文档库 最新最全的文档下载
当前位置:文档库 › 实验1_误差计算与什么是数值计算方法及应用.doc

实验1_误差计算与什么是数值计算方法及应用.doc

实验1_误差计算与什么是数值计算方法及应用.doc
实验1_误差计算与什么是数值计算方法及应用.doc

什么是数值计算方法及应用与误差计算

1.什么是数值计算方法及应用

计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。数值计算方法,是一种研究并解决数学问题的数值近似解方法,是在计算机上使用的解数学问题的方法,简称计算方法。在科学研究和工程技术中都要用到各种计算方法。例如,在航天航空、地质勘探、汽车制造、桥梁设计、天气预报和汉字字样设计中都有计算方法的踪影.

Numerical analysis involves the study of methods of computing numerical data. In many problems this implies producing a sequence of approximations by repeating the procedure again and again. People who employ numerical methods for solving problems have to worry about the following issues: the rate of convergence (how long does it take for the method to find the answer), the accuracy (or even validity) of the answer, and the completeness of the response (do other solutions, in addition to the one found, exist).Numerical methods provide approximations to the problems in question. No matter how accurate they are,they do not, in most cases, provide the exact answer. In some instances working out the exact answer by a different approach may not be possible or may be too time consuming and it is in these cases where numerical methods are most often used.

The ever-increasing advances in computer technology has enabled many in science and engineering to apply numerical methods to simulate physical phenomena. Numerical methods are often divided into elementary ones such as finding the root of an equation, integrating a function or solving a linear system of equations to intensive ones like the finite element method. Intensive methods are often needed for the solution of practical problems and they often require the systematic application of a range of elementary methods, often thousands or millions of times over.

In the development of numerical methods, simplifications need to be made to progress towards a solution: for example general functions may need to be approximated by polynomials and computers cannot generally represent numbers exactly anyway. As a result, numerical methods do not usually give the exact answer to a given problem, or they can only tend towards a solution getting closer and closer with each iteration. Numerical methods are generally only useful when they are implemented on computer using a computer programming language.

In the study of numerical methods, we can make a general distinction between a set of methods such as solving linear systems of equations , solving matrix eigenvalue problems , interpolation , numerical integration and finding the roots or zeros of equations , which can be somewhat

considered as the building blocks for larger that arise in engineering/applied mathematics/physics. For example the problem of solving ordinary differential equations , optimisation and solving integral equations . But from the point of view of aplied mathematics or engineering, erhaps the most significant problems in numerical methods is the solution of partial differential equations by Finite Difference Methods , Finite Element Methods or Boundary Element Methods .

数值分析是涉及计算数字数据的方法的研究。在许多问题中,这意味着一遍又一遍重复程序以产生近似值得序列。应用数值方法解决问题的人关心以下问题:收敛率(算法需要多久来找到答案),答案的准确性(或者有效性),响应的完整性(做其他的解决方案,另外一个发现,存在的话)。数值方法提供了问题的近似答案。无论它是如何准确,它在大多数情况下也不会提供真切的答案。在某些情况下用不同的方式寻求确切的答案是不太可能的或也可能是太耗费时间,这就是数值计算方法最经常使用情况。

计算机技术的不断进步使许多科学和工程应用数值方法来模拟物理现象。数值方法通常分为初级的,如找到一个方程的根,集成功能型向集约型的,如有限元法求解线性系统的方程。密集的方法往往是解决实际问题的需要,他们往往需要系统应用一系列的基本方法,通常是数千或数百万次。

在发展的数值方法中,简化是取得进展的解决方案所必需的,例如:大多函数可能需要近似多项式和计算机不能准确地表示数字。因此,数值方法通常不会给出给定问题确切的答案,或者它们在每次迭代中只能越来越密切地趋近解决方案。数值方法一般仅在当它们被电脑上的一种计算机编程语言实现时起作用。

在研究数值方法中,我们可以得到一些一整套方法的大体特性,如求解线性方程组,求解矩阵特征值问题,插值,数值积分,发现根部或零方程组的,这些可以在一定程度上被视为解决工程/应用数学/物理问题的桥梁。例如求解常微分方程,优化和解决的问题,积分方程。但是,。用于数学或工程的角度来看,数值方法的最重要的问题是用有限差分法,有限元方法,边界元法解决偏微分方程。

2. 误差计算

1.实验描述

1.根据习题12和习题13构造算法和MATLAB 程序,以便精确计算所有情况下的二次方程的根,

包括b ≈的情况。

2.参照1.25对3个差分方程计算出前十个数值的近似值,构造列表和图形。

误差算法分别为n n x r -,n n x p -,n n x q -.

2.实验内容

1.设0a ≠,2-4ac>0b ,且有方程2++=0ax bx c 。通过如下二次根公式可解出方程的根:

x1=, 2=

22b b x a a -- (1) 这些根还可通过下列等价公式解出:

-2-21=

, 2=

x x (2)

2.对下列三个差分方程计算出前10个数值近似值。在每种情况下引入一个小的初始误差。如

果没有初始误差,则每个差分方程将生成序列=1

12n n ∞

??

????。用MATLAB 构造生成图表。

(a)0-11

=0.

994;=2

n n r r r ,其中n=1,2,… (b) 01-1-231

=1,=0.497,=-22

n n n p p p p p ,其中n=2,3, … (c)01-1-2

5

=1,=0.

497,=-2n n n q q q q q , 其中n=2,3, … 3.实验结果及分析

1.二次方程的的求根

根据习题12所述,若b>0,两个根为1x

=

,

2x

=

;若b<0,两个根为

1x

2x

=除此还需考虑a 、c 的取值情况。 算法: (1) 输入a,b,c.

(2) 判断a=0且b=0是否成立。若不成立,输出‘方程有无穷个根’;若成立执行(3)。

(3)判断a=0是否成立。若成立,输出结果;若不成立,执行(4)。

(4)判断b=0是否成立。若成立,输出结果;若不成立,输出结果。

流程图如下:

2.误差传播

按附件的代码得到下面的图表。

表 1 序列={1/3n

n x =}以及近似值{n r },{n p }和{n q }

表 2 误差序列{n n x r -},{n n x p -}和{n n x q -}

{n r }是误差稳定的,且按指数级递减,相差不大较为稳定,说明该序列和等比序列较为

接近。{n p }的误差不大较为稳定,但误差呈递增状态,所以其逼近效果不如{n r }。{n q }的误差

是不稳定的,变化幅度较大,即n 越大,误差越大,说明当n →∞时,误差可能比数值更大。

以下就是差分方程的的图形

01234

5

678910

x 10

-3

n

x n -r n

图 1 稳定递减的误差序列{n n x r -}

-3

n

x n -p n

图 2 稳定的误差序列{n n x p }

n

x n -p n

图 3 不稳定的误差序列{n n x q }

4.结论

1.运行程序后,当输入a,b,c分别为0,0和0时,输出

there are infinite roots

当输入a,b,c分别为1,-1000000.000001和1时,输出

x1= 1000000.000000000000,x2= 0.000001000000。

对于特殊情况和高精度运算,算法能得出精确的值。由此我们可以得出我们所采用的算法可行。

2.通过对于差分方程的求解可知,不同的差分方程的初始误差传播会随着其表达式的不同有很大差异性。因此,对于不同差分方程的选取问题和计算问题应慎重选择,选择稳定算法。

附件(代码):

1.function [x1,x2]=input(a,b,c)

%input -a is the coefficient of x^2

% -b is the coefficient of x

% -c is the Constant coefficient %output-x1 is one root of the equation % -x2 is one root of the equation if a==0&b==0

disp('there are infinite roots') return

end

if a==0

x1=x2=-c/b

elseif b>0

x1=(-2*c)/(b+sqrt(b*b-4*a*c))

x2=(-b-sqrt(b*b-4*a*c))/(2*a)

else

x1=(-b+sqrt(b*b-4*a*c))/(2*a)

x2=(-2*c)/(b-sqrt(b*b-4*a*c))

end

2.n=0:10;

xn=1./(2.^n)

%--n is the input-sequence

%--xn is the value of the sequence

(a)

r0=0.994;r(1)=r0/2

for n=2:10

r(n)=r(n-1)/2;

%--r(n) is the general term of xn

end

[r0,r]

(b)

p0=1;p(1)=0.497;p(2)=3*p(1)/2-p0/2; for n=3:10

p(n)=3*p(n-1)/2-p(n-2)/2;

%--p(n) is the general term of pn end

[p0,p]

%-- show all the items of pn

(c)

q0=1;q(1)=0.497;q(2)=5*q(1)/2-q0; for n=3:10

q(n)=3*q(n-1)/2-q(n-2)/2;

%--r(n) is the general term of pn end

[q0,q]

%-- show all the items of qn

(3.1)

r0=0.994;r(1)=r0/2

for n=2:10

r(n)=r(n-1)/2;

%--r(n) is the general term of rn end

rn=[r0,r]

n=0:10;

xn=1./(2.^n);

y=xn-rn

%-- show all the items of xn-rn plot(n,y,'.')

xlabel('n');

ylabel('xn-rn');

%-- plot the figure of xn-rn

(3.2)

p0=1;p(1)=0.497;p(2)=3*p(1)/2-p0/2;

for n=3:10

p(n)=3*p(n-1)/2-p(n-2)/2; %--p(n) is the general term of pn end

zn=[p0,p];

n=0:10;

xn=1./(2.^n);

z=xn-zn

%-- show all the items of xn-zn

plot(n,z,'.')

xlabel('n');

ylabel('xn-pn');

%-- plot the figure of xn-zn

(3.3)

q0=1;q(1)=0.497;q(2)=5*p(1)/2-q0;

for n=3:10

q(n)=5*q(n-1)/2-q(n-2); %--q(n) is the general term of qn end

qn=[q0,q];

n=0:10;

xn=1./(2.^n);

w=xn-qn

%-- show all the items of xn-wn

plot(n,w,'.')

xlabel('n');

ylabel('xn-pn');

%-- plot the figure of xn-pn

数值计算实验课题目

数值实验课试题 本次数值实验课结课作业,请按题目要求内容写一篇文章。按题目要求 人数自由组合,每组所选题目不得相同(有特别注明的题目除外)。试题如下: 1)解线性方程组的Gauss 消去法和列主元Gauss 消去法(2人)/*张思珍,巩艳华*/ 用C 语言将不选主元和列主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下列84阶的方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 1681684 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 2)解线性方程组的平方根法(4人)/*朱春成、黄锐奇、张重威、章杰*/ 用C 语言将平方根法和改进的平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组b Ax =,其中 (1)b 随机的选取,系数矩阵为100阶矩阵 ?????? ???? ? ? ?101 1101 1101 1101 1101110 ; (2)系数矩阵为40阶的Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 1 1-+= j i a ij ,向量b 的第i 个分量为∑=-+ = n j i j i b 1 1 1. 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编

3.《数值分析简明教程》,王能超编 3)三对角线方程组的追赶法(3人)/*黄佳礼、唐伟、韦锡倍*/ 用C 语言将三对角线方程组的追赶法法编写成通用的子程序,然后用你编写的程序求解如下84阶三对角线方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 16816 84 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值分析简明教程》,王能超编 4)线性方程组的Jacobi 迭代法(3人)/*周桂宇、杨飞、李文军*/ 用C 语言将Jacobi 迭代法编写成独立的子程序,并用此求解下列方程组, 精确到小数点后5位 ???? ? ??=????? ??????? ? ?-149012 2111221 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 5)线性方程组的Gauss-Seidel 迭代法(3人)/*张玉超、范守平、周红春*/ 用C 语言将Gauss-Seidel 迭代法编写成独立的子程序,并用此求解下列方程组,精确到小数点后5位 ???? ? ??=????? ??????? ? ?--39721 1111112 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 6)解线性方程组的最速下降法法(2人)/*赵育辉、阿热孜古丽*/ 用C 语言将最速下降法编写成通用的子程序,然后用你编写的程序求解对称

施工测量方法及精度评定

施工测量方法及精度评定 1、设站方法 根据现场情况,主要选择以下两种方式设站。 1.1 全站仪坐标法设站 (1)在施工控制点上架设全站仪并对中整平,初始化后检查仪器的设置:气温、气压、棱镜常、在输入(或调出)测站点的三维坐标,量取并输入仪器高,输入(或调出)后视点坐标,照准后视点进行后视。 (2)如果后视点上有棱镜,输入棱镜高,可以测量后视点的坐标和高程并与已知数据检核。 (3)瞄准另一控制点,检查方位角或坐标;在另一后视点上竖棱镜或尺子检查仪器的视线高。 (4)利用仪器自身的计算功能进行计算时,记录员也应该进行相应的计算,以检查输入数据的正确性。 (5)在各待测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。 1.2 全站仪边角交会法设站 (1)在未知点P上架设、整平全站仪;在已知的基本控制点A上安置棱镜,量测棱镜高;在已知点B、C上安置照准点标志。 (2)量测PA间平距D、高差DH和PA至PB方向间的水平角α、β。 (3)用D、α及A、B点的坐标计算P点的一组坐标;用D、β及A、C点的坐标计算P点的另一组坐标;两组坐标的差值不超过规定限差,取中数即为P点的最后坐标。

(4)根据A点的高程HA和高差DH计算仪器的视线高:H视=HA-DH。 (5)如果需要可以将P点投影到地面上,并作好记录。量取仪器高,求出地面P 点的高程。 2、施工测量方法 2.1 放样方法 (1)用以上方法把测站设置好了后,就可以用测站极坐标法开始放样。 (2)使用全站仪测量测点的三维坐标,用计算器计算测点距设计棱镜的距离,再指挥司镜员移动棱镜,直至到位。 (3)若使用免棱镜全站仪时,可由观测员移动激光斑点再进行测量,直至到位。 (4)在直线较长的边坡、洞室、混凝土工程放样时,建立以边坡平行线、洞室轴线、混凝土边线、为坐标轴的独立坐标系,以便加快测量放样的速度和减少现场测量计算的错误。 2.2 验收断面测量方法 (1)验收断面测量采用免棱镜全站仪。 (2)边坡断面测量时,采用相对坐标设站,任意架设仪器,直接测量符合断面要求的点位,保证断面桩号差小于10cm,数据直接保存在仪器内。 (3)洞室断面测量时也可以用边坡断面测量方法,而现场通常是先把每个断面的中桩放出来,然后将仪器架设于中桩上,将方向置于断面方向上,用独立坐标进行断面测量,数据直接保存在仪器内。 (4)内业资料处理前,把仪器内存储的数据传到计算机内,用专用软件进行数据格式转换,网上也可下载。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

测量学_计算题库及参考答案

计算题库及参考答案 1、设A 点高程为15.023m ,欲测设设计高程为16.000m 的B 点,水准仪安置在A 、B 两点之间,读得A 尺读数a=2.340m ,B 尺读数b 为多少时,才能使尺底高程为B 点高程。 【解】水准仪的仪器高为=i H +=17.363m ,则B 尺的后视读数应为 b==1.363m ,此时,B 尺零点的高程为16m 。 2、在1∶2000地形图上,量得一段距离d =23.2cm ,其测量中误差=d m ±0.1cm ,求该段距离的实地长度 D 及中误差D m 。 【解】==dM D ×2000=464m ,==d D Mm m 2000×=200cm=2m 。 3、已知图中AB 的坐标方位角,观测了图中四个水平角,试计算边长B →1,1→2,2→3, 3→4的坐标方位角。 【解】=1B α197°15′27″+90°29′25″-180°=107°44′52″ =12α107°44′52″+106°16′32″-180°=34°01′24″ =23α34°01′24″+270°52′48″-180°=124°54′12″ =34α124°54′12″+299°35′46″ -180°=244°29′58″ 4、在同一观测条件下,对某水平角观测了五测回,观测值分别为:39°40′30″,39°40′48″,39°40′54″,39°40′42″,39°40′36″,试计算: ① 该角的算术平均值——39°40′42″; ② 一测回水平角观测中误差——±″; ③ 五测回算术平均值的中误差——±″。 6、已知=AB α89°12′01″,=B x 3065.347m ,=B y 2135.265m ,坐标推算路线为B →1→2,测得坐标推算路线的右角分别为=B β32°30′12″,=1β261°06′16″,水平距离分别为=1B D 123.704m , =12D 98.506m ,试计算1,2点的平面坐标。 【解】 1) 推算坐标方位角 =1B α89°12′01″-32°30′12″+180°=236°41′49″ =12α236°41′49″-261°06′16″+180°=155°35′33″ 2) 计算坐标增量 =?1B x ×cos236°41′49″=-67.922m , =?1B y ×sin236°41′49″=-103.389m 。 =?12x ×cos155°35′33″=-89.702m , =?12y ×sin155°35′33″=40.705m 。 3) 计算1,2点的平面坐标 =1x 2997.425m =1y 2031.876m =2x 2907.723m =2y 2072.581m 、试完成下列测回法水平角观测手簿的计算。 测站 目标 竖盘位置 水平度盘读数 (°′″) 半测回角值 (°′″) 一测回平均角值 (°′″) 一测回 B A 左 0 06 24 111 39 54 111 39 51 C 111 46 18 A 右 180 06 48 111 39 48 C 291 46 36 8、完成下列竖直角观测手簿的计算,不需要写公式,全部计算均在表格中完成。 测站 目标 竖盘 位置 竖盘读 (° ′ ″) 半测回竖直角 (° ′ ″) 指标差 (″) 一测回竖直角 (° ′ ″ ) A B 左 81 18 42 8 41 18 6 8 41 24 图 推算支导线的坐标方位角

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

误差基本知识及中误差计算公式

测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 §2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值),n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。§3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m 1、m 2 、…m n ,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error) m ,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值计算方法实验5

实验报告 学院(系)名称: 主程序部分列选主元部分

实验结果: 一.列主元消去法 输入各个数据,最终使用列选主元法,得到结果为:x1=x2=x3=1二.高斯-赛德尔迭代法 输入各个数据,输出每一步迭代数据,最终结果为:x1=0.285716,附录(源程序及运行结果) 一.列主元高斯消去法 #include #include void print(double a[3][3],int n,double b[3]){ printf("输出矩阵:\n"); for(int i=0;ifabs(d)){ d=a[i][k]; l=i; } i++; } printf("选出主元:%lf\n",d); if(d==0) printf("矩阵奇异!\n"); else if(l!=k){ for(int j=k;j

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

加权平均值及其中误差

6-7 加权平均值及其中误差 一、不等精度观测和观测值的权 在测量实践中,除了等精度观测之外,还有不等精度观测。此时,求多次观测的最或然值就不能简单地用算术平均值,而是需要用“加权平均值”的方法求解。 某一观测值或观测值的函数的误差越小(精度越高),其权越大;反之,其误差越大(精度越小),其权越小。一般用“”表示中误差,用“P”表示权,并定义:“权与中误差的平方成反比”,以公式表示为 (6-26) 式中,C为任意常数。等于1的权称为“单位权“,权等于1的中误差称为“单位权中误差”,一般用表示。因此,权的另一种表达式为 (6-27) 中误差的另一种表达式为 (6-28) 在测量工作中,为了使权的概念简单明了,一般取一次观测、一个测回或单位长度(1m 或1km )等的测量误差作为单位权中误差。 二、加权平均值及其中误差 对某一未知量进行一组不等精度观测:,其中误差为,则观测值的权为。按照误差理论,此时应按下式取其加权平均值,作为该量的最或然值: 上式可以写成线性函数的形式: 根据线性函数的误差传播公式,得到 上式可化为

因此,加权平均值的中误差为 (6-29) 加权平均值的权为所有观测值的权之和: (6-30) 三、单位权中误差的计算 在处理不等精度的测量成果时,需要根据单位权中误差来计算观测值的权和加权平均值的中误差。单位权中误差一般取某一类观测值的基本精度,例如,水平角观测的一测回的中误差等。根据一组对同一量的不等精度观测,可以估算本类观测值的单位权中误差。 如对同一量的n个不等精度观测,得到 …. 取以上各式的总和,并除以n,得到 用真误差代替中误差,得到在观测量的真值已知时用真误差求单位权中误差的公式: (6-31) 在观测值的真值未知的情况下,用观测值的加权平均值代替真值;用观测值的改正值代替真误差,得到按不等精度观测值的改正值计算单位权中误差的公式; (6-32)

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

房产测量的标准规范以及计算方法

房产测量的标准规范以及计算方法 1 范围 本标准规定了城镇房产测量内容与基本要求,适用于城市、建制镇的建成区和建成取以外的工矿企事业单位及其毗邻居民点的房产测量。其他地区的房地产测量亦可参照执行。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2260--1995 中华人民共和国行政区划代码 GB 6962--1986 1:500、1:1000、1:2000比例尺地形图航空摄影规范 GB/T 17986.2--2000 房产测量规范第二单元:房产图图式 CH 1003--1995 测绘产品质量评定标准 3 总则 3.1 房产测量的目的和内容 3.1.1 房产测量的目的。房产测量主要是采集和表述房屋和房屋用地的有关信息,为房产产权、产籍管理、房地产开发利用、交易、征收税费,以及城镇规划建设提供数据的资料。 3.1.2 房产测量的基本内容。房产测量的基本内容包括:房产平面控制测量,房产调查,房产要素测量,房产图绘制,房产面积测算,变更测量,成果资料的检查与验收等。 3.1.3 房产测量的成果。房产测量成果包括:房产簿册,房产数据和房产图集。 3.2 房产测量的基本精度要求 3.2.1 房产测量的精度指标与限差。本标准以中误差作为评定精度的标准,以两倍中误差作为限差。 3.2.2 房产平面控制测量的基本精度要求。末级相邻基本控制点的相对点位中误差不超过± 0.025m。 3.2.3 房产分幅平面图与房产要素测量的精度 3.2.3.1 模拟方法测绘的房产分幅平面图上的地物点,相邻于邻近控制点的点位中误差不超过图上± 0.5mm。 3.2.3.2 利用已有的地籍图、地形图编绘房产分幅图时,地物点相对于邻近控制点的点位中误差不超过图上 ± 0.6mm。 3.2.3.3 对全野外采集数据或野外解析测量等方法所测的房地产要素点和地物点,相对于邻近控制点的点位中误差不超过± 0.05m。 3.2.3.4 采用已有坐标或已有图件,展绘成房产分幅图时,展绘中误差不超过图上± 0.1mm。 3.2.4 房产界址点的精度要求。房产界址点(以下简称界址点)的精度分三级,各界址点相对于邻近控制点的点位误差和间距超过50m的相邻界址点的间距误差不超过表1的规定;间距未超过50m的界址点间的间距误差限差不应超过式(1)计算结果。 表 1 界址点等级界址点相对于邻近控制点的点位误差相邻界址点的间距误差 限差中误差 一 ±0.04 ±0.02 二 ±0.10 ±0.05 三 ±0.20 ±0.10 ΔD=(±m j+0.02m jD) (1) 式中:m j——相应等级界址点的点位中误差,m; D-----相邻界址点间的距离,m; ΔD----界址点坐标计算的边长与实量边长较差的限差,m。 3.2.5 房脚点的精度要求。需要测定房脚点的坐标时,房脚点坐标的精度登记和限差执行与界址点相同的标准;不要求测定房脚点坐标时则将房屋按2.3的精度要求表示于房产图上。 3.2.6 房产面积的精度要求。房产面积的精度分为三级,各级面积的限差和中误差不超过表2计算结果。

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

数值分析实验报告

实验五 解线性方程组的直接方法 实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。 实验要求: (1)取矩阵?? ? ?? ?? ?????????=????????????????=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。取n=10计算矩阵的 条件数。让程序自动选取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。 思考题一:(Vadermonde 矩阵)设 ?? ??????????????????????=? ? ? ?????????????=∑∑∑∑====n i i n n i i n i i n i i n n n n n n n x x x x b x x x x x x x x x x x x A 0020 10022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=, (1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化? (2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b (3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。 (4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗? 相关MATLAB 函数提示: zeros(m,n) 生成m 行,n 列的零矩阵 ones(m,n) 生成m 行,n 列的元素全为1的矩阵 eye(n) 生成n 阶单位矩阵 rand(m,n) 生成m 行,n 列(0,1)上均匀分布的随机矩阵 diag(x) 返回由向量x 的元素构成的对角矩阵 tril(A) 提取矩阵A 的下三角部分生成下三角矩阵

相关文档
相关文档 最新文档