. 一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算) 包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ?或B A ?。 相等关系:若A B ?且B A ?,则称事件A 与事件B 相等,记为A =B 。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。记为 A ∪B 。 事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。 事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。 用交并补可以表示为B A B A =-。 互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时B A ?可记为A +B 。 对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质: Ω=?Φ=?B A B A ,。 事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ?=? B A B A ?=? 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时

条件概率公式上传

若只有两bai个事件A,B,那么du 基本性质 统计独立性zhi 当且仅当两个随机事件A与B满足dao P(A∩B)=P(A)P(B) 的时候,它们才是统计独立的,这样联合概率可以表示为各自概率的简单乘积。 同样,对于两个独立事件A与B有 P(A|B)=P(A) 以及 P(B|A)=P(B) 换句话说,如果A与B是相互独立的,那么A在B这个前提下

的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。 4互斥性 当且仅当A与B满足 P(A|B)=0 且P(A)≠0,P(B)≠0 的时候,A与B是互斥的。 因此, P(A|B)=0 P(B|A)=0 换句话说,如果B已经发生,由于A不能和B在同一场合下发生,那么A发生的概率为零;同样,如果A已经发生,那么B发生的概率为零。

5其它 如果事件B的概率,P(B)>0 那么Q(A)=P(A|B)在所有事件A上所定义的函数Q就是概率测度。 如果P(B)=0,P(A|B)没有定义。 条件概率可以用决策树进行计算。 6著名谬论 条件概率的谬论是假设P(A|B) 大致等于P(B|A)。数学家John Allen Paulos 在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。 P(A|B) 与P(B|A)的关系如下所示: P(B|A)=P(A|B)(P(B)/P(A))

下面是一个虚构但写实的例子,P(A|B) 与P(B|A)的差距可能令人惊讶,同时也相当明显。 若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。 这个问题的重要性,最适合用条件机率的观点来解释。 假设人群中有1%的人罹患此疾病,而其他人是健康的。我们随机选出任一个体,并将患病以disease、健康以well表示: P(disease) = 1% = 0.01 and P(well) = 99% = 0.99. 假设检验动作实施在未患病的人身上时,有1%的机率其结果为假阳性(阳性以positive表示)。意即: P(positive | well) = 1%,而且P(negative | well) = 99%. 最后,假设检验动作实施在患病的人身上时,有1%的机率其结果为假阴性

概率论公式总结

概率论公式总结 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机 变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 )(b X a P ≤≤∑≤==≤=x k k X P x X P x F )()()(?∞-=≤=x dt t f x X P x F )()()(1),(0≤≤y x F

联合密度 函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 E(a)=a ,其中a 为常数 E(a+bX)=a+bE(X),其中a 、b 为常数 E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 方差 定义式 常用计算 式 常用公式 当X 、Y 相互独立时: 方差的性质 D(a)=0,其中a 为常数 D(a+bX)=b2D(X),其中a 、b 为常数 ),(y x f ),(y x F ∑+∞-∞=?=k k k P x X E )([]22)()()(X E X E X D -=

相关文档