文档库 最新最全的文档下载
当前位置:文档库 › 拱坝水平位移前方交会观测点位精度分析

拱坝水平位移前方交会观测点位精度分析

拱坝水平位移前方交会观测点位精度分析
拱坝水平位移前方交会观测点位精度分析

拱坝水平位移前方交会观测点位精度分析

摘要:对采用前方交会法观测的拱坝水平位移,运用数学模型推导出位移观测点的误差椭圆,并结合工程实例分析观测精度。

关键词:拱坝水平位移前方交会误差椭圆精度

大坝变形观测要求精度高、速度快,因此,通常采用视准线法、引张线法、正倒垂线法等观测大坝的水平位移。但对于拱坝的水平位移,若采用上述方法,则观测效率较低,只有前方交会法较适宜。图1所示为典型的拱坝水平位移观测网,该网以大地四边形为骨干,以A、B两点为交会基点,对拱坝上各水平位移点进行观测。拟采用测角前方交会、边角同测前方交会两种观测方案。从测量仪器方面考虑,这两种方案都是可行的,尤其是当前全站仪已普及,同时测角测边非常容易。下面推导其误差公式,并对各方案的观测精度进行分析。

1 数学模型

图2所示为前方交会测量模型,其中A、B为观测工作基点,Pi为拱坝上任一水平位移观测点,β1、β2为观测的水平角,S1、S2为观测的边长。

设β1、β2为同精度观测,测角中误差为mβ,并令其为单位权中误差;mS1、mS2分别为边长S1、S2的中误差;AP、BP两条边的方位角分别为a1,a2。由此得:

单像空间前方交会实习报告

摄影测量学 单像空间后方交会实习报告 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

摄影测量立体相对的前方交会VB程序代码

Private Sub Command1_Click() Dim zx1 As Single, zy1 As Single, zx2 As Single, zy2 As Single, zx3 As Single, zy3 As Single, zx4 As Single, zy4 As Single, zx5 As Single, zy5 As Single, zx6 As Single, zy6 As Single Dim yx1 As Single, yy1 As Single, yx2 As Single, yy2 As Single, yx3 As Single, yy3 As Single, yx4 As Single, yy4 As Single, yx5 As Single, yy5 As Single, yx6 As Single, yy6 As Single Dim f As Single Dim jd11 As Single, jd12 As Single, jd13 As Single, jd21 As Single, jd22 As Single, jd23 As Single, jd1 As Single, jd2 As Single Dim a1(1 To 3, 1 To 3) As Single Dim a2(1 To 3, 1 To 3) As Single Dim fz1(1 To 6, 1 To 3) As Single Dim fz2(1 To 6, 1 To 3) As Single Dim aa(1 To 6, 1 To 5) As Single Dim p As String Dim bx(1 To 6, 1 To 1) As Single Dim n1(1 To 6, 1 To 1) As Single, n2(1 To 6, 1 To 1) As Single Dim aat(1 To 5, 1 To 6) As Single Dim aataa() As Double ReDim aataa(1 To 5, 1 To 5) Dim l(1 To 6, 1 To 1) As Single Dim aatl(1 To 5, 1 To 1) As Single Dim atal(1 To 5, 1 To 1) As Single Dim jd11z As Single, jd12z As Single, jd13z As Single, jd21z As Single, jd22z As Single, jd23z As Single Dim jd1z As Single, jd2z As Single zx1 = Val(Text1(0).Text): zy1 = Val(Text1(1).Text): yx1 = Val(Text1(2).Text): yy1 = Val(Text1(3).Text) zx2 = Val(Text1(4).Text): zy2 = Val(Text1(5).Text): yx2 = Val(Text1(6).Text): yy2 = Val(Text1(7).Text) zx3 = Val(Text1(8).Text): zy3 = Val(Text1(9).Text): yx3 = Val(Text1(10).Text): yy3 = Val(Text1(11).Text) zx4 = Val(Text1(12).Text): zy4 = Val(Text1(13).Text): yx4 = Val(Text1(14).Text): yy4 = Val(Text1(15).Text) zx5 = Val(Text1(16).Text): zy5 = Val(Text1(17).Text): yx5 = Val(Text1(18).Text): yy5 = Val(Text1(19).Text) zx6 = Val(Text1(20).Text): zy6 = Val(Text1(21).Text): yx6 = Val(Text1(22).Text): yy6 = Val(Text1(23).Text) jd11 = Val(Text2(0).Text): jd12 = Val(Text2(1).Text): jd13 = Val(Text2(2).Text) jd21 = Val(Text2(3).Text): jd22 = Val(Text2(4).Text): jd23 = Val(Text2(5).Text) jd1 = Val(Text2(6).Text): jd2 = Val(Text2(7).Text)

角度前方交会计算表(Word)

表6-5 角度前方交会点坐标计算表 略图 αⅡⅠ 北 αβ1 2 2 β1 公式 α βαβctg ctg y y ctg x ctg x x A B B A P +-++=)( α βαβctg ctg x x ctg y ctg y y A B B A P +--+= ) ( 已知 数据 x A =4807.86m y A =6936.06 m x B =3552.77m y B =7417.68m x C =3729.17m y C =8684.70 m Ⅰ 组 α1=60°17′16″ ctg 0.570673 β1=53°34′38″ ctg 0.727877 Ⅱ 组 α2=49°29′32″ ctg 0.854315 β2=65°07′57″ ctg 0.463495 (1) βαctg ctg + Ⅰ组 1.308550 Ⅱ组 1.317810 (2) βctg x A Ⅰ组 3547.609 (3) βctg y A Ⅰ组 5117.959 Ⅱ组 1646.691 Ⅱ组 3438.058 (4) αctg x B Ⅰ组 2027.470 (5) αctg y B Ⅰ组 4233.070 Ⅱ组 3185.886 Ⅱ组 7419.469 (6) A B y y - Ⅰ组 481.62 (7) )(A B x x -- Ⅰ组 +1255.09 Ⅱ组 1267.02 Ⅱ组 -176.40 (8) (2)+(4)+(6) Ⅰ组 6056.699 (9) (3)+(5)+(7) Ⅰ组 10606.119 Ⅱ组 6099.597 Ⅱ组 10681.127 (10) ) 1()8(= P x Ⅰ组 4628.558 (11) ) 1()9(= P y Ⅰ组 8105.245 Ⅱ组 4628.586 Ⅱ组 8105.210 )(1.022 2mm M e e y x ??=≤+=容δδ 式中 x =x P ′- x P ″, y =y P ′- y P ″,M 为测图比例尺分母。 表6-5实例中:x =4628.558-4628.586=-0.028m y =8105.245-8105.210=+0.035m e =0.045m e 容=2×0.1×1000=200mm 观测结果计算得e ≦e 容,说明观测结果达到精度要求,最后取平均值作为P 点坐标,即 x P =4628.572m y P =8105.228m

摄影测量学__考前知识点整理

摄影比例尺:摄影比例尺越大,像片地面的分辨率越高,有利于影像的解译与提高成图精度 摄影航高:相对航高:绝对航高: 摄影测量生产对摄影资料的基本要求:影像的色调、像片倾角(摄影机主光轴与铅垂线的夹 角,α= 0 时为最理想的情形)像片重叠:航向重叠:同一航线内相邻像片应有一定的影 像重叠;旁向重叠:相邻航线也应有一定的重叠;航线弯曲:一条航线内各张像片的像主点 连线不在一条直线上;像片旋角:相邻两像片的主点的连线与像片沿航线方向的两框标连线 之间的夹角;像片旋角过大会减小立体相对的有效观察范围 中心投影:所有投射线或其延长线都通过一个固定点的投影 阴位:投影中心位于物和像之间。(距摄影中心f ) 阳位:投影中心位于物和像同侧。(距摄影中心f ) 像方坐标系:像平面坐标系(像主点o 为原点) 像空间坐标系(x 、y 、-f) 像空间辅助坐标系S-uvw 物方坐标系:地面测量坐标系T-XYZ (高斯平面坐标+高程)左手系 地面摄影测量坐标系D-XYZ 内方位元素: x 0,y 0,f 作用: 1、像点的框标坐标系向像空间坐标系的改化; 2、确定摄影光束的形状; 外方位元素:确定摄影光束在摄影瞬间的空间位置和姿态的参数 线元素(X S ,Y S ,Z S ) 角元素(航向倾角?、 旁向倾角ω、 像片旋角κ) 共线条件方程(摄影中心、像点、地面点) 像点位移:因像片倾斜引起的像点位移 同摄站同主距的倾斜像片和水平像片沿等比线重 合时,地面点在倾斜像片上的像点与相应水平像片上像点之间的直线移位 像点位于等比线上,无像片倾斜引起的像点位移 等比线上部的像点的像片倾斜误差方向向着等角点 等比线下部的像点的像片倾斜误差方向背向等角点 (1) 当 时, ,即等比线上的点不会因像片倾斜产生像点位移 (2)当 ,像点位移朝向等角点(一、二像限) (3)当 ,像点位移背向等角点(三、四像限) (4)当 时,主纵线上点的位移最大 像片纠正:因像片倾斜产生的影像变形改正 因地面起伏引起的像点位移(投影差):当地面有起伏时,高于或低于所选定的基准面 的地面点的像点,与该地面点在基准面上的垂直投影点的像点之间的直线移位 地形起伏像点位移的符号与该点的高差符号相同,像片上任何一点都存在像点位移 物镜畸变、大气折光、地球曲率及底片变形等一些因素均会导致像点位移 航摄像片:中心投影,平均比例尺,影像有变形,方位发生变化 地形图:正射投影,比例尺固定,图形形状与实地完全相似,方位保持不变 在表示方法上:地形图是按成图比例尺,用各种规定的符号、注记和等高线表示地物地 貌;航片则是通过影像的大小、形状和色调表示。 在表示内容上:在地形图上用相应的符号、文字、数字注记表示,在像片上这些是不存 ??? ????-+-+--+-+--=-+-+--+-+--=)Z Z (c )Y Y (b )X X (a )Z Z (c )Y Y (b )X X (a f y )Z Z (c )Y Y (b )X X (a )Z Z (c )Y Y (b )X X (a f x S S S S S S S S S S S S 333222 333111

单像空间后方交会和双像解析空间后方-前方交会的算法程序实现

单像空间后方交会和双像解析空间后方-前 方交会的算法程序实现 遥感科学与技术 摘要:如果已知每张像片的6个外方位元素,就能确定被摄物体与航摄像片的关系。因此,利用单像空间后方交会的方法,可以迅速的算出每张像片的6个外方位元素。而前方交会的计算,可以算出像片上点对应于地面点的三维坐标。基于这两点,利用计算机强大的运算能力,可以代替人脑快速的完成复杂的计算过程。 关键词:后方交会,前方交会,外方位元素,C++编程 0.引言: 单张像片空间后方交会是摄影测量基本问题之一,是由若干控制点及其相应像点坐标求解摄站参数(X S,Y S,ZS,ψ、ω、κ)。单像空间后方交会主要有三种方法:基于共线条件方程的平差解法、角锥法、基于直接线性变换的解法。而本文将介绍第一种方法,基于共线条件方程反求象片的外方位元素。 而空间前方交会先以单张像片为单位进行空间后方交会,分别求出两张像片的外方位元素,再根据待定点的一对像点坐标,用空间前方交会的方法求解待定点的地面坐标。可以说,这种求解地面点的坐标的方法是以单张像片空间后方交会为基础的,因此,单张像片空间后方交会成为解决这两个问题以及算法程序实现的关键。

1.单像空间后方交会的算法程序实现: (1)空间后方交会的基本原理:对于遥感影像,如何获取像片的外方位元素,一直是摄影测量工作者探讨的问题,其方法有:利用雷达(Radar)、全球定位系统(GPS)、惯性导航系统(I N S)以及星像摄影机来获取像片的外方位元素;也可以利用一定数量的地面控制点,根据共线方程,反求像片的外方位元素,这种方法称为单像空间后方交会(如图1所示)。 图中,地面坐标X i、Yi、Zi和对应的像点坐标x i、yi是已知的,外方位元素XS、Y S、ZS(摄站点坐标),ψ、ω、κ(像片姿态角)是待求的。 (2)空间后方交会数学模型:空间后方交会的数学模型是共线方程, 即中心投影的构像方程: 式中X、Y、Z是地面某点在地面摄影测量坐标系中的坐标,x,y是该地面点在像片上的构像点的像片坐标,对 于空间后方交会而言它们是已知的,还有主距f是已知的。而9个方向余弦a 1,a 2,a3;b1,b 2,b 3;c 1,c2,c 3是未知的,具体表达式可以取

摄影测量实验报告(空间后方交会—前方交会)

空间后方交会-空间前方交会程序编程实验一.实验目的要求 掌握运用空间后方交会-空间前方交会求解地面点的空间位置。学会运用空间后方交会的原理,根据所给控制点的地面摄影测量坐标系坐标以及相应的像平面坐标系中的坐标,利用计算机编程语言实现空间后方交会的过程,完成所给像对中两张像片各自的外方位元素的求解。然后根据空间后方交会所得的两张像片的内外方位元素,利用同名像点在左右像片上的坐标,求解其对应的地面点在摄影测量坐标系中的坐标,并完成精度评定过程,利用计算机编程语言实现此过程。 二.仪器用具 计算机、编程软件(MATLAB) 三.实验数据 实验数据包含四个地面控制点(GCP)的地面摄影测量坐标及在左右像片中的像平面坐标。此四对坐标运用最小二乘法求解左右像片的外方位元素,即完成了空间后方的过程。另外还给出了5对地面点在左右像片中的像平面坐标和左右像片的内方位元素。实验数据如下:

内方位元素:f=152.000mm,x0=0,y0=0 四.实验框图 此过程完成空间后方交会求解像片的外方位元素,其中改正数小于限差(0.00003,相当于0.1’的角度值)为止。在这个过程中采用迭代的方法,是外方位元素逐渐收敛于理论值,每次迭代所得的改正数都应加到上一次的初始值之中。

在空间后方交会中运用的数学模型为共线方程 确定Xs,Ys,Zs的初始值时,对于左片可取地面左边两个GCP的坐标的平均值作为左片Xs 和Ys的初始值,取右边两个GCP的坐标平均值作为右片Xs 和Ys的初始值。Zs可取地面所有GCP的Z坐标的平均值再加上航高。 空间前方交会的数学模型为:

五.实验源代码 function Main_KJQHFJH() global R g1 g2 m G a c b1 b2; m=10000;a=5;c=4; feval(@shuru); %调用shuru()shurujcp()函数完成像点及feval(@shurujcp); %CCP有关数据的输入 XYZ=feval(@MQZqianfangjh); %调用MQZqianfangjh()函数完成空间前方、%%%%%% 单位权中误差%%%% %后方交会计算解得外方位元素 global V1 V2; %由于以上三个函数定义在外部文件中故需VV=[]; %用feval()完成调用过程 for i=1:2*c VV(i)=V1(i);VV(2*i+1)=V2(i); end m0=sqrt(VV*(VV')/(2*c-6)); disp('单位权中误差m0为正负:');disp(m0); %计算单位权中误差并将其输出显示 输入GCP像点坐标及地面摄影测量坐标系坐标的函数和输入所求点像点坐标函数: function shurujcp() global c m; m=input('摄影比例尺:'); %输入GCP像点坐标数据函数并分别将其c=input('GCP的总数='); % 存入到不同的矩阵之中 disp('GCP左片像框标坐标:'); global g1;g1=zeros(c,2); i=1; while i<=c m=input('x='); n=input('y='); g1(i,1)=m;g1(i,2)=n; i=i+1; end disp('GCP右片像框标坐标:'); global g2;g2=zeros(c,2); i=1; while i<=c m=input('x='); n=input('y='); g2(i,1)=m;g2(i,2)=n; i=i+1; end

前方交会

10.3.1 测量原理 图10-4所示为双曲线拱坝变形观测图。为精确测定等观测点的水平位移,首先在大坝的下游面合适位置处选定供变形观测用的两个工作基准点E和F;为对工作基准点的稳定性进行检核,应根据地形条件和实际情况,设置一定数量的检核基准点(如C、D、G等),并组成良好图形条件的网形,用于检核控制网中的工作基准点(如E、F等)。各基准点上应建立永久性的观测墩,并且利用强制对中设备和专用的照准觇牌。对E、F两个工作基点,除满足上面的这些要求外,还必须满足以下条件:用前方交会法观测各变形观测点时,交会角(见图10-4) 不得小于,且不得大于。 图10-4 拱坝变形观测图 变形观测点应预先埋设好合适的、稳定的照准标志,标志的图形和式样应考虑在前方交会中观测方便、照准误差小。此外,在前方交会观测中,最好能在各观测周期由同一观测人员以同样的观测方法,使用同一台仪器进行。

图10-5 角度前方交会法测量原理 利用前方交会法测量水平位移的原理如下:如图10-5所示,A、B两点为工作基准点,P 为变形观测点,假设测得两水平夹角为,则由A、B两点的坐标值和水平角观测值、可求得P点的坐标。 从图10-5可见: (10-3a) (10-3b)其中可由A、B两点的坐标值通过“坐标反算”求得,经过对(10-3)式的整理可得: (10-4a) (10-4b) 第一次观测时,假设测得两水平夹角为和,由(10-4)式求得P点坐标值为, 第二次观测时,假设测得的水平夹角为和,则P点坐标值变为,那么在此两期变形观测期间,P点的位移可按下式解算: ,, P点的位移方向为:。 10.3.2 前方交会法的种类 前方交会法有三种:测角前方交会法、测边前方交会法、边角前方交会法。其观测值和观测仪器见表10-5。 表10-5 前方交会法的种类 ,,,D1,D2

摄影测量实验报告(前方交汇后方交汇)

摄影测量学 实验报告 学院:地信院 班级:测绘0904班 老师:邹峥嵘 姓名:张文佳 学号:0405090921 2011年11 月11 日

空间后方交会——空间前方交会 程序编程实验 一.实验目的 1、要求掌握运用摄影测量中空间后方交会-空间前方交会求解地面点的空间位 置的方法和原理。 2、学会运用空间后方交会的原理,根据所给控制点的地面摄影测量坐标系坐标 以及相应的像平面坐标系中的坐标,利用计算机编程语言实现空间后方交会的计算,完成所给像对中两张像片各自的六个外方位元素的求解和精度评定。 3、根据空间后方交会所得的两张像片的内外方位元素,利用同名像点在左右像 片上的坐标,利用计算机编程语言前方交会编程,求解其对应的地面点在摄影测量坐标系中的坐标,从而达到通过摄影测量量测地面地理数据的目的。 二.实验仪器 1、计算机 2、MATLAB计算机编程软件 三、实验数据 实验数据实验数据包含四个地面控制点(GCP)的地面摄影测量坐标及在左右像片中的像平面坐标。此四对坐标运用最小二乘法求解左右像片的外方位元素,即完成了空间后方的过程。另外还给出了 5 对地面点在左右像片中的像平面坐标和左右像片的内方位元素。实验数据如下:

四、程序设计流程图 1、后方交会 此过程完成空间后方交会求解像片的外方位元素,其中改正数小于限差(长度改

正数小于0.01m,角度改正数小于0.0003,相当于1’的角度值)为止。在这个过程中采用迭代计算的方法,是外方位元素逐渐收敛于理论值,每次迭代所得的改正数都应加到上一次的初始值之中。 2、前方交会 七、实验原理公式 1、后方交会中运用的共线方程数学模型 Z Y f Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z X f Z Z c Y Y b X X a Z Z c Y Y b X X a f x x s s s s s s s s s s s s -=-+-+--+-+--=--=-+-+--+-+--=-)()()()()()()()()()()()(33322203331110 3、前方交会与后方交会中均用到旋转矩阵进行的坐标转换

测量比武复习题

《矿山测量工》试题库 一、填空题: 1、测量学是研究及确定的科学,它的主要内容包括和两部分。 3、是测量工作的基准线,是测量工作的基准面。 5、方位角的变化范围是,而象限角的取值范围为。 6、两点间的称为高差,水准测量时高差等于减去。 7、井下经纬仪导线,用钢尺量得的边长,还要视情况加、、、 及倾斜等项改正。 8、在水准仪粗略整平中,左手拇指旋转脚螺旋的运动方向就是移动的方向。 11、经纬仪的安置主要包括和两方面。 14、测量误差按其对测量结果影响的性质,可分为和。 15、系统误差具有明显的和,对测量结果影响很大。 16、测量上所讲的精度是指误差分布的或程度。 17、对某量进行了n次同精度观测,其算术平均值的精度是各观测值的精度的 倍。 18、在测区内,选取若干个控制点组成一定的几何图形,形成测区的骨架,称为。 19、国家测量控制网可分为控制网和控制网。 21、经纬仪交会法按其布设形式的不同,可分为、和。 22、经纬仪前方交会法在选择待定点时应尽可能使交会角r接近于度,并保证。 23、经纬仪后方交会法在选定待定点时不能位于由已知点构成的或附近。 31、地面上高程相等的各相邻点所连成的闭合曲线,称为。 33、等高线分为、、和助曲线四种。 35、矿井联系测量可分为和测量。 37、常用的竖井导入标高的方法有、和光电测距仪法。 41、在地形图上,相邻等高线间的高差,称为,相邻等高线在水平面上的垂直距离,称为。 42、在地形图上,山脊的等高线凸向处,而山谷的等高线凸向处。 43、在地形图上,等高线愈密则表示坡度,等高线愈稀则表示坡度。 44、矿井几何定向分为和。 45、井下导线点按照其使用时间长短和重要性而分为和两种。 46、矿山测量的井口基准点有和。 47、两井定向应独立进行两次,其互差不得越过。 48、《煤矿测量规程》规定,井下平面控制分为和两类。 49、井下基本控制导线按测角精度分为和两级。 50、井下高程控制网,可采用方法或方法敷设。 51、煤矿测量图简称。 52、巷道水平投影的几何中心线称为巷道。 53、照准部的旋转中心与水平度盘中心不一致所产生的读数误差称。 54、四等水准测量前后视距差应小于,视距累积差应小于。 55、真误差为________与观测值之差。

空间后交-前交程序设计实验报告

空间后交-前交程序设计 (实验报告) 姓名: 班级: 学号: 时间:

空间后交-前交程序设计 一、实验目的 用 C 、VB或MATLAB语言编写空间后方交会-空间前方交会程序 ⑴提交实习报告:程序框图、程序源代码、计算结果、体会 ⑵计算结果:像点坐标、地面坐标、单位权中误差、外方位元素及其精度 二、实验数据 f=150.000mm,x0=0,y0=0 三、实验思路 1.利用空间后方交会求左右像片的外方位元素 (1).获取m(于像片中选取两点,于地面摄影测量坐标系中选取同点,分别计算距离,距离比值即为m),x,y,f,X,Y,Z (2).确定未知数初始值Xs,Ys,Zs,q,w,k (3).计算旋转矩阵R (4).逐点计算像点坐标的近似值(x),(y)

(5).组成误差方程式 (6).组成法方程式 (7).解求外方位元素 (8).检查是否收敛,即将求得的外方位元素的改正数与规定限差比较,小于限差即终止;否则用新的近似值重复步骤(3)-(7) 2.利用求出的外方位元素进行空间前交,求出待定点地面坐标(1).用各自像片的角元素计算出左、右像片的方向余弦值,组成旋转矩阵R1,R2 (2).根据左、右像片的外方位元素,计算摄影基线分量Bx,By,Bz (3).计算像点的像空间辅助坐标(X1,Y1,Z1)和(X2,Y2,Z2) (4).计算点投影系数N1和N2 (5).计算未知点的地面摄影测量坐标 四、实验过程 ⑴程序框图 函数AandL %求间接平差时需要的系数

%%%已知 %a=像点坐标x,b=像点坐标y,f内方位元素主距 %φ=q,ψ=w,κ=k %像空间坐标系X,Y,Z %地面摄影测量坐标系Xs,Ys,Zs function [A1,L1,A2,L2]=AandL(a,b,f,q,w,k,X,Y,Z,Xs,Ys,Zs) %%%%%%%%%%%选择矩阵元素 a1=cos(q)*cos(k)-sin(q)*sin(w)*sin(k); a2=-cos(q)*sin(k)-sin(q)*sin(w)*cos(k); a3=-sin(q)*cos(w); b1=cos(w)*sin(k); b2=cos(w)*cos(k); b3=-sin(w); c1=sin(q)*cos(k)+cos(q)*sin(w)*sin(k); c2=-sin(q)*sin(k)+cos(q)*sin(w)*cos(k); c3=cos(q)*cos(w); %%%%%%%共线方程的分子分母 X_=a1*(X-Xs)+b1*(Y-Ys)+c1*(Z-Zs); Y_=a2*(X-Xs)+b2*(Y-Ys)+c2*(Z-Zs); Z_=a3*(X-Xs)+b3*(Y-Ys)+c3*(Z-Zs); %%%%%%%近似值 x=-f*X_/Z_; y=-f*Y_/Z_; %%%%%%%A组成L组成 a11=1/Z_*(a1*f+a3*x); a12=1/Z_*(b1*f+b3*x); a13=1/Z_*(c1*f+c3*x); a21=1/Z_*(a2*f+a3*y); a22=1/Z_*(b2*f+b3*y); a23=1/Z_*(c2*f+c3*y); a14=y*sin(w)-(x/f*(x*cos(k)-y*sin(k))+f*cos(k))*cos(w); a15=-f*sin(k)-x/f*(x*sin(k)+y*cos(k)); a16=y; a24=-x*sin(w)-(y/f*(x*cos(k)-y*sin(k))-f*sin(k))*cos(w); a25=-f*cos(k)-y/f*(x*sin(k)+y*cos(k)); a26=-x; lx=a-x; ly=b-y; %%%%%%%%%组成一个矩阵,并返回 A1=[a11,a12,a13,a14,a15,a16]; A2=[a21,a22,a23,a24,a25,a26]; L1=lx; L2=ly; 函数deg2dms

高级测量题库(判断题)

判断题:正确的选A,错误的选B 1) 采用方向观测法进行水平角观测,当方向数多于三个时,每半测 回均应为零。 2) 测角前方交会点的精度与测角误差大小有关,与未知点相对于已 知点的位置无关。 3) 测量工小赵在繁忙的工作之余经常找来一些专业书籍进行自学, 还就有关问题与有经验的老师傅一同讨论,以不断提高自己的技能水平。他的这种做法集中体现了测量工钻研技术这一职业守则。 4) 磁方位角等于真方位角加磁偏角。 5) 地面上一点到两目标的方向线间所夹的水平角,就是过该两方向 线所作两竖直面间的两面角。 6) 地形图上某点的横坐标值为∶y=20743km,其中20为纵行号。 7) 独立的闭合导线测量,平差计算求得的坐标增量闭合差f,其大 小与导线起始边方位角测量误差、导线边长测量误差和测角误差均有关。 8) 对于附合导线要用经纬仪测量连接角,以便推算各边的方位角。 对于独立的导线,为了推算各边的方位角,用罗盘仪测量起始边的方位角也是可以的。 9) 对于一组观测列L1、L2、L3……Ln,计算观测值的中误差m有两 个公式。欲知观测列内部的符合程度,应选用的公式是(△表示真误差):m=± 。 10) 高层建筑物施工测量中的竖向偏差,就是各层向上传递高程的 误差造成的。 11) 高斯投影中,偏离中央子午线愈远变形愈大。 12) 公路路线设计时,变坡点处要设计竖曲线,由于设计竖曲线,

路线拉坡设计所计算的设计高程要作改正。 13) 公路纵断面图绘制后,马上可以进行拉坡设计,之后绘制横断 面图,进行路基设计。 14) 技术创新、制度创新和知识创新等,其“新”的意义是指观念 意义上的新。 15) 经纬仪对中误差对水平角的影响与测站至目标的距离有关,距 离愈大,影响愈大,但与水平角的大小无关。 16) 竣工测量与一般地形测量方法差不多,而竣工测量内容比地形 测量少。 17) 两圆曲线连接时,当它们为同向大半径曲线,且不设超高时, 可以直接衔接,当它们组成反向曲线,两者不可直接衔接,其间所夹直线段至少要有10m。 18) 六度带的中央子午线和边缘子午线均是三度带的中央子午线。 19) 脉冲式光电测距仪与相位式光电测距仪的主要区别在于,前者 是通过直接测定光脉冲在测线上往返传播的时间来求得距离,而后者是通过测量调制光在测线上往返传播所产生的相位移来求出距离,前者精度要低于后者。 20) 民用建筑物的定位是把建筑物四周墙角位置测设到地面,从而 便可依据它们测设基槽开挖位置。 21) 某钢尺经检定,其实际长度比名义长度长0.01m,现用此钢尺丈 量10个尺段距离,如不考虑其他因素,丈量结果将必比实际距离长了0.1m。 22) 平整场地的零工作线,是指不填不挖的线,它是根据地形人为 选定的。 23) 坡度是高差与水平距之比,其比值大说明坡度缓。 24) 强化职业责任是爱岗敬业职业道德规范的具体要求。 25) 强化职业责任是团结协作职业道德规范的具体要求。

工程测量学作业

水利工程专业 《工程测量学》课程教学大纲与指导 (72学时) 参考教材:《土木工程测量》(黄河水利出版社,孔达) 一、课程的性质与任务 本课程是从事建筑工程专业人员应该熟悉和了解的基本施工测量的知识,是与实际生产联系紧密的基础理论和经验总结。本课程主要研究土木工程建设在规划、设计、施工和运营管理等阶段各项测量工作的理论、技术和方法。 二、课程基本要求 本课程学习测量学的基本知识;高程、角度、距离的测量;控制测量的方法;大比例尺地形图的测量方法;工程放样的基本方法。 通过本课程学习,掌握大比例尺地形图的测量方法,掌握工程放样的基本方法。 三、课程基本内容 第1章绪论 1、教学目的和教学要求 (1)熟悉掌握测量常用坐标系及高斯投影;掌握水准面与大地水准面的概念;掌握高程的定义;掌握测量工作的基本原则。 (2)初步了解测量学的概念及土木工程测量的任务;了解地球的形状和大小;了解地球曲率对测量工作的影响。 2、教学内容和重点知识解析 第一节测量学与土木工程测量 主要讲授内容 测量学的概念及学科组成;土木工程测量的任务。 重点知识解析: (1)测量学的概念 (2)土木工程测量的任务 第二节地面点位的确定 主要讲授内容 地球的形状和大小;水准面与大地水准面的概念;参考椭球面;点的球面坐标系;高程

的定义,我国的高程基准。 重点知识解析: (1)水准面与大地水准面 (2)高斯投影 (3)高程 第三节用水平面代替水准面的限度 主要讲授内容 对距离的影响;对高程的影响。 重点知识解析: (1)对距离的影响的结论。 (2)对高程的影响的结论。 第四节测量工作概述 主要讲授内容 测定与测设的过程;测量工作的基本原则 重点知识解析: (1)测量的基本工作 (2)测量工作的基本原则 3、复习题 3(P13), 8(P13),9(P13). 第2章水准仪及水准测量 1、教学目的和教学要求 (1)熟悉掌握水准测量原理;掌握水准测量的方法与成果整理;掌握水准仪检验与校正。 (2)初步了解水准测量的仪器工具;了解水准测量的误差及消减方法。 2、教学内容和重点知识解析 第一节水准测量原理 主要讲授内容 水准测量原理;高程的计算方法。 重点知识解析: (1)水准测量原理 (2)高程的计算方法 第二节水准测量的仪器工具

摄影测量程序汇总(后方交会+前方交会+单模型光束法平差)

程序运行环境为Visual Studio2010.运行前请先将坐标数据放在debug 下。 1.单像空间后方交会 C语言程序: #include #include #include double *readdata(); void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa); void transpose(double *m1,double *m2,int m,int n); void inverse(double *a,int n); void multi(double *mat1,double * mat2,double * result,int a,int b,int c); void inverse(double *a,int n)/*正定矩阵求逆*/ { int i,j,k; for(k=0;k

合肥工业大学 测绘工程 前方交会测量报告

控制测量实习(实验报告) 实习报告 前方交会测量实验 组别:测绘工程C4组 组员:胡强邹倩朱塞虎吴小凡彭东平余洋班级:测绘工程09级1班 实验时间:2012.5.10----2012.5.27

1实验目的和要求 1.复习测回法测量水平角与竖直角和前方交会的基本原理和观测方法,了解测回法观测水平角竖 直角与和前方交会的具体操作步骤,做出实地前方交会测量的具体实施方案。 2.通过测回法测量平面角与竖直角(至少两测回)对观测所得数据进行处理,掌握前方交会的内 业计算方法,经平差后得到各个观测点的平面位置和高程。 3.通过观测科技楼楼顶的竖针的三维坐标,并结合以往观测的数据进行比对,从而达到变形监测 的目的,并在测量过程中提高各个成员的外业作业水平和仪器操作方法。 2注意事项 1.在选点时,应该顾及到仪器架设和观测的方便性,全站仪引的已知点之间的通视性,车辆来往所造 成的影响,合理的选择已知点,要求交会角一般应大于30度并小于150度。 2.选的点尽量要远离科技楼,使观测的仰角不致太大,使操作员用全站仪观测起来不方便或观测不到目 标。 3.在测量过程中,数据记录人员要边记录边计算,发现问题后立即告知观测员,并一起找出原因,从新 观测。 3使用的仪器及工具 南方电子全站仪一台,脚架三个,棱镜两个,记录板一个,计算器一个,喷漆一瓶,锤子一个,钉子若干,自备铅笔和小刀。 4操作步骤 1.根据学校校内已知点,用全站仪引点到科技楼附近已选好的点上,测量出这些点的XYZ坐标(如 图,图上的A、B、C三点)并记录在记录板上。 2.依次在A、B、C点上架设仪器,并测量其他已知点的坐标检核一下,检核与它的原始坐标相差不 大时,用测回法测量水平角α1,α2,β1,β2,测量三测回,并记录在记录表格中,记录时求 出结果,检查是否超限。 3.在每个测站测量中,盘左盘右观测科技楼塔顶竖针的仰角,观测两测回并记录在记录表格中,求 出平均仰角。 4.当观测结束后,回到家中,整理数据资料,求出科技口塔顶竖针的三维坐标,并和别的组对比一 下结果。

前方后方空间交会实验报告

中南大学 本科生课程设计(实践)任务书、设计报告 (摄影测量与遥感概论) 题目空间后方-前方交会 学生姓名 指导教师邹峥嵘 学院地球科学与信息物理学院 专业班级测绘0902班 学生学号

一、实验目的 通过对数字影像空间后交前交的程序设计实验,要求我们进一步理解和掌握影像外方位元素的有关理论、原理和方法。利用计算机程序设计语言编写摄影测量空间交会软件进行快速确定影像的外方位元素及其精度,然后通过求得的外方位元素求解未知点的地面摄影测量坐标,达到通过摄影测量量测地面地理数据的目的。 二、实验要求 用C、VB或者Matlab编写空间后方交会-前方交会计算机程序。 提交实验报告:程序框图,程序源代码、计算结果及体会。 计算结果:地面点坐标、外方位元素及精度。 完成时间:2011年11月17日。 三、实验数据

f=150.000mm,x0=0,y0=0 四、实验思路 利用后方交会得出两张像片各自的外方位元素 1)获取已知数据:从摄影资料中插曲像片比例尺、平均航高、内 方位元素以及控制点的地面摄影测量坐标及对应的像点坐标。 2)确定未知数的初始值:在竖直摄影的情况下,胶原素的初始值 为0,线元素其中Zs=m*f+,Xs=,Ys=。 3)计算旋转矩阵R。 4)逐点计算像点坐标的近似值:利用共线方程。 5)组成误差方程并法化。 6)解求外方位元素。 7)检查计算是否收敛。 利用解求出的外方位元素进行前方交会 1)用各自像片的角元素计算出左右像片的旋转矩阵R1和R2。 2)根据左右像片的外方位元素计算摄影基线分量Bx,By,Bz。 3)逐点计算像点的空间辅助坐标。

前方交会和侧方交会

前方交会和侧方交会 由正弦定理得出:D AP/D AB=sinβ/sinγ=sinβ/sin(α+β) 则:(D AP/D AB)sinα=(sinβsinα)/sin(α+β)=1/(ctgα+ctgβ) 前方交会和侧方交会中P点坐标计算公式: X P=(X A ctgβ+X B ctgα+(Y B-Y A)÷(ctgα+ctgβ) Y P=(Y A ctgβ+Y B ctgα+(X A-X B)÷(ctgα+ctgβ) 上式常称为余切公式。注意使用上述公式时,A、B、P的编号应是反时针方向的。P点坐标算出后,可将A、P作为已知点,用计算B点坐标来校核: 校核计算公式: X B=(X p ctgα+X A ctgγ+(Y A-Y P)÷(ctgα+ctgγ) Y B=(Y p ctgα+Y A ctgγ+(X P-X A)÷(ctgα+ctgγ) 本公式只能检查计算本身是否有错,不能发现角度侧错以及已知数据是否用错、抄错等错误,也不能提高计算精度。 运用此公式的技术要求: 为保证计算结果和提高交会精度,规定如下: 1、前方交会和侧方交会应有三个大地点,困难时应有两个大地点。 2、交会角不应小于30°,并不应大于150°,困难时亦不应小于20°,并应不大于160°。 3、水平角应观测两个测回,根据测点数量可用全测回法或方向观测法。 4、三个大地点的前方交会,可通过两个三角形(ΔABP,ΔBCP)求出P点的两组坐标值P(X P1、 Y P1),(X P2、Y P2),两组算得的点位较差不大于两倍的比例尺精度,即: ΔD=√δx2+δy2≤2×0.1M(mm) 式中δx,δy—δx= X P1- X P2,δy= Y P1 -Y P2 M—比例尺分母。

前方交会测量精选

交会测量 当测区内已有控制点的密度不能满足工程施工或测图要求,而且需要加密的控制点数量又不多时,可以采用交会法加密控制点,称为交会定点。交会定点的方法有角度前方交会、侧方交会、单三角形、后方交会和距离交会。本节仅介绍角度前方交会和距离交会的计算方法。 一、角度前方交会 如图6-14所示,A、B为坐标已知的控制点,P为待定点。在A、B点上安置经纬仪,观测水平角α、β,根据A、B两点的已知坐标和α、β角,通过计算可得出P点的坐标,这就是角度前方交会。条件:α>30°,β<150°并且两边尽量为等边。.

1.角度前方交会的计算方法 (1)计算已知边AB 的边长和方位角 根据A 、B 两点坐标(x A ,y A )、(x B , y B ),按坐标反算公式计算两点间边长D AB 和坐标方位角αAB 。 (2)计算待定边AP 、BP 的边长 按三角形正弦定律,得 图6-14 角度前方交会

?? ???? ?+=+==)sin(sin )sin(sin sin sin βααβαβγβAB BP AB AB AP D D D D D (6-23) (3)计算待定边AP 、BP 的坐标方位角。 ?? ? +?±=+=-=βαβααααα180AB BA BP AB AP (6-24) (4)计算待定点P 的坐标。 ? ? ? +=?+=+=?+=AP AP A AP A P AP AP A AP A P D y y y y D x x x x ααsin cos (6-25) ?? ? +=?+=+=?+=BP BP B BP B P BP BP B BP B P D y y y y D x x x x ααsin cos (6-26) 适用于计算器计算的公式:

相关文档