文档库 最新最全的文档下载
当前位置:文档库 › Trisiloxane surfactants surface interfacial tension dynamics and spreading on hydrophobic surfaces

Trisiloxane surfactants surface interfacial tension dynamics and spreading on hydrophobic surfaces

Trisiloxane surfactants surface interfacial tension dynamics and spreading on hydrophobic surfaces
Trisiloxane surfactants surface interfacial tension dynamics and spreading on hydrophobic surfaces

Articles

Trisiloxane Surfactants:Surface/Interfacial Tension

Dynamics and Spreading on Hydrophobic Surfaces

T.Svitova,*H.Hoffmann,?and Randal M.Hill?

Institute of Physical Chemistry,Russian Academy of Sciences,Leninsky Prospect31,

117915Moscow,Russian Federation,Bayreuth,Universitatstrasse30,Postfach101251, D-8580Bayreuth,Germany,and Central Research and Development,Dow Corning

Corporation,2200West Salzberg Road,Midland,Michigan48686-0994

Received June26,1995.In Final Form:October20,1995X

Dynamics of surface(at the solution/air interface)and interfacial(at the solution/n-dodecane interface) tension of nonionic siloxane surfactants,some of which are known as“superwetter”,and ethoxylated isododecyl alcohols was studied by the drop volume method.The influence of surfactant concentration and hydrophilicity(length of the ethoxy chain)on surface/interfacial tension dynamics and spreading of aqueous solutions on the liquid hydrocarbon surface was investigated.Surface and interfacial tension fall rates were estimated on the basis of the Hua and Rosen approach(Hua,X.Y.;Rosen,M.J.J.Colloid Interface Sci.1988,124(2),652).It was found that concentrated solutions of surfactants with intermediate ethoxy chain length show unusually high surface/interfacial tension fall rates.These solutions spread very fast on a liquid hydrocarbon surface:a drop of aqueous solution with a volume of about3μL forms

a thin spreading film with an area of several square centimeters in5-10s.The rate of spreading and

the resulting film thickness were found to depend on the surfactant concentration and the hydrophilicity and hydrocarbon subphase chain length.A good correlation between surface/interfacial tension fall rate, rate of spreading,and the dynamic spreading coefficient was found.Diffusion coefficient values were calculated according to the method of Fainerman et al.(Fainerman,V.;Makievski,A.;Miller,R.Colloids Surf.A1994,87,61),and it was found that for the siloxane surfactant with eight ethoxy groups the diffusion coefficient values are1order of magnitude higher than that of the hydrocarbon analogue with 5ethoxy-groups.An increase of the ethoxy chain length for siloxane as well as for hydrocarbon surfactants causes a decrease of the diffusion coefficient and the surface/interfacial tension fall rate and leads to a suppression of surfactant spreading ability.

Introduction

In many cases,for instance,during wetting and spreading,emulsification,foaming,and dispersion forma-tion,the processes in the presence of the surfactants take place under nonequilibrium conditions,and in these cases the dynamic properties of the surfactant adsorption layer are of great importance.One of the methods to investigate amphiphile adsorption kinetics at freshly formed inter-faces is to measure the dynamic interfacial tension. Different dynamic tension techniques are available now, and the theory has reached a level where a quantitative description is possible.1-8A new method for measuring dynamic tensions by a growing drop technique is described in refs4and5.One can find the reviews of modern dynamic tension methods in refs6and7.

It is worth noting that most of the dynamic tension work mentioned here was performed for dilute surfactant solutions,and it has been shown that diffusion and two-dimensional phase transitions due to surfactant molecule reorientation play an important role in such cases.1-3,8-11 It was also found that usually at surfactant concentrations above the cmc,surface/interfacial tension only slightly depends on surface age.12In ref13a theoretical analysis of adsorption kinetics from micellar solutions was per-formed and it was shown that the presence of aggregates can influence the rate of adsorption.The authors of ref 14have analyzed the experimental data of Triton X100 surface tension dynamics at concentrations above the cmc, and they have proposed a way to evaluate the rate of demicellization on the basis of these data.

For the processes of wetting and spreading of surfactant solutions,occurring under nonequilibrium conditions,as was mentioned above,as far as these processes obey the Young equation and Neuman inequality,surface/inter-facial tension dynamics must be one of the most important factors,determining spreading dynamics.In work ref15 it was found that retention of nonionic surfactant solutions

*Corresponding author.E-mail:vinograd@lmm.phyche.msk.su.

?Universitat Bayreuth.

?Dow Corning Corporation.

X Abstract published in Advance ACS Abstracts,February1, 1996.

(1)Miller,R.;Kretzchmar,G.Adv.Coll.Interface Sci.1991,37,97.

(2)Krotov,V.V.;Rusanov,A.I.Kolloidn.Zh.1977,39,58.

(3)van den Tempel,M.;Lucassen-Reynder,E.Adv.Colloid Interface

Sci.1983,18,281.

(4)MacLeod,C.A.;Radke,C.J.J.Colloid Interface Sci.1993,160, 435.

(5)MacLeod,C.A.;Radke,C.J.J.Colloid Interface Sci.1994,166, 73.

(6)Miller,R.;Joos P.;Fainerman,V.P.Adv.Colloid Interface Sci. 1994,49,249.

(7)Chang,C.-H.;Franses,E.I.Colloids Surf.,A:Physicochem.Eng.

(9)Miller,R.;Schano,K.-H.;Hofmann,A.Colloids Surf.,A:Physi-cochem.Eng.Aspects1994,92,189.

(10)Svitova,T.;Smirnova,Yu.;Yakubov,G.Colloids Surf.,A: Physicochem.Eng.Aspects,in press.

(11)Svitova,T.;Smirnova,Yu.;Churaev,N.;Rusanov,A.Kolloidn. Zh.1994,56(3),441.

(12)Davies,J.T.;Rideal,E.K.In Interfacial Phenomena;Academic Press:New York,1963.

1712Langmuir1996,12,1712-1721

was related to dynamic,not to equilibrium,surface tension

values and depended more on solution concentration than on the chemical structure of the surfactants.A number of siloxane surfactants exhibit “superwetting”or “superspreading”;16-19according to ref 18a surfactant is a superspreader if the addition of a small amount,say less than 0.1%,to a small droplet of water enables it,when placed on a hydrophobic surface (they mean a solid surface),to spread into a thin,wetting film within tens of seconds.The interesting work was done to study the spreading behavior of the pure siloxane surfactants on high-and low-energy surfaces.20,21These investigations showed the importance of the aggregate organization and atmospheric humidity for spreading of amphiphilic mol-ecules on a low-energy surface.Some authors attributed the special properties of the trisiloxane surfactants to the unique “T”,hammer-like or “umbrella”shape of these surfactants.16,17Recently the results of systematic studies of siloxane surfactant aqueous solutions spreading on Parafilm (a paraffin wax)surface were published.18In ref 18it has been shown that for linear as well as “hammer”-shaped siloxane surfactants,spreading ability is related to dispersed particle size and to the transport rate of surfactant from dispersed particles to the interfaces at the spreading front.The authors concluded that the silicone hydrophobic moiety,the presence of water vapor,and a dispersed surfactant-rich phase are necessary for superspreading,but the molecular geometry of surfactant is not a critical factor.The spreading mechanism is,however,still largely unexplained.The authors 18have proposed that a thin pre-existing high-tension film is formed at the leading edge of the spreading drop,and so spreading is driven by a Marangoni effect,but the mechanism of this precursor film formation is unclear.They also studied a series of aqueous dispersions of both hammer-like and linear hydrocarbon polyoxyethylene surfactants and found that none were superspreaders.The explanations of superspreading,proposed in refs 16-19,apparently should be applied to each surfactant,and thus the main question,namely,what are the peculiarities of siloxane surfactants determining their unusual spread-ing behavior,is still open.

In the present work dynamics of surface (at the solution/air interface)and interfacial (at the solution/n -dodecane interface)tension was studied for nonionic trisiloxane surfactants with different ethoxy chain length,EO )8,12,and 16,and ethoxylated isododecyl alcohols with ethoxy group numbers 4.9,9.8,and 14.6.The influence of the surfactant concentration and chemical structure on the

surface/interfacial tension dynamics was studied.These results were compared with the spreading behavior of these solutions on a liquid hydrocarbon surface.Thus we intended to clarify the relation between interfacial tension dynamics of surfactant solutions and their spreading on a uniform hydrophobic fluid surface and to make a new short step toward understanding the mechanism of the superspreading phenomenon.

Experimental Section

Materials.Four trisiloxane surfactants were studied (see Table 1).These products were of 90%purity.The ethoxylated isododecyl alcohols with ethoxy chain length n )4.9,9.8,and 14.6,narrow ethoxy chain length distribution,of 98%purity,were kindly supplied by Hoechst Company,Germany.All the surfactants were used without special purification.

Distilled and deionized water was used for surfactant solution preparation.n -hydrocarbons (Fluka)and paraffin oil (Fluka),of spectroscopic grade purity,were used for interfacial tension measurements and spreading behavior studies.

The reason why we chose these substances as subphases for spreading behavior investigations was to permit us to measure interfacial tension on the surfaces of solution/subphase and subphase/air and therefore be able to calculate both the dynamic and the equilibrium spreading coefficients.At the same time,the liquid hydrocarbon surface is always horizontal,molecularly smooth,and homogeneous,and its surface properties are independent of surface prehistory and treatments.These properties are often difficult to reproduce for solid hydrophobic surfaces,always having some roughness and heterogeneity which produces a significant influence on the character and rate of spreading.18

Methods.Dynamic surface/interfacial tension measurements were performed by using the drop volume technique;a TVT-1drop volume tensiometer,Lauda,Germany,was used for these measurements.The detailed description of this apparatus can be found in refs 9,and 22.Drop volume measurements were mainly made in the dynamic regime,using Dyn Mode of the apparatus,9-15measurements of drop volume were performed for each drop formation time,and the average drop volume values were used for the calculation of surface/interfacial tension values.The mean reproducibility of the drop formation time was (0.2s,and drop volume deviations did not exceed (0.3μL from one set of measurements to another;this provided the mean reproducibility of the interfacial tension as (0.5mN/m.We also used the quasi-static regime for measurements of dynamic surface tension of dilute D-8solutions.This method was developed by Addison and Tornberg 23and consists of growing a drop of a given volume V o at the tip of a capillary in the shortest possible formation time.In this case,the drop volume V o and dropping time t do not have to be corrected.The mean reproducibility of the drop formation time for dilute surfactant solutions was (0.5s at short dropping times,but it became worse (the deviations was comparable with the dropping time)with increasing dropping times.For concentrated solutions,the dynamic drop volume is quite close to the equilibrium one;the quasi-static regime gives inadmissibly large deviations in dropping time,exceeding this

(16)Ananthapadmanabham,K.P.;Goddard,E.E.;Chandar,P.Colloids Surf .1990,44,281.

(17)Roggenbuck,F.C.;Rowe,L.;Penner,D.;Petroff,L.;Burow,R.Weed Technol .1990,4,576.

(18)Zhu,S.;Miller,W.G.;Scriven,L.E.;Davis,H.T.Colloids Surf.,A:Physicochem.Eng.Aspects 1994,90,63.

(19)Lin,Z.;Hill R.M.;Davis H.T.;Ward https://www.wendangku.net/doc/0b5550576.html,ngmuir 1994,10,(22)Miller,R.;Hofmann,A.;Hartman,R.;Shano,K.-H.;Halbig,A.Table 1.Objects of Investigation

abbrev

source

chemical structure

Trisiloxane Surfactants M(D ′E 8OH)M D-8Dow Corning (Me 3SiO)2Si(Me)(CH 2)3(OCH 2CH 2)8OH M(D ′E 12OH)M D-12Corporation (Me 3SiO)2Si(Me)(CH 2)3(OCH 2CH 2)12OH M(D ′E 7OH)M PR-7Goldschmidt (Me 3SiO)2Si(Me)(CH 2)3(OCH 2CH 2)7OH M(D ′E 16OH)M

PR-28Goldschmidt (Me 3SiO)2Si(Me)(CH 2)3(OCH 2CH 2)16OH Hydrocarbon Surfactants ethoxylated i-C 12alcohol,EO n )4.9i-C 12EO 4.9Hoechst (CH 3)2C 10H 19O(CH 2CH 2O)4.9OH ethoxylated i-C 12alcohol,EO n )9.8i-C 12EO 9.8Hoechst (CH 3)2C 10H 19O(CH 2CH 2O)9.8OH ethoxylated i-C 12alcohol,EO n )14.6

i-C 12EO 14.6Hoechst

(CH 3)2C 10H 19O(CH 2CH 2O)14.6OH

Trisiloxane Surfactants

Langmuir,Vol.12,No.7,19961713

time,we were forced to use the dynamic regime for the investigation of the solution dynamic tension.

To choose the right way of accounting for hydrodynamic drop volume perturbation under dynamic conditions,we have analyzed the different modes of hydrodynamic correction,developed at present for pure liquids and surfactant solutions,9,24-26and we have selected the hydrodynamic correction equation,proposed by Miller et al.9,22This hydrodynamic correction mode was chosen because (i)it was developed especially for the drop volume method,using a TVT apparatus;(ii)it seems to be based on quite simple and physically proven assumptions;(iii)it provides a good correlation between the results,obtained using different capillary tip radii,for pure solvents as well as for surfactant solutions (Figure 1a);(iv)in the cases when it was possible,we have compared the results of quasi-static and thus corrected dynamic measurements,and very good agreement was found (Figure 1b).

On the basis of the approach of Miller et al.,9,22taking into account the dependence of the drop volume on the flow rate

we have calculated R and coefficients from our experimental data as the slope and intercept with the Y axis of the ?V (F )dependence for pure water/air and water/n -dodecane systems.The corrected drop volume for surfactant solutions was calculated using eq 1with the thus obtained R and coefficients.

The surface/interfacial tension was then calculated using the following well-known equation:27

in which ?F is the density difference between the studied liquid and air or oil,g is the acceleration of gravity,R is the capillary tip radius,and F is the correction factor,tabulated in ref 27.Figure 1a illustrates the surface tension vs flow rate depend-encies,obtained for 0.25%D-8aqueous solution using capillaries of different radii.As it is seen the dependence of the surface tension on the flow rate is normal and there is a good correlation for the results,corresponding to the different capillary sizes.The comparison of the dynamic surface tension measurements,performed using dynamic (curve 1)and quasi-static (curve 2)regimes,for 0.025%D-8solution is presented in Figure 1b.It is seen that there is very good coincidence between these two sets of measurements.Note that for the dynamic regime the time scale corresponds to the surface age or diffusion time,8,9,22equal to 3/7of the drop formation time for a continuously growing drop;for the quasi-static regime,the time scale corresponds to a dropping time.The same coincidence of dynamic and quasi-static results was obtained for the 0.1%D-8solution (Figure 2,curves 2and 3)for short dropping times;this fact proves that the hydrodynamic correction mode used here gives accurate drop volume values that correspond to reality.

Equilibrium interfacial tension measurements at the D-8aqueous solution/n -hydrocarbon interface were performed by using a spinning drop tensiometer,Kruss,Germany.

Spreading of surfactant solutions on hydrocarbon subphases was studied by visual observations without humidity control at room temperature.A drop of surfactant solution was put on the subphase surface,and the maximum radius of the spread drop

(24)Jho,C.;Burke,R.J.Colloid Interface Sci .1983,95(1),9.

Figure 1.Dependence of the dynamic surface tension on (a)the flow rate at the 0.25%(wt/wt)D-8aqueous solution/air interface,25°C.1,r cap )1.055mm;2,r cap )1.71mm;(b)time dependence at the 0.025%(wt/wt)D-8aqueous solution/air interface,r cap )1.38mm,25°C.1,dynamic mode;2,quasi-static

mode.

Figure 2.Dynamic surface tension at the D-8aqueous solution/air interface,25°C.1,0.05%(wt/wt);2,3,0.1%(wt/wt)(2,quasi-static mode;3,dynamic mode);4,0.25%(wt/wt);5,0.5%(wt/wt)D-8.

V e )V (t )-(R + F ),F )V (t )/t

(1)

γ)V dyn cor ?ρg F /R

(2)

1714Langmuir,Vol.12,No.7,1996Svitova et al.

and the time of spreading to maximum radius were estimated.Mean values for 5-7measurements were calculated for each solution.Spreading coefficients were calculated according to 28

where γΒis the hydrocarbon surface tension,γΑis the solution surface tension,and γΑΒis the solution/hydrocarbon interfacial tension.

Results

Surface/Interfacial Tension Dynamics.Figures 2-5show the plots of the dynamic surface tension for D-8,D-12,PR-7,PR-28,and i-C 12EO 4.9aqueous solutions at 25°C,which the capillary radius was 1.055mm.Data

are shown for several surfactant concentrations.In all cases,the surfactant concentration was near or above the critical micelle concentration (cmc),which for nonionic surfactants is usually about 0.01%(wt/wt)29and is equal 30to 0.007%(wt/wt)(1.24×10-4mol/kg 30)for D-8and increases from 7×10-5M to 5×10-4M for ethoxylated isododecyl alcohols with an increase in the ethoxy chain length from 5to 15.In these plots the X -axis time scale as mentioned above corresponds to the diffusion time 8,9,22(except curve 2of Figure 2,where it corresponds to the dropping time,measured in the quasi-static regime).At low surfactant concentration,0.01-0.025%(wt/wt)one can see the usual surface tension dependencies on time,namely,the surface tension decreases slowly with in-creasing surface age.The higher the solution concentra-tion,the less pronounced the dependence of the surface tension on time,for example,the dynamic surface tension of 0.5%D-8(curve 5of Figure 2)and PR-7(curve 3,Figure 3)aqueous solutions decreases about 0.25-1.0mN/m during all the time of the observations.For D-12(Figure 4),having an ethoxy chain longer than that of D-8and PR-7,the decrease of the surface tension with time is still well pronounced at a solution concentration of 0.5%(wt/wt).For PR-28,the most hydrophilic trisiloxane surfac-tant studied here,having 16ethoxy groups,the surface tension dynamics at the 0.5%(wt/wt)solution/air interface has its usual character and the surface tension slowly decreases with surface age,according to curve 1of Figure 3.As is seen from Figure 5,the same regularity is observed for ethoxylated isododecyl alcohol i-C 12EO 4.9,the increase of the surfactant concentration from 0.01%to 0.5%(wt/wt)leads to the suppression of the surface tension vs time dependence.

Next,Figure 6shows the results of dynamic surface tension measurements of 0.5%(wt/wt)aqueous solutions of the ethoxylated isododecyl alcohols with different numbers of ethoxy groups.It is seen from this figure that for these surfactants under certain conditions the dynamic

(29)Shinoda,K.;Nakagawa,T.;Tamamushi,B.-I.;Isemura,T.Colloidal Surfactants ;Academic Press:New York,1963;Schonfeldt,N.Grenzflachenaktive Athylenoxid-Addukte ;Wissenschaftliche Ver-

Figure 3.Dynamic surface tension at the PR-28and PR-7aqueous solution/air interfaces,25°C.1,0.25%(wt/wt)PR-28;2,0.05%(wt/wt);3,0.25%(wt/wt)PR-7.

Figure 4.Dynamic surface tension at the D-12aqueous solution/air interface,25°C.1,0.25%(wt/wt);2,0.5%(wt/wt)D-12.

K )γB -γA -γAB

(3)

Figure 5.Dynamic surface tension at the i-C 12EO 4.9aqueous solution/air interface,25°C.1,0.01%(wt/wt);2,0.1%(wt/wt);3,0.25%(wt/wt);4,0.5%(wt/wt)i-C 12EO 4.9.

Trisiloxane Surfactants Langmuir,Vol.12,No.7,19961715

surface tension is nearly constant with an increase in the surface age,although some temporary oscillations,re-producible from one set of measurements to another,were observed.Similar drop volume bifurcations were observed in ref31,and the authors have proposed that this may be caused by capillary waves,arising at the drop surface under specific conditions.Note that with increasing ethoxy chain length both dynamic and equilibrium surface tension values increase.The same regularity is ob-served for trisiloxane surfactants,as is seen from Figures 2-4.

The results of equilibrium interfacial tension measure-ments at the0.5%(wt/wt)D-8aqueous solution/n-hydrocarbon interface are presented in Figure7.One can see that the equilibrium interfacial tension rises almost linearly with an increase in the hydrocarbon chain length.For0.5%(wt/wt)D-8/n-hexane system the in-terfacial tension reaches a very low value,0.03mN/m, and the formation of a thin layer of an intermediate phase, probably a microemulsion,surrounding the hexane drop in the surfactant solution was observed during interfacial tension measurements on the spinning drop tensiometer. In the systems with long-chain hydrocarbons this phe-nomenon was not observed and the interfacial tension value for0.5%(wt/wt)D-8/tetradecane system is an order

of magnitude higher than that with hexane.

The dynamic interfacial tension was measured by using the drop volume method for0.25%(wt/wt)D-8and0.5% (wt/wt)D-12solutions against n-dodecane,and the results of these measurements are presented in Figure8.It is seen that for both solutions the interfacial tension decreases with a time increase.The dependence of the interfacial tension on time is more significant for the0.5% D-12solution;for the D-8solution,the interfacial tension only slightly decreases with time,and the same regularity was observed at the solution/air interface.Unfortunately, we could not measure the interfacial tension for the0.5% (wt/wt)D-8solution because it was very low(the equi-librium value is0.23mN/m,as is seen from Figure7), below the TVT1apparatus limits;in this case we observed nonstop flow of the D-8solution.On the other hand,for the spinning drop method there is a minimum time,about 1min,below which measurements cannot be performed, and it is impossible to compare the measurements performed on the TVT and spinning drop apparatuses due to the differences in time scale of these methods. The results of the interfacial tension measurements in i-C12EO n/n-dodecane systems,presented in Figure9,show that the interfacial tension decreases with time in the i-C12EO4.9/n-docecane system;in the i-C12EO14.6/n-doce-cane system the dynamic interfacial tension is more or less constant,and in the i-C12EO9.8/n-docecane system the interfacial tension even slightly increases with time.Note that in distinction with the i-C12EO n solution/air interface, where we have observed an increase of the surface tension with an ethoxy chain length increase,at the i-C12EO n/n-dodecane interface the dynamic as well as the equilibrium

Figure6.Dynamic surface tension at the i-C12EO n aqueous solution/air interface,25°C.Surfactant concentration,0.5% (wt/wt).1,i-C12EO14.6;2,i-C12EO9.8;3,i-C12EO4.9.Figure7.The dependence of the interfacial tension at the 0.5%(wt/wt)D-8aqueous solution/hydocarbon interface on the hydrocarbon chain length,25

°C.

Figure8.Dynamic interfacial tension at the D-n aqueous solution/dodecane interface,25°C.1,0.25%(wt/wt)D-8;2,0.5% (wt/wt)D-12.

1716Langmuir,Vol.12,No.7,1996Svitova et al.

facial tension on ethoxy chain length with a minimum was observed in ref32for the ethoxylated isononylphenol solution/octane systems.

Spreading Behavior.The spreading behavior of surfactant solutions on the hydrocarbon surface was studied in the open air at room temperature.First of all we studied the behavior of a pure water drop on the surface of different hydrocarbons.It was observed that a small drop of water,about5μL,being put on an octane and a decane surface,drowned nearly immediately.At the surface of dodecane and longer-chain hydrocarbons a small drop of water can float a long time,held by surface tension like a thin steel needle at the surface of pure water during the well-known demonstration of surface tension action. The same behavior was observed for dilute(0.01-0.025% (wt/wt))trisiloxane and i-C12EO n surfactant solutions and 0.5%(wt/wt)PR-28and i-C12EO14.6solutions.More concentrated D-8,D-12,PR-7,i-C12EO4.9,and i-C12EO9.8 solutions spread at the dodecane and longer-chain hy-drocarbon surface,the rate of spreading depends on the solution concentration,the hydrocarbon chain length,and the surfactant ethoxy chain length.Note that a droplet of the pure“dry”siloxane surfactants D-8and D-12did not spread significantly on the liquid hydrocarbon surface and it could float on the surface for a few minutes,but after contact with the humid atmosphere it started to spread.This observation is in accordance with the spreading behavior of pure D-8on solid low-energy surfaces,20,21and we can say that in our case the presence of water is necessary for fast spreading on the fluid surface and likewise on solid ones.As for solid surfaces,18-21for our case the main driving term for spreading is the difference in chemical potential between the edge of the film and the main drop.Taking that into account, according to Figures1-6,8,and9,at freshly-created interfaces the tension is higher than at aged ones,we can say that this spreading is caused by a Marangoni effect. The results are summarized in Table2.

Analysis of Table2data shows that the spreading of surfactant solutions on the hydrocarbon surface occurs only in the cases when the equilibrium spreading coef-ficient value is positive;this is in good agreement with the theory of spreading.24On the other hand,K spr is positive for a D-8solution with decane and undecane,but aqueous surfactant solution drops,weighing3-5mg, drown upon being put on the surface of these hydrocarbons, and spreading cannot be observed.The smaller drop of 0.5%(wt/wt)D-8solution,about1mg,spreads on the undecane surface,and the rate of spreading is5.2mm2/s. In all cases we saw that in the open air a spreading film was unstable and tended to contract or to break into tiny droplets of surfactant-rich phase,perhaps this occurred due to water evaporation.At100%humidity the films were stable and the spreading rate was even greater in supersaturated air;the same trends were observed in ref 18when these solutions were spread on a solid hydrophobic surface.

It is seen from Table2that there is not a good correlation between the equilibrium spreading coefficient value and the rate of spreading;for instance,the equilibrium spreading coefficient for i-C12EO4.9/paraffin oil is4times smaller than that for D-8/paraffin oil,but the rates of spreading are comparable.The maximum rate of spread-ing of a0.5%(wt/wt)D-8solution and the minimum resulting film thickness were observed on tetradecane and paraffin oil surfaces.These hydrocarbons have very close surface tension values,30.6and31.5mN/m,respectively. The maximum dependence of the radial spreading velocity on the surface energy was found for a D-8solution spreading on various monolayers immobilized on quartz-Au resonator surfaces.19The influence of the subphase critical surface tension on the spreading behavior of pure D-8on solid low-energy surfaces was also observed in ref 21.The authors have remarked that in this case the decrease of the solid surface critical tension of~1-3mN/m led to a total depression of the D-8spreading.It appears that spreading on a low-energy surface is governed by the very delicate balance of the surface energy excesses on the three-phase contact line and thus the surface/ interfacial tension dynamics may play an important role in this process.To clarify the relationship between the surface/interfacial tension dynamics and the spreading behavior of the surfactant solutions on the hydrophobic surfaces we have analyzed the results of dynamic surface/ interfacial tension measurements on the basis of the approach of Hua and Rosen,33as is described further in the Discussion.

Discussion

Hua and Rosen have studied dynamic surface tension33 and adsorption dynamic behavior for15highly purified surfactants34by use of the maximum bubble pressure method.They have proposed the division of the dynamic surface tension vs log time curves into four stages:an induction region,a fast fall region,a mesoequilibrium region,and an equilibrium region.All four of these regions can be observed when dilute surfactant solutions are under study.10,11,33As we deal with surfactant solutions near or above the cmc,the regions of fast fall,mesoequilibrium, and equilibrium can be observed in Figures1-6,8,and 9.In the cases when our curves could be satisfactorily fitted by single-exponential decay we had defined the mesoequilibrium surface/interfacial tension as the limiting surface/interfacial tension value of the fitting curves.The fitting curves have been used to estimate the surface/

(33)Hua,X.Y.;Rosen,M.J.J.Colloid Interface Sci.1988,124(2),

Figure9.Dynamic interfacial tension at the i-C12EO n aqueous

solution/dodecane interface,25°C.1,0.5%(wt/wt)i-C12EO14.6;

2,0.25%(wt/wt)i-C12EO4.9;3,0.5%(wt/wt)i-C12EO9.8.

Trisiloxane Surfactants Langmuir,Vol.12,No.7,19961717

interfacial tension values at t f0andγt f0and thus to calculate the dynamic spreading coefficients,K0spr,at t f 0.

According to ref33,the surface tension fall rate R1/2at t1/2)t*is determined as

whereγm is the mesoequilibrium tension,γ0is the pure solvent tension,t*is constant,having the meaning of the time at which the dynamic surface pressureΠ)γ0-γt reaches1/2of the mesoequilibrium value.The constant t*can be evaluated by plotting log[(γ0-γt)/(γt-γm)]vs log t,whereγt is the dynamic surface tension.

We perceived that Hua and Rosen’s analysis has quite an empirical character and other parameters they have proposed to define33,34do not have deep physical sense. Nevertheless we thought that the surface tension fall rate thus calculated may be used as a measure of the dynamic surface activity and thus will be useful for comparison of surface/interfacial tension dynamics of different surfactant solutions.In Table3the surface/interfacial tension fall rate,calculated according to eq4,is compared with the rate of spreading and spreading coefficients of studied surfactant solutions on a dodecane surface.

It is seen from Table3that an increase of the surfactant a0.5%D-8solution at the boundary with air and a0.25% solution with dodecane.It is noticeable that an increase of the ethoxy chain length causes a decrease of R1/2for trisiloxane as well as for hydrocarbon surfactants.Note also that in all cases R1/2at the boundary with air is significantly higher than that in the solution/dodecane systems.In so far as we studied nonionic surfactants, which are not individual substances but a mixture of homologues with different ethoxy chain length,this may be explained by partial dissolution and distribution of surfactant homologues with short ethoxy chains between an oil and an aqueous phase,occurring in the solution/ dodecane systems and thus retarding interfacial adsorbed layer equilibration.

It is seen that D-8solutions at a concentration of0.05% (wt/wt)and above have a positive spreading coefficient as at equilibrium so as at t f0and for these solutions there is a good correlation between the surface tension fall rate and the rate of spreading.Knowing the area of the spreading film and assuming that the area per molecule in the spreading film cannot be smaller than that in the saturated adsorbed layer,equal to59?2for D-8and47?2for C12EO4.6,17,35we could estimate a ratio between amount of surfactant molecules adsorbed on a totally spread film surface and the total amount of surfactant molecules in the drop.This value is almost constant for D-8solutions of different concentrations and equal to0.4-

Table2.Spreading of Surfactant Solutions on Fluid Hydrocarbons

surfactant conc,%wt subphase rate of spreading,mm2/s K eq sp,mN/m resulting film thickness,μm

D-80.5C10H22drown7.7

D-80.5C11H24drown8.2

D-80.5C12H26708.7 3.5

D-80.5C14H302409.3 1.2

D-80.5C16H341609.4 1.8

D-80.5paraffin oil2309.5 1.8

D-80.5C10H21OH 1.4340

D-80.5C12H25OH408

D-120.5C12H2650 4.5 3.5

PR-70.5C12H26688.5 4.0

PR-70.5paraffin oil2209.2 1.4

PR-280.5paraffin oil no spreading-4.5

i-C12EO4.90.5paraffin oil80 2.1 5.0

i-C12EO9.80.5paraffin oil460.28.1

i-C12EO14.60.5paraffin oil no spreading-8.6

Table3.Parameters of Spreading and Surface Tension Dynamics

system surfactant conc,%R1/2,mN/(m s)rate of spreading,mm2/s K0spr,mN/m K eq spr,mN/m D-8/air0.025224no spreading-6.55 3.5

0.0548415 1.17.6

0.05a90no spreading-2.5 6.4

0.1 1.9×10328 3.27.8

0.25 3.4×10740 3.48.6

0.5 5.9×10770 4.29.1

D-12/air0.257.8×10326 1.6 3.5

0.5 1.1×10450 2.1 5.1

PR-7/air0.0543014 1.07.3

0.258.6×10368 5.08.2

PR-28/air0.5 3.4no spreading-18.1-12.3

C12EO4.9/air0.0125.3no spreading-26.4-12.6

0.116120.030.05

0.25 2.9×10317.60.080.8

0.5 5.6×105800.12 1.03

1.07.8×105280

C12EO14.6/air0.5 4.6×104no spreading-9.0-6.8

C12EO14.6/C12H260.570

C12EO4.9/C12H260.25 1.2×103

D-8/C12H260.25 1.1×106

D12/C12H260.5270

a Two weeks after preparation.

R

1/2)

Πm

2t

1/2

)

m

)

2t*

(4)

1718Langmuir,Vol.12,No.7,1996Svitova et al.

0.45;that means that under the conditions studied a spreading film does not reach the full possible coverage of interfaces and that more than half of the surfactant still remains in the bulk of the film.This value is about 1order of magnitude lower for C12EO4.6than for D-8and is0.03-0.07in its dependence on the surfactant concen-tration.Thus,C12EO4.6is not as effective a spreading agent as D-8,is less than1/10of the total C12EO4.6amount, present in solution,and participates in adsorption layer formation at solution/air and solution/dodecane interfaces in a maximally spread film.

The solutions,having a negative dynamic spreading coefficient,as is seen from Table3,do not spread on the dodecane surface.In Table3are presented the results for a dilute(0.05%(wt/wt))solution1day(row2)and2 weeks(row3)after preparation.The change,occurring after aging the0.05%D-8solution(0.05a)is caused by a decomposition of the trisiloxane surfactant due to mixing in distilled water,as it was noticed in ref35;the lower the surfactant concentration,the faster decomposition occurs. The surfactant decomposition leads to a significant decrease of the surface tension fall rate and simultaneously to a loss of superspreading properties.We should like to emphasize that more concentrated D-8solutions were significantly more stable and no noticeable changes in dynamic surface/interfacial tension were observed within at least2weeks after preparation.The deviations of dynamic tension values of freshly prepared and two week old0.25%D-8solutions fell into measurement accuracy limits.

For a0.25%(wt/wt)PR-7aqueous solution we have observed a total loss of spreading ability1week after preparation.It was senseless to measure the surface/ interfacial tension for this aged solution because the separation of decomposition products was observed in the bottom of a test tube.Unfortunately,we did not check the pH of D-8and PR-7solutions,but we can propose,

according to ref35,that the pH of PR-7solutions was shifted from its optimal value of around7,where tri-siloxane surfactants are more stable in aqueous solution and that this was the reason of very fast decomposition of this product.

In Table3the analogous results of spreading behavior and dynamic surface tension analysis for ethoxylated alcohol aqueous solutions are also listed.

As is seen from Table3,for these surfactants a good correlation between the rate of spreading,the surface tension fall rate,and the dynamic spreading coefficient is also observed.The comparison of the data for D-8and i-C12EO4.9shows that at the same concentration D-8 exhibits better superspreading properties,and this cor-responds to the higher values of the dynamic spreading coefficient and surface/interfacial tension fall rate.

We propose that in the cases under study the adsorption barrier is not a leading factor in adsorption dynamics.To estimate the role of diffusive mass transport in the adsorption process it is necessary to know the aggregate size of the studied surfactants,taking into account that we dealt with rather concentrated solutions above the cmc.We have used freeze-fracture transmission electron microscopy to estimate the aggregate size in0.025%and 0.25%(wt/wt)D-8aqueous solutions.The micrographs of carbon-platinum replicas,obtained from these solu-tions,are presented in Figure10a,b.It is seen that in both solutions small aggregates exist with a mean size of ca.40nm and there are not strong differences in individual aggregate size in dilute and more concentrated solutions, but in the concentrated solution some clusters of ag-the size of double-tailed surfactant unilamellar vesicles,36 and so we can propose,in accordance with refs30and35 that D-8forms unilamellar vesicles in aqueous solution at the concentrations of0.01-0.25%(wt/wt).Regarding these aggregates as solid spheres,fulfilled by water,the diffusion coefficient D of these particles can be calculated from the Einstein formula:

and for D-8individual aggregates with a mean diameter of40nm the diffusion coefficient in water is1.3×10-11 m2/s.

Recently8a new approach,based on the asymptotic solutions of the Ward and Torday equation extended for the case of a continuously growing drop(or bubble),was developed,and it permits one to estimate the diffusion coefficient values at t f∞by use of the following equation: where C0is the surfactant bulk concentration.Γis the dynamic surface concentration,which was estimated by using the Frumkin equation:

According to ref35Γmax)2.8×10-6mol/m2for D-8,1.95×10-6mol/m2for D-12,and 3.5×10-6mol/m2for

Figure10.Electron micrographs of D-8aqueous solutions: (a),0.025%and(b),0.25%(wt/wt);bar)200nm.

D)kT/6πηr(5)

(dγdt-1/2)t f∞)RTΓ2c0(π4D)1/2(6)

γ

-γ)-Γ

max

RT ln(1-Γ/Γ

max

)(7)

Trisiloxane Surfactants Langmuir,Vol.12,No.7,19961719

i-C12EO4.9.The diffusion coefficients were calculated from the slope of theγ(t-1/2)dependencies extrapolated to t f ∞,and they are listed in Table4.

In this table the values of the D-8self-diffusion coefficient D self-diffusion from ref17and the apparent diffusion coefficient D apparent,obtained in ref20for this surfactant spreading on a low-energy solid surface,are presented.It is seen from this table that the diffusion coefficients thus calculated decrease with surfactant concentration in-crease.Keeping in mind that the Ward-Torday approach was developed for monomer solutions,we can say that the thus calculated diffusion coefficient does not cor-respond to the diffusion coefficient of the surfactant monomer,which is independent of concentration,but these are effective or average values,characterizing joint mass transfer in a mixture of monomers and aggregates.The decrease of these values with an increase of concentration, here observed,is caused,according to ref13,by the increase in aggregate concentration at constant monomer concentration equal to the cmc.Unfortunately,it was impossible to separate the terms corresponding to mono-mers and aggregates using the approach proposed by Miller13because too many parameters included in the mass balance equation were unknown.

Note that in all cases the diffusion coefficients,obtained for a boundary solution/air,are about1order of magnitude higher than that in the solution/dodecane systems.As it was mentioned above when we regarded the interfacial tension fall rate,this may be caused by surfactant distribution between aqueous and oil phases.The aging of the0.05%D-8solution(row3,0.05a)leads to a decrease of the diffusion coefficient and as was mentioned above to a loss of super spreading properties inspite of the fact that the D-8diffusion coefficient in the aged0.05%solution was still higher than that in the0.25%solution.It is possible to say that there is not a visible correlation between the diffusivity and spreading ability for the same surfactant solutions,having different concentration.On the other hand,comparing the diffusion coefficients and the spreading velocity of different surfactants at the same concentration,one can see that the higher the diffusion coefficient the faster spreading occurs.Moreover,D-8has diffusion coefficient values about1order of magnitude higher than that of its hydrocarbon analogue i-C12EO4.9 in all surfactant concentration ranges studied.The diffusion coefficient of D-8is also significantly higher than that of D-12inspite of the fact that D-12forms normal micelles in aqueous solution with a mean size of~10nm and has to be more diffusive than D-8,forming vesicles with a diameter of40nm.Note that D-8diffusion with a diameter of40nm and than the D-8self-diffusion coefficient,mentioned in ref17,and that these values are of the same order of magnitude as was found in ref20 from spreading experiment data.

To check the diffusion in the bulk of these surfactant solutions dynamic light scattering measurements were carried out using a Brookhaven BI-9000correlator at90°. The apparatus is equipped with a623.8nm He/Ne laser, and the size distribution of the particles was calculated by an inverse Laplace transformation.We have obtained the mean values of the particle diameter to be196nm for 0.1%D-8,302nm for1.0%D-8,10nm for1.0%D-12,and 330nm for1.0%i-C12EO4.9aqueous solutions.Thus the diffusion coefficients of spherical aggregates in the bulk of D-8aqueous solutions are20-30times lower than that in solutions of D-12and comparable with that in i-C12EO4.9 solutions,while from dynamic surface tension measure-ments we have gotten an opposite picture.

An increase of surfactant hydrophilicity(ethoxy chain length)suppresses diffusion coefficient values as well as the spreading ability of trisiloxane and hydrocarbon surfactants.As it was mentioned in ref20the effect maybe related to the increasing difficulty in forming a dense zero-curvature bilayer structure when the length of the ethoxy chain increases.

Ananthapadmanabham et al.16studied the kinetics of the adsorption of some silicone surfactants on liquid/air and solid/liquid interfaces.They found the superspreader SS1,having the same chemical structure as D-8and a mean number of ethoxy groups of7.5,when depleted from the liquid/air interface,is replenished more rapidly than other silicone surfactants studied.They also concluded that the SS1dispersions have a higher mobility and a higher solid-liquid adsorption rate than other silicone surfactant solutions at comparable concentrations.These results are in good agreement with our observations. At the present stage it is difficult to explain this unusually high mobility of D-8in aqueous solutions, manifesting itself as a high rate of adsorption at interfaces with air and oil.We can only speculate that this may be connected with a low cohesive energy and a high flexibility of trisiloxane surfactant molecules,18,20and thus we propose that for these reasons the lifetime of silicone surfactant molecules,entrapped in bilayer aggregates,is lower than that in a hydrocarbon surfactant aggregate. According to ref13,in the case when the aggregation number is very high(for D-8it corresponds to about8000) and thus the diffusion coefficient of the aggregates has to be hundreds of times lower than that of the monomers, the terms,connected with the aggregate formation-dissolution processes,strongly influence the adsorption rate.In such cases the rate constants of aggregate formation and dissolution are very important factors for adsorption dynamics.In ref14it was shown that it is possible to estimate the rate of demicellization from the dynamic surface tension when the data for the solution at the cmc are available.So,this may become the direction of our further investigations.

We perceive that all the questions,arising with regard to superspreading processes on fluid surfaces,cannot be totally resolved in the framework of the present work and that further detailed investigation is necessary.

Conclusion

Studies of surface/interfacial tension dynamics and spreading behavior of aqueous siloxane and hydrocarbon surfactant solutions on fluid hydrocarbon surfaces were performed.

Table4.Diffusion Coefficients of the Surfactants at t f

system surfactant conc,%D t f∞,m2/s

D-8/air0.025 2.5×10-10

0.05 1.3×10-10

0.05b8.0×10-11

0.25 6.8×10-11

D-12/air0.25 1.3×10-12

PR-28/air0.57.1×10-13

C12EO4.9/air0.017.0×10-11

0.1 2.1×10-11

0.25 6.5×10-12

D-8/C12H260.25 2.7×10-12

D-12/C12H260.51×10-13

C12EO4.9/C12H260.258.3×10-13

a D apparent)1×10-10,from ref20;D self-diffusion)3.2×10-11,

from ref17;D Einstein)1.3×10-11,calculated using eq9.b Two

weeks after preparation.

1720Langmuir,Vol.12,No.7,1996Svitova et al.

interfacial tension fall rate at the concentrations corre-sponding to superspreading on hydrophobic surfaces. The diffusion coefficient values were calculated from surface/interfacial tension dynamics data,and it was found that for the superspreading surfactant D-8the diffusion coefficient values thus obtained are1order of magnitude higher than the diffusion coefficients of the hydrocarbon analogue.A decrease of diffusion coefficients with a surfactant concentration increase was observed.

For the first time liquid hydrophobic subphases were used to study spreading of aqueous surfactant solutions, which permitted us to evaluate directly dynamic and equilibrium spreading coefficient values from dynamic tension measurements.

It was found that fast spreading of surfactant solutions on a hydrocarbon surface occurred in the cases when both equilibrium spreading coefficient and dynamic spreading coefficient values were positive.The positive equilibrium spreading coefficient is necessary but not sufficient to ensure that fast spreading would take place.

In distinction with solid low-energy subphases,where as it was found in refs15and18a superspreading of hydrocarbon surfactants does not occur,on fluid hydro-carbon surfaces superspreading of nonionic hydrocarbon surfactant solutions was observed.

The rate of spreading depends on the surfactant nature, structure(hydrophobicity),and concentration and the subphase nature.The increase of the surfactant hydro-philicity(ethoxy chain length)suppresses the super-spreading ability of siloxane and hydrocarbon surfactants.

A good correlation between the surface/interfacial tension fall rate and the rate of spreading was found. Acknowledgment.The authors thank Dow Corning Corporation for financial support of this work and kindly supplied samples of the trisiloxane surfactants.This work was partially supported by Russian Fundamental Re-search Foundation,Grant93-034467.T.S.thanks Dr. Andre Stuermer(Bayreuth University,Germany)for the help with the spreading behavior observations and light scattering measurements and Sergey Pisarev(Institute of Physical Chemistry,RAS,Moscow)for electron micro-graph preparation.

LA9505172

Trisiloxane Surfactants Langmuir,Vol.12,No.7,19961721

数据备份与恢复系统哪个品牌好

在互联网普及的时代,数据显得尤为重要。数据备份是对数据进行再存储,是一个数据导出动作,以防数据丢失。而数据恢复则与数据备份是两个相反方向的行为,是将不小心丢失的数据重新导回电脑端。数据备份与恢复系统哪个品牌好呢? 铱迅数据备份备份与恢复系统,是业界针对大数据量环境的应急接管平台,其利用磁盘级CDP技术,可实现IO级别的细颗粒度实时备份,将备份窗口、数据丢失降到较低。并且可以实现任意时间点的数据挂载与演练,能够快速响应业务系统的接管需求,对应用实现连续保护。 软硬件一体化配置 数据备份与恢复系统集备份服务器,操作系统、备份软件、磁盘阵列融于一体;并可加载铱迅容灾平台的虚拟化软件模块,备份容灾一机实现。 多方位的数据备份支持

备份存储服务器 软件模块 软件部分的服务器端内置在硬件中,采用Web界面提供设备、客户端、备份数据及管理员的管理;客户端由多个功能模块构成,安装在需要备份的服务器或PC上,依据数据保护的对象和等级不同,客户端授权划分为多个类型;更有扩展功能软件包,支持异地数据灾备等功能。

铱迅数据备份与恢复系统采用软硬件一体化配置,以持续数据保护技术(CDP)为核心,具备实时备份、定时备份等功能,整合了USB Key、密码口令等多因子安全身份验证安全模块,可以为数据库、文件、应用、操作系统提供安全、有效、完整的数据保护。 多方位备份 跨平台支持各类桌面电脑、服务器及小型机;支持Windows、Linux、Unix等操作系统及VMware ESX(i)、Hyper-V等虚拟化系统;支持Oracle/SQL Server/My SQL/DB2/Sybase及国产数据库等多种数据库;支持双机、虚拟机等服务器架构;支持LAN-Base、LAN-Free等备份方式;提供手动备份、定时备份、实时备份等备份策略设置;提供数据库、文件、应用及操作系统的多方位保护。 简易化操作 数据自动集中备份到黑方的存储空间中。基于Web界面统一管理平台,提供备份设备、备份客户端、备份数据的集中管理,将IT 技术人员的专业性数据备份恢复工作简化为普通工作人员即可轻松掌握并自动完成的简单工作。 CDP实时备份和恢复 创新性CDP持续数据保护技术,数据备份与恢复准确到秒,连续实时捕获所需备份文件的数据变化,并自动保存变化的数据和时间戳(即表示数据变化的时间节点),在此基础上可以实现过去任意时间点的数据恢复。有效解决定时备份、准CDP备份的时间窗口问题。 功能简介 核心技术 铱迅数据备份与恢复系统以持续数据保护(CDP)为核心技术精髓,并结合升级加密、数据压缩、数据同步等诸多先进技术,来实现可靠、安全、多面、有效的数据备份与恢复。

【操作系统】Windows XP sp3 VOL 微软官方原版XP镜像

操作系统】Windows XP sp3 VOL 微软官方原版XP镜像◆ 相关介绍: 这是微软官方发布的,正版Windows XP sp3系统。 VOL是Volume Licensing for Organizations 的简称,中文即“团体批量许可证”。根据这个许可,当企业或者政府需要大量购买微软操作系统时可以获得优惠。这种产品的光盘卷标带有"VOL"字样,就取 "Volume"前3个字母,以表明是批量。这种版本根据购买数量等又细分为“开放式许可证”(Open License)、“选择式许可证(Select License)”、“企业协议(Enterprise Agreement)”、“学术教育许可证(Academic Volume Licensing)”等5种版本。根据VOL计划规定, VOL产品是不需要激活的。 ◆ 特点: 1. 无须任何破解即可自行激活,100% 通过微软正版验证。 2. 微软官方原版XP镜像,系统更稳定可靠。 ◆ 与Ghost XP的不同: 1. Ghost XP是利用Ghost程序,系统还原安装的XP操作系统。 2. 该正版系统,安装难度比较大。建议对系统安装比较了解的人使用。 3. 因为是官方原版,因此系统无优化、精简和任何第三方软件。 4. 因为是官方原版,因此系统不附带主板芯片主、显卡、声卡等任何硬件驱动程序,需要用户自行安装。 5. 因为是官方原版,因此系统不附带微软后续发布的任何XP系统补丁文件,需要用户自行安装。 6. 安装过程需要有人看守,进行实时操作,无法像Ghost XP一样实现一键安装。 7. 原版系统的“我的文档”是在C盘根目录下。安装前请注意数据备份。 8. 系统安装结束后,相比于Ghost XP系统,开机时间可能稍慢。 9. 安装大约需要20分钟左右的时间。 10. 如果你喜欢Ghost XP系统的安装方式,那么不建议您安装该系统。 11. 请刻盘安装,该镜像用虚拟光驱安装可能出现失败。 12. 安装前,请先记录下安装密钥,以便安装过程中要求输入时措手不及,造成安装中断。 ◆ 系统信息:

数据备份及恢复标准流程

数据备份及恢复标准流程

索引 一Outlook Express篇 (3) 二Foxmail篇 (5) 三Office Outlook篇 (7) 四操作系统篇 (8) 五数据库篇 (9) 六数据灾难恢复篇 (10)

一、Outlook Express篇 Outlook Express是WIN9X自带的邮件收发软件,它拥有相当多的用户,但由于其是随系统安装而来的,再加上WIN9X的极不稳定,重装系统后将丢失OE中的很多个性设置,甚至于收发的邮件,因此,在系统正常时备份相关的信息是必要的。本文以OE5.0以上版本为例介绍。 1.存储文件夹的改变 在OE的工具-选项-维护-存储文件夹中可以改变邮件的存放位置,这里必须把邮件存放在其它分区中如E:\MAIL中,或改变HKEY_CURRENT_USER\Software\Microsoft\OutlookExpress中的Store Root,可以导出这个注册表分支,存放在E:\MAIL中。 2.邮件规则的备份 OE的一个强大功能就是其邮件规则,这样可以有选择性的收取邮件,将不用的邮件直接在服务器上删除,这些规则可以在脱机状态下设定,而不象FOXMAIL的远程邮箱管理必须在线执行,这样并没有节省在线的时间。 在OE中设置了邮件规则(在工具-邮件规则-邮件中进行设置)后,在注册表中的HKEY-CURRENT-USER\Identities\{9ACEA700-E70A-11D3-9796-A034DB516564}\Software\Microsoft\Outlook Express\5.0\Rules\Mail保存你的该项设置,当然各人{}中的内容可能不同;你的机子上OE中有多个标识,这里将会有几个{}。 3.个性化的签名 在工具-选项-签名中可以设定自已个性化的签名,而且对不同帐号自动添加不同的签名,如用于投稿的帐号,要添加自己的通信地址,这样可以收到稿费。在新闻中发帖子,要

Windows7 SP1官方原版下载

Windows7 SP1官方原版 以下所有版本都为Windows7 SP1官方原版,请大家放心下载! 32位与64位操作系统的选择:https://www.wendangku.net/doc/0b5550576.html,/Win7News/6394.html 最简单的硬盘安装方法:https://www.wendangku.net/doc/0b5550576.html,/thread-25503-1-1.html 推荐大家下载旗舰版,下载后将sources/ei.cfg删除即可安装所有版本,比如旗舰,专业,家庭版。 ============================================ Windows 7 SP1旗舰版中文版32位: 文件cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso SHA1:B92119F5B732ECE1C0850EDA30134536E18CCCE7 ISO/CRC:76101970 cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso.torrent(99.63 KB, 下载次数: 326189) Windows 7 SP1旗舰版中文版64位: 文件cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso SHA1: 2CE0B2DB34D76ED3F697CE148CB7594432405E23 ISO/CRC: 69F54CA4 cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso.torrent(128.17 KB, 下载次数: 197053)

系统运维管理-备份与恢复管理(Ⅰ)

系统运维管理备份与恢复管理(Ⅰ) 版本历史 编制人: 审批人:

目录 目录 (2) 一、要求容 (3) 二、实施建议 (3) 三、常见问题 (4) 四、实施难点 (4) 五、测评方法 (4) 六、参考资料 (5)

一、要求容 a)应识别需要定期备份的重要业务信息、系统数据及软件系统等; b)应建立备份与恢复管理相关的安全管理制度,对备份信息的备份方式、备份频度、存储介质和保存期等进行规定; c)应根据数据的重要性和数据对系统运行的影响,制定数据的备份策略和恢复策略,备份策略须指明备份数据的放置场所、文件命名规则、介质替换频率和将数据离站运输的方法; d)应建立控制数据备份和恢复过程的程序,记录备份过程,对需要采取加密或数据隐藏处理的备份数据,进行备份和加密操作时要求两名工作人员在场,所有文件和记录应妥善保存; e)应定期执行恢复程序,检查和测试备份介质的有效性,确保可以在恢复程序规定的时间完成备份的恢复; f)应根据信息系统的备份技术要求,制定相应的灾难恢复计划,并对其进行测试以确保各个恢复规程的正确性和计划整体的有效性,测试容包括运行系统恢复、人员协调、备用系统性能测试、通信连接等,根据测试结果,对不适用的规定进行修改或更新。 二、实施建议 制定数据备份的规定,包括备份的策略、计划和容等信息,备份策略的制定要结合本身数据量多少、数据更新时间等要求进行制定,对备份的数据要进行定期的恢复性测试,保证该备份的可用性。数据的恢复管理不仅仅是灾难恢复的计划,应当针对不同的数据恢复要求和恢复的容制定多种适当的恢复策略,并定期对策略的有效性进行测试。

三、常见问题 多数公司没有对备份的数据进行恢复性测试。 四、实施难点 数据的恢复性测试需要建立测试的环境,投入较大;如果在原有系统上进行测试,应当不影响系统的正常运行,并确保原有系统能够快速的恢复。 五、测评方法 形式访谈,检查。对象系统运维负责人,系统管理员,数据库管理员,网络管理员,备份和恢复管理制度文档,备份和恢复策略文档,备份和恢复程序文档,备份过程记录文档,检查灾难恢复计划文档。 实施 a)应访谈系统管理员、数据库管理员和网络管理员,询问是否识别出需要定期备份的业务信息、系统数据及软件系统,主要有哪些;对其的备份工作是否以文档形式规了备份方式、频度、介质、保存期等容,数据备份和恢复策略是否文档化,备份和恢复过程是否文档化,对特殊备份数据(如数据)的操作是否要求人员数量,过程是否记录备案; b)应访谈系统管理员、数据库管理员和网络管理员,询问是否定期执行恢复程序,周期多长,系统是否按照恢复程序完成恢复,如有问题,是否针对问题进行恢复程序的改进或调整其他因素; c)应访谈系统运维负责人,询问是否根据信息系统的备份技术措施制定相应的灾难恢复计划,是否对灾难恢复计划进行测试并修改,是否对灾难恢复计划定期进行审查并更新,目前的灾难恢复计划文档为第几版; d)应检查备份和恢复管理制度文档,查看是否对备份方式、频度、介质、保存期等容进行规定; e)应检查数据备份和恢复策略文档,查看其容是否覆盖数据的存放场所、文

Microsoft 微软官方原版(正版)系统大全

Microsoft 微软官方原版(正版)系统大全 微软原版Windows 98 Second Edition 简体中文版 https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16446&page=1&extra=#pid125031 微软原版Windows Me 简体中文版 https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16448&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows 2000 Professional 简体中文版 https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16447&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Professional SP3 简体中文版 https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16449&page=1&extra=#pid125073微软原版Windows XP Media Center Edition 2005 简体中文版 https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16451&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Tablet PC Edition 2005 简体中文版 https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16450&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(32位) https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16452&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(64位) https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16453&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(32位) https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16454&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(64位) https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16455&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows7 SP1 各版本下载地址: https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=12387&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(32位) https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16457&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(64位) https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16458&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 R2 S E D and Web 简体中文版(64位) https://www.wendangku.net/doc/0b5550576.html,/viewthread.php?tid=16459&highlight=%CE%A2%C8%ED%D4%AD %B0%E6

windows正版系统+正版密钥

精心整理正版Windows系统下载+正版密钥 2010-05-3011:49 喜欢正版Windows系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工 具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows98第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q WindowsMillenniumEdition(WindowME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows2000PROSP4(简体中文) SerialNumber:XPwithsp3VOL微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小:字节 MD5:D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32:FFFFFFFF 邮寄日期(UTC):5/2/200812:05:18XPprowithsp3VOL微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版)

系统备份及恢复

系统备份及恢复 推荐的系统备份策略。系统需要备份的内容: ERDB ( 系统的控制组态内 容): c:\Program files\Honeywell\Experion PKS\Engineering Tools\System\Er Server 实时数据 库 (操作组态内容): C:\ Program files\Honeywell\ Experion PKS\Server\Data 操作流程图(包括子图): 用户自定 Station 设置文 件: C:\ Program files \Honeywell\ Experion PKS\Client\Station\*.stn \system\R**\*.stb QB 设置文件: 用户自定义目录 报表文件(自由格式报表或Excel报表) : 用户自定义目录 事件或历史数据文件及归档文件 (可选择备份或不 备): C: \Program files \honeywell\ Experion PKS\Server\Archive 用户自定义文件: 用户自定义目录 1系统备份介质建议: 移动硬盘 / 刻录光盘 / 磁带 / 远程网络计算机硬盘 1.1 ERDB备份(主Server:ServerB) Upload and Update Dbadmin – Backup Database 生成主*.bak 文件 Control Builder—File-Export生成project 备份文件. Snapshot/Checkpoint files — C:\Honeywell\Engineering Tools\System\ER\CPM***.snapshot 将以上生成的三类文件拷贝到备份目标盘er目录下 1.2 Server 数据库 (Server同步情况下, 只需备份一个 Server) C:\Program files\Honeywell\Experion PKS\Server\Data 目录到备份目标 盘。(不一定能直接copy, 与后台Service有关)。 bckbld –out filename –tag cda / backup function.(使用pntbld filename恢 复组态内容) 1.3 操作流程图(包括子图) 操作流程图(包括子图)备份到目标盘. 1.5 Station 设置文件(两台Server分别备份,并作标记) C:\Honeywell\Client\Station\*.stn 拷贝到备份目标盘station目录下 1.6QB 设置文件 (备份正式使用的那份文件) 用户自定义目录下*.qdb 文件拷贝到备份目标盘qckbld目录下 . 1.7 报表文件(自由格式报表或Excel报表) : C:\Honeywell\Server\Report 下自由格式报表或用户Excel 报表文件拷贝到备份目标盘Report目录下 1.8事件及历史数据文件和归档文件 (可选择备份或不备): C:\honeywell\Server\data ,Archive 和evtarchive目录拷贝到备份目标盘Archive目录下. 1.9 用户自定义文件备份到目标盘 2 使用备份恢复系统(适用于冗余Server) 2.1 ServerA 系统恢复(ServerB 工作正常情况下) ServerA 重新安装操作系统和PKS软 件 设置Servera与Serverb冗余 使ServerA 处于Backup 状态 在Station中(非ServerA station)作Server同步, 恢复Server实时数据库 在ServerB 中 Dbadmin--Recover Secondary Database ServerB中的流程图拷贝到ServerA响应目录下 备份盘中ServerA的Station目录下*.stn文件拷贝回ServerA 中: C:\Honeywell\Client\Station 目录覆盖同名文件. 备份盘中ServerA的qckbld目录中*.qdb文件恢复到ServerA相应目录中 报表文件文件恢复到ServerA相应目录中 历史数据文件从ServerB C:\honeywell\Server\Archive 目录拷贝到ServerA相应Archive目

windows系统官网原版下载

微软MSDN官方(简体)中文操作系统全下载 这不知是哪位大侠收集的,太全了,从DOS到Windows,从小型系统到大型系统,从桌面系统到专用服务器系统,从最初的Windows3.1到目前的Windows8,以及Windows2008,从16位到32位,再到64位系统,应有尽有。全部提供微软官方的校验文件,这些文件都可以在微软官方MSDN订阅中得到验证,完全正确! 下载链接电驴下载,可以使用用迅雷下载,建议还是使用电驴下载。你可以根据需要在下载链接那里找到你需要的文件进行下载!太强大了!!! 产品名称: Windows 3.1 (16-bit) 名称: Windows 3.1 (Simplified Chinese) 文件名: SC_Windows31.exe 文件大小: 8,472,384 SHA1: 65BC761CEFFD6280DA3F7677D6F3DDA2BAEC1E19 邮寄日期(UTC): 2001-03-06 19:19:00 ed2k://|file|SC_Windows31.exe|8472384|84037137FFF3932707F286EC852F2ABC|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.12 (Simplified Chinese) 文件名: SC_Windows32_12.exe 文件大小: 12,832,984 SHA1: 1D91AC9EB3CBC1F9C409CF891415BB71E8F594F7 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_12.exe|12832984|A76EB68E35CD62F8B40ECD3E6F5E213F|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.144 (Simplified Chinese) 文件名: SC_Windows32_144.exe 文件大小: 12,835,440 SHA1: 363C2A9B8CAA2CC6798DAA80CC9217EF237FDD10 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_144.exe|12835440|782F5AF8A1405D518C181F057FCC4287|/ 产品名称: Windows 98 名称: Windows 98 Second Edition (Simplified Chinese) 文件名: SC_WIN98SE.exe 文件大小: 278,540,368 SHA1: 9014AC7B67FC7697DEA597846F980DB9B3C43CD4 邮寄日期(UTC): 1999-11-04 00:45:00 ed2k://|file|SC_WIN98SE.exe|278540368|939909E688963174901F822123E55F7E|/ 产品名称: Windows Me 名称: Windows? Millennium Edition (Simplified Chinese) 文件名: SC_WINME.exe

FANUC系统数据备份与恢复教学内容

F A N U C系统数据备份 与恢复

一、FANUC系统数据备份与恢复 (一)概述 FANUC数控系统中加工程序、参数、螺距误差补偿、宏程序、PMC程序、PMC数据,在机床不使用是是依靠控制单元上的电池进行保存的。如果发生电池时效或其他以外,会导致这些数据的丢失。因此,有必要做好重要数据的备份工作,一旦发生数据丢失,可以通过恢复这些数据的办法,保证机床的正常运行。 FANUC数控系统数据备份的方法有两种常见的方法: 1、使用存储卡,在引导系统画面进行数据备份和恢复; 2、通过RS232口使用PC进行数据备份和恢复。 (二)使用存储卡进行数据备份和恢复 数控系统的启动和计算机的启动一样,会有一个引导过程。在通常情况下,使用者是不会看到这个引导系统。但是使用存储卡进行备份时,必须要在引导系统画面进行操作。在使用这个方法进行数据备份时,首先必须要准备一张符合FANUC系统要求的存储卡(工作电压为5V)。具体操作步骤如下: 1、数据备份: (1)、将存储卡插入存储卡接口上(NC单元上,或者是显示器旁边); (2)、进入引导系统画面;(按下显示器下端最右面两个键,给系统上电); (3)、调出系统引导画面;下面所示为系统引导画面: (4)、在系统引导画面选择所要的操作项第4项,进入系统数据备份画面;(用UP或DOWN键)

(5)、在系统数据备份画面有很多项,选择所要备份的数据项,按下YES键,数据就会备份到存储卡中; (6)、按下SELECT键,退出备份过程; 2、数据恢复: (1)、如果要进行数据的恢复,按照相同的步骤进入到系统引导画面; (2)、在系统引导画面选择第一项SYSTEM DATA LOADING; (3)、选择存储卡上所要恢复的文件; (4)、按下YES键,所选择的数据回到系统中; (5)、按下SELECT键退出恢复过程; (三)使用外接PC进行数据的备份与恢复 使用外接PC进行数据备份与恢复,是一种非常普遍的做法。这种方法比前面一种方法用的更多,在操作上也更为方便。操作步骤如下: 1、数据备份: (1)、准备外接PC和RS232传输电缆; (2)、连接PC与数控系统; (3)、在数控系统中,按下SYSTEM功能键,进入ALLIO菜单,设定传输参数(和外部PC匹配); (4)、在外部PC设置传输参数(和系统传输参数相匹配); (5)、在PC机上打开传输软件,选定存储路径和文件名,进入接收数据状态; (6)、在数控系统中,进入到ALLIO画面,选择所要备份的文件(有程序、参数、间距、伺服参数、主轴参数等等可供选择)。按下“操作”菜单,进入到操作画面,再按下“PUNCH”软键,数据传输到计算机中; 2、数据恢复: (1)、外数据恢复与数据备份的操作前面四个步骤是一样的操作;

信息安全系统备份与恢复管理办法

信息安全系统备份与恢复管理办法 1.总则 第一条为保障公司信息系统的安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用和数据的安全,保证数据不丢失,特制定本办法。第二条对于信息系统涉及到的网络设备、网络线路、加密设备、计算机设备、应用系统、数据库、维护人员,采取备份措施,确保在需要时有备用资源可供调配和恢复。 第三条本管理办法中涉及到的设备主要指运行在信息技术部主机房中的网络设备、加密设备及计算机设备。 第四条信息系统备份手段根据不同信息的重要程度及恢复时间要求分为实时热备份和冷备份等。同一平台的系统应尽量使用同样的备份手段,便于管理和使用。信息技术部负责信息系统的备份与恢复管理,并制定数据备份计划,对数据备份的时间、内容、级别、人员、保管期限、异地存取和销毁手续等进行明确规定。 第五条信息技术部应根据各系统的重要程度、恢复要求及有关规定要求制定系统配置、操作系统、各应用系统及数据库和数据文件的备份周期和保存期限。 第六条对于重要系统和数据的备份周期及备份保存期限应遵循以下原则:

(一) 至少要保留一份全系统备份。 (二) 每日运行中发生变更的文件,都应进行备份。 (三) 生产系统程序库要定期做备份,每月至少做一次。 (四) 生产系统有变更时,须对变更前后的程序库进行备份。 (五) 批加工若有对主文件的更新操作,则应进行批加工前备份。 (六) 每天批加工结束后都要对数据文件进行批后备份,对核心数据须进行第二备份。 (七) 对批加工生成的报表也要有相应的备份手段,并按规定的保留期限进行保留。 (八) 用于制作给用户数据盘的文件应有备份。 (九) 各重要业务系统的月末、半年末、年末以及计息日等特殊日的数据备份须永久保留。 (十) 定期将生产系统的数据进行删减压缩,并将删减的数据备份上磁带,永久保留。 (十一) 以上未明确保存期限的各项备份的保存至少应保存一周。 2.设备备份 第七条信息系统电源设备应尽量保证有两套电源来源。 第八条对关键通讯线路和网点通讯线路必须采用双通讯线路;网络的运行线路和备份线路必须选用不同的网络服务供

Windows7官方个版本正版镜像下载地址

Windows7官方个版本正版镜像下载地址 简体中文旗舰版: 32位:下载地址:ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7A45E81B 76199DDCCDDC4B509|/ SHA1:B589336602E3B7E134E222ED47FC94938B04354F 64位:下载地址:ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA757CE6D2D B78B6901F81A6907A|/ SHA1:4A98A2F1ED794425674D04A37B70B9763522B0D4 简体中文专业版: 32位:下载地址:ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|e812fbe758f 05b485c5a858c22060785|h=S5RNBL5JL5NRC3YMLDWIO75YY3UP4ET5|/ SHA1:EBD595C3099CCF57C6FF53810F73339835CFBB9D 64位:下载地址:ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|3474800521d 169fbf3f5e527cd835156|h=TIYH37L3PBVMNCLT2EX5CSSEGXY6M47W|/ SHA1:5669A51195CD79D73CD18161D51E7E8D43DF53D1 简体中文家庭高级版: 32位:下载地址:ed2k://|file|cn_windows_7_home_premium_x86_dvd_x15-65717.iso|2604238848|98e1eb474f9 2343b06737f227665df1c|h=GZ7FZE7XURI5HNO2L7H45AGWNOLRLRUR|/ SHA1:CBA410DB30FA1561F874E1CC155E575F4A836B37 64位:下载地址:ed2k://|file|cn_windows_7_home_premium_x64_dvd_x15-65718.iso|3341268992|9f976045631 a6a2162abe32fc77c8acc|h=QQZ3UEERJOWWUEXOFTTLWD4JNL4YDLC6|/ SHA1:5566AB6F40B0689702F02DE15804BEB32832D6A6 简体中文企业版: 32位:下载地址:ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA74E5735 3B2F35BC33E56BD5202|/ SHA1:50F2900D293C8DF63A9D23125AFEEA7662FF9E54 64位:下载地址:ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF115C2EE 28D74B178BE1A84AB3B|/ SHA1:EE20DAF2CDEDD71C374E241340DEB651728A69C4

论工控生产系统的数据备份及系统灾难恢复方法

论工控生产系统的数据备份及系统灾难恢复方法

目录 一、初识工控生产系统 (3) 1.应用架构与部署方式 (3) 2.硬件组成 (5) 3.操作系统 (8) 4.应用程序 (8) 二、工控机数据与系统保护分析 (9) 1.数据重要 VS 系统重要 (9) 2.硬件容易损坏 (9) 3.工控机应用程序复杂 (10) 4.昂贵的费用 (10) 三、对工控机的保护方案有哪些 (10) 1.冷备机 (10) 2.Ghost方案 (11) 3.磁盘克隆 (11) 四、理想的工控机保护方案 (12) 1.工控机需要备份什么 (12) 2.在线热备份 (12) 3.多种备份机制 (12) 4.灾难发生后的系统快速恢复 (13) 5.异机还原与系统迁移 (13) 五、Acronis到底能对工控干点啥 (13) 1.在线热备份,无停机时间 (17) 2.在线热备份,无停机时间生产快速恢复 (18) 3.更经济、更有效 (18)

一、初识工控生产系统 工控机(Industrial Personal Computer,IPC)即工业控制计算机,与传统的办公用计算机不同,工控机采用专用的硬件设备,使用特殊的制造工艺而成。在控制现场、路桥控制收费系统、医疗仪器、环境保护监测、通讯保障、智能交通管控系统、楼宇监控安防、语音呼叫中心、排队机、POS柜台收银机、数控机床、加油机、金融信息处理、石化数据采集处理、物探、野外便携作业、环保、军工、电力、铁路、高速公路、航天、地铁、智能楼宇、户外广告等诸多领域得到广泛的应用。我们将从多个方面来认识工控机,以下将进行基础知识的介绍。 1.应用架构与部署方式 工控机从应用架构与部署方式来分,可分为单节点工控设备、集中管控型工控系统、混合型工控系统。 单节点工控设备只负责对单个生产环节进行控制,不与其它生产设备产生必然的数据联系。例如,某机械生产机床设备配置一台工控机,并在前端配置LED按键式控制面板,生产工人通过前端LED面板的操作对生产设备进行参数的配置与调整,最后生产出预期的产品。如下图所示(本文中图片或来自网络,以达到读者对所讲述内容深入理解,仅供参考):

如何在windows下安装原版mac系统

windows下安装苹果教程。最详细,最全面,最值得看的教程! 最详细,最适合新手的教程:如何原版安装mac 从windows到mac os(安装黑苹果目前最详细教程) 最近网上有不少如何安装苹果系统的教程,个人感觉都不错,但是有些地方还是不够详细,所以我决定写一个比较详细的教程。鉴于网上有不少类似的教程,所以我的这个安装方法中有不少是借鉴和总结他们的,在此不一一提出,但是对这些作者表示感谢和崇高的敬意。本教程较长,不要因此以为苹果的安装比较复杂,其实我只是让每一步叙述的更加详细,提供更多的方法处理安装,还有就是加入了大量的图片。由于本教程过于详细,所以比较适合新手阅读。 安装之前要做好失败的心理准备,新手建议先备份重要数据到别的机器,预防数据丢失。要有足够的耐心和毅力,敢于不断尝试,不自己实践过永远不知道自己电脑是不是能够成功安装,安装成功后的成就感只有自己知道,另外完成安装过程也是学习电脑知识的过程,祝各位能安装顺利。 以下是详细过程: 安装之前的准备: ################################################### ##################### 硬盘安装原版mac(以10.6.3零售版为例) 以下工具或软件下载地址在4楼和5楼,4楼提供10.6.3零售版115网盘下载,5楼提供帖子中所涉及的大部分软件的115网盘下载,126楼提供本教程的pdf格式的下载

所要准备的软件等: ①原版苹果镜像,推荐Mac.OS.X.10.6.3.Retail.dmg ②推荐bootthink2.4.6版本,另外也可以用变色龙,个人喜欢用bootthink 引导,感觉方便。 ③winPE或者windows原版安装光盘(设置C盘为活动分区用),推荐winPE,winPE的详细制作过程及制作需要的软件(附下载地址)下面有,另外一般的Ghost安装盘上都会有winPE的。 ④硬盘安装助手 ⑤XP必备DiskGenius:硬盘分区工具 (windows7可不用该工具,系统自带磁盘管理) ⑥Mac.OS.X.10.6.3.Retail的替换文件: 替换文件是让苹果系统可以安装在MBR分区上,即windows的分区,有想拿出整块硬盘安装mac的可以不用替换,如何替换看以下的安装过程。不替换的缺点:需要另外找硬盘备份自己硬盘上的所有数据资料,因为硬盘由MBR 分区转变为GPT时会损失所有数据。 ⑦HFS Explorer和Java VM(Java JRE虚拟机),,先安装Java VM (Java JRE虚拟机),才能正常使用HFS Explorer。 ⑧Macdrive或是TransMac,安装了Macdrive可以不用TransMac。 ⑨AMD,intel Atom和Pentium单核的CPU需要准备替换对应的内核 主板不能开启AHCI的还需要补丁i系列的处理器(i3,i5,i7)还需要替换10.3.1以上内核,因为2010年4月

系统数据备份与恢复规程

密级:内部 系统数据备份与恢复规程 ***有限公司 202 年月

目录 第一章引言 (1) 1.1编写目的 (1) 1.2预期读者 (1) 1.3编写背景 (1) 1.3.1使用者 (1) 1.4文档结构 (2) 第二章数据备份功能要求详述 (3) 2.1备份环境 (3) 2.1.1备份环境 (3) 2.1.2存储网络环境 (4) 2.1.3备份方式及备份空间 (4) 2.2备份需求 (5) 2.2.1系统级备份 (5) 2.2.2应用级备份 (5) 2.2.3文件级备份 (5) 2.2.4数据库备份 (5) 2.3备份策略 (5) 2.3.1备份策略定义 (5) 2.3.2系统级备份策略 (6) 2.3.3应用级备份策略 (6) 2.3.4文件级备份策略 (6) 2.3.5数据库备份策略 (7) 第三章故障与恢复策略 (8) 3.1故障与恢复介绍 (8) 3.2设计原则 (9) 3.3故障与恢复策略 (9) 第四章备份与恢复步骤 (10) 4.1备份步骤 (10) 4.1.1系统级备份步骤 (10) 4.1.2应用软件备份步骤 (10) 4.1.3脱机应用文件备份步骤 (11) 4.1.4数据库备份步骤 (13) 4.2恢复步骤 (16) 4.2.1系统级故障恢复步骤 (16) 4.2.2应用软件故障恢复步骤 (16) 4.2.3脱机应用文件故障恢复步骤 (17) 4.2.4数据库故障恢复步骤 (18)

第一章引言 1.1 编写目的 本文档主要描述江西中磊支付平台的数据备份与恢复的需求、策略要求以及相应的步骤,为后期实施和维护管理过程中提供数据库备份与恢复的规范。 1.2 预期读者 江西中磊支付平台项目组项目经理、集成经理、开发经理、系统管理员。 1.3 编写背景 在江西中磊支付平台的软件实施过程中,数据的安全至关重要,一方面数据的丢失或者数据库系统无法正常运行影响江西中磊支付平台业务应用系统的正常运作,另一方面如果系统在崩溃后不能够按照预期的要求恢复到指定状态也将影响到江西中磊支付平台业务应用系统的正常运作,例如数据冲突或者状态不一致。特地编写此文档将对实施过程中的数据备份与恢复提供指导。 1.3.1使用者 本文档适用于参与江西中磊支付平台项目实施的工程师、江西中磊支付平台的系统管理员以及项目经理、开发经理、系统管理员。

系统数据备份与恢复管理制度

系统数据备份与恢复管理制度 一、目的 为规范数据备份管理工作,合理存储历史数据及保证数据的安全性,防止因硬件故障、意外断电、病毒等因素造成数据的丢失,保障中心技术资料的储备,特制订本管理制度。 二、适用范围 中心各部门、实验室。 三、备份介质 移动硬盘、光盘、邮盘等 四、制度内容 1、为了确保系统计算机系统的数据安全,使得在计算机系统失效或数据丢失时,能依靠备份尽快地恢复系统和数据,保护关键应用数据的安全,保证数据不丢失,特制定本制度。 2、拥有重要系统或重要数据的科室或部门应该及时对数据进行备份,防止系统数据的丢失;涉及数据备份和恢复的科室或部门要由专人负责数据备份工作,并认真填写数据备份记录表。 3、计算机信息数据备份的基本原则是“谁使用、谁备份”,即由计算机使用者按要求及时备份相关信息数据。 4、数据的备份分为定期备份和临时备份。定期备份是指按照规定的时间定期对数据进行备份;临时备份是指在特殊情况下(如电脑中毒、软件升级、更换设备等)进行的应急备份。各科室、部门可依据自身的工作特点选择不同的备份模式。 5、所有数据备份工作由各科室指定管理员进行详实记录,并建

立记录档案。备份的数据应该严格管理,妥善保存;备份数据资料保管地点应有防火、防热、防潮、防尘、防磁、防盗设施。 6、数据的备份、恢复、转出、转入的权限都应严格控制。严禁未经授权将数据备份出系统,转给无关的人员或单位;严禁未经授权进行数据恢复或转入操作。 7、一旦发生数据丢失或数据破坏等情况,要由系统管理员进行备份数据恢复,以免造成不必要的麻烦或更大的损失。 8、说明:其他相关规定按程序文件BZCDC/CX24-2011《计算机应用管理程序》执行。 五、附表 BZCDC/JL0050 《数据备份记录表》

相关文档
相关文档 最新文档