文档库 最新最全的文档下载
当前位置:文档库 › 氨基酸和多肽在生活中的应用

氨基酸和多肽在生活中的应用

氨基酸和多肽在生活中的应用
氨基酸和多肽在生活中的应用

氨基酸和多肽在生活中的应用

一·食品

氨基酸:氨基酸含量比较丰富的食物有鱼类,豆类及豆制品。氨基酸可以用作食品添加剂来提高食物的营养价值;如红牛饮料中含有赖氨酸添加剂;可用于调味,谷氨酸具有鲜味,其钠盐就是味精。

多肽:在普通的面包制作基础上添加一定数量的功能肽,可提高其营养价值并有防止面包老化(功能肽具有保湿性);可作为乳蛋白的替代品,制成特殊的婴幼儿食品,能有效地减轻或消除儿童对乳蛋白的过敏反应,来促进宝宝的生长发育;还可作为调味剂,如阿巴斯甜,是一种低热量的食用调味剂。

二·保健品

氨基酸:如脑白金,瑞年氨基酸等中老年保健品,其中一些氨基酸,如精氨酸、色氨酸、苯丙氨酸等具有缓解压力,避免沮丧及焦虑等状态的作用,有提高精力的作用。

多肽:白蛋白多肽(AP)从卵清蛋白中分离提取的一组低聚肽。它具有调整人体免疫功能、提高血清蛋白含量、改善微循环,进而增强体质、提高防病能力的作用;大豆多肽是从大豆蛋白中分离出来的活性多肽,它具有降低胆固醇在体内重吸收,减少甘油三酯在体内合成,促进脂肪代谢等功能;由于食用多肽具有易被吸收利用的特点,所以,当体内因消耗过多的营养物质,致使体内出现内环境失调,各系统功能处于低效状态,感到疲劳,服用多肽就能迅速地使体内所缺乏的活性物质和营养得到补充,从而达到消除疲劳的目的。

三·药品

氨基酸:精氨酸注射液可用于肝昏迷的急救药,可由明胶水解并精制而成;甘氨酸与重氮化合物作用制成的一系列抗癌药物对胃癌等有显著功效;谷氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。

多肽:多肽吸收快速,所以人们把多肽原料中间体作为药品和食品配方的原因,其目的是要加强药效,增强吸收率,可将平常人所食的营养物质,特别是钙等对人体有益的微量元素,吸附、粘贴、装载在本体上;多肽被人体吸收后,可在人体中起信使作用,它作为神经递质传递信息,指挥神经,发挥自身作用,维护人体神经的团队精神和整体效应。

四·美容护肤

氨基酸:一些氨基酸可以增加皮肤营养,改善皮肤问题,可用作护肤品;头部美容的有烫发剂【半肤氨酸(半胧氨酸是还原剂,它能使头发角蛋白的硫一硫键打开,使坚硬而弹性的头发变成柔软容易延伸的还原头发,做成卷曲或波浪形状后,再用氧化剂处理使其重新恢复硫一硫键,义变回天然头发)】、染发剂、护发剂、养发剂,

多肽:可用作多肽护肤品,如表皮生长因子,成纤维细胞生长因子、抗菌肽,生物多肽护肤效果相较于传统护肤品高出许多(但也很贵。。。)。多肽在护肤品中的作用:激活细胞活性,修复受损细胞,促进新陈代谢,构成结缔组织的有机物质,帮助弹力蛋白、胶原蛋白的合成。

氨基酸多肽与蛋白质

第十五章 氨基酸、多肽与蛋白质 (Amino Acids,Peptides and Protein ) 一、教学目的和要求 1.掌握氨基酸的分类、常见氨基酸的结构和名称。 2.掌握氨基酸的化学性质。 3.理解多肽的一般结构。 4.了解蛋白质的一级结构 、二级结构、三级结构和四级结构。 5.了解蛋白质的性质。 6.了解氨基酸、蛋白质在生命活动中的重要意义。 二、教学重点与难点 重点是氨基酸的化学性质。 难点是蛋白质的一级结构 、二级结构、三级结构和四级结构。 三、教学方法和教学学时 (1)教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合,配合适量的课外作业。 (2)教学学时:2学时 四、教学内容 1、氨基酸。 2、多肽。 3、蛋白质。 4、核酸。 五、总结、布置作业 15.1 氨基酸Amino Acids 一、氨基酸的结构和分类 在蛋白质中常见的氨基酸约20种,除脯氨酸外都是α-氨基酸,除甘氨酸外都含手性碳原子且大多 为 L-构型。 组成蛋白质常见的氨基酸有20种,除甘氨酸外,其他氨基酸都有手性碳原子,具有旋光性,其构型 L 型,投影在右的为D 型。D 、L 氨基酸在生理活性上差别很大。 二、氨基酸的化学性质 1. 氨基酸的两性和等电点 研究表明,氨基酸晶体是以偶极离子的形式存在的: R-CH-COO NH 2 R-CH-COO - N + H 3 R-CH-COOH N + H 3 H 3O + OH OH H O + 氨基酸在溶液中的存在形式与溶液的pH 值有关,如果调节pH 使氨基酸成为正负电荷相等的偶极离子,

此时溶液的pH 值称为该氨基酸的等电点(pI) 等电点是每一种氨基酸的特定常数。 当pH <pI ,主要以正离子形式存在,在电场中会向阴极移动; 当pH >pI ,主要以负离子形式存在,在电场中会向阴极移动; 当pH =pI ,主要以偶极离子形式存在,在电场中会向阴极移动; 2. 与亚硝酸反应 放出氮气((Van Slyke 定氨基法) R-CH-COOH +NH 2 HNO 2 R-CH-COOH +OH N 2O H 2 测定放出的氮量,便可计算分子中氨基的含量。 3. 与甲醛反应 R-CH-COOH NH 2 HCHO HOCH 2-N-CH 2OH R-CH-COOH 甲醛固定氨基后,便可用碱滴定羧基。 原理:-OH 的-I 效应降低了N 原子上的电子云密度,使氨基的碱性消失,再用碱滴定-COOH ,从而测定氨基酸的含量——氨基酸的甲醛滴定法。 4. 络合性能 R CH O Cu O R CH O N H 2O NH 2 5. 氨基酸的受热反应 α-氨基酸: C H 3NH 2 O 3 H C H 3NH O CH 3 NH O β- γ - δ- 氨基酸脱水与相应的羟基酸脱水相似。 6. 与水合茚三酮反应——生成兰紫色物质 O O OH OH H 2N-CH-COOH R O O OH O N 此反应可用来鉴别氨基酸。 7. 失羧作用 -CH-COOH NH 2 H 2N-CH 2(CH 2)3Ba(OH)2-CO 2 H 2N-(CH 2)5 -NH 2 赖氨酸 尸胺 蛋白质腐烂时之所以极臭就是因为生成了剧毒的尸胺和腐肉胺(1,4-丁二胺)。 8. 失羧和失氨作用 (CH 3)2CHCH 2-CHCOOH + H 2O NH 2 (CH 3)2CHCH 2CH 2OH 2 + NH 3

氨基酸和多肽在生活中的应用

氨基酸和多肽在生活中的应用 一·食品 氨基酸:氨基酸含量比较丰富的食物有鱼类,豆类及豆制品。氨基酸可以用作食品添加剂来提高食物的营养价值;如红牛饮料中含有赖氨酸添加剂;可用于调味,谷氨酸具有鲜味,其钠盐就是味精。 多肽:在普通的面包制作基础上添加一定数量的功能肽,可提高其营养价值并有防止面包老化(功能肽具有保湿性);可作为乳蛋白的替代品,制成特殊的婴幼儿食品,能有效地减轻或消除儿童对乳蛋白的过敏反应,来促进宝宝的生长发育;还可作为调味剂,如阿巴斯甜,是一种低热量的食用调味剂。 二·保健品 氨基酸:如脑白金,瑞年氨基酸等中老年保健品,其中一些氨基酸,如精氨酸、色氨酸、苯丙氨酸等具有缓解压力,避免沮丧及焦虑等状态的作用,有提高精力的作用。 多肽:白蛋白多肽(AP)从卵清蛋白中分离提取的一组低聚肽。它具有调整人体免疫功能、提高血清蛋白含量、改善微循环,进而增强体质、提高防病能力的作用;大豆多肽是从大豆蛋白中分离出来的活性多肽,它具有降低胆固醇在体内重吸收,减少甘油三酯在体内合成,促进脂肪代谢等功能;由于食用多肽具有易被吸收利用的特点,所以,当体内因消耗过多的营养物质,致使体内出现内环境失调,各系统功能处于低效状态,感到疲劳,服用多肽就能迅速地使体内所缺乏的活性物质和营养得到补充,从而达到消除疲劳的目的。 三·药品 氨基酸:精氨酸注射液可用于肝昏迷的急救药,可由明胶水解并精制而成;甘氨酸与重氮化合物作用制成的一系列抗癌药物对胃癌等有显著功效;谷氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。 多肽:多肽吸收快速,所以人们把多肽原料中间体作为药品和食品配方的原因,其目的是要加强药效,增强吸收率,可将平常人所食的营养物质,特别是钙等对人体有益的微量元素,吸附、粘贴、装载在本体上;多肽被人体吸收后,可在人体中起信使作用,它作为神经递质传递信息,指挥神经,发挥自身作用,维护人体神经的团队精神和整体效应。 四·美容护肤 氨基酸:一些氨基酸可以增加皮肤营养,改善皮肤问题,可用作护肤品;头部美容的有烫发剂【半肤氨酸(半胧氨酸是还原剂,它能使头发角蛋白的硫一硫键打开,使坚硬而弹性的头发变成柔软容易延伸的还原头发,做成卷曲或波浪形状后,再用氧化剂处理使其重新恢复硫一硫键,义变回天然头发)】、染发剂、护发剂、养发剂, 多肽:可用作多肽护肤品,如表皮生长因子,成纤维细胞生长因子、抗菌肽,生物多肽护肤效果相较于传统护肤品高出许多(但也很贵。。。)。多肽在护肤品中的作用:激活细胞活性,修复受损细胞,促进新陈代谢,构成结缔组织的有机物质,帮助弹力蛋白、胶原蛋白的合成。

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一些非免疫性疾病的预防和治疗。

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%-20%约达人体固体总量的45%肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较咼,如大豆中蛋白含量约为38%而黄豆中咼达40%微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%-80%干酵母中蛋白质含量也高达46. 6%病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1?生物催化作用 作为生命体新陈代谢的催化剂一一酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2?结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白, a -角蛋白是组成毛发、羽毛、角质、皮肤的结 构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的

多肽氨基酸知识

(一)基本氨基酸 组成蛋白质得20种氨基酸称为基本氨基酸。它们中除脯氨酸外都就是*氨基酸,即在a-碳原子上有一个氨基。基本氨基酸都符合通式,都有单字母与三字母缩写符号。 按照氨基酸得侧链结构,可分为三类:脂肪族氨基酸、芳香族氨基酸与杂环氨基酸。 1、脂肪族氨基酸共15种。 侧链只就是炷链:Gly, Ala, Vai. Leu. lie后三种带有支链,人体不能合成,就是必需氨基酸。 侧链含有羟基:Scr, Thr许多蛋白酶得活性中心含有线氨酸,它还在蛋白质与糖类及磷酸得结合中起重要作用。 侧链含硫原子:Cys, Met两个半胱氨酸可通过形成二硫键结合成一个胱氨酸。二硫键对维持蛋白质得髙级结构有重要意义。半胱氨酸也经常出现在蛋白质得活性中心里。甲硫氨酸得硫原子有时参与形成配位键。甲硫氨酸可作为通用甲基供体,参与多种分子得甲基化反应。 侧链含有竣基:Asp(D), Glu(E) 侧链含酰胺基:Asn(N). Gln(Q) 侧链显碱性:Arg(R), Lys(K) 2、芳香族氨基酸包括苯丙氨酸(Phe.F)与酪氨酸(Tyr.Y)两种。酪氨酸就是合成甲状腺素得原料。 3、杂环氨基酸 包括色氨酸(Trp.W)、组氨酸(His)与脯氨酸(Pro)三种。其中得色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)o所以可通过测量蛋白质得紫外吸收来测立蛋白质得含量。组氨酸也就是碱性氨基酸,但碱性较弱,在生理条件下就是否带电与周用内环境有关。它在活性中心常起传递电荷得作用。组氨酸能与铁等金属离子配位。脯氨酸就是唯一得仲氨基酸,就是a- 螺旋得破坏者。 B就是指Asx.R卩Asp或Asn:Z就是指Glx,R卩Glu或Gin。 基本氨基酸也可按侧链极性分类: 非极性氨基酸:Ala, Vai. Leu. lie, Met, Phe. Trp. Pro 共八种 极性不带电荷:Gly, Ser. Thr, Cys, Asn. Gin, Tyr 共七种 带正电荷:Arg, Lys, His 带负电荷:Asp, Glu (二)不常见得蛋白质氨基酸 某些蛋白质中含有一些不常见得氨基酸,它们就是基本氨基酸在蛋白质合成以后经疑化、拨化、甲基化等修饰衍生而来得。也叫稀有氨基酸或特殊氨基酸。如4-疑脯氨酸、5-疑赖氨酸、锁链素等。其中羟脯氨酸与疑赖氨酸在胶原与弹性蛋白中含星较多。在甲状腺素中还有3.5- 二碘酪氨酸。 (三)非蛋白质氨基酸 自然界中还有150多种不参与构成蛋白质得氨基酸。它们大多就是基本氨基酸得衍生物,也有一些就是D-氨基酸或队丫、L氨基酸。这些氨基酸中有些就是重要得代谢物前体或中间产物,如瓜氨酸与乌氨酸就是合成精氨酸得中间产物0-丙氨酸就是遍多酸(泛酸,辅酶A前体) 得前体,丫-氨基丁酸就是 传递神经冲动得化学介质。 二、氨基酸得性质 (一)物理性质 *氨基酸都就是白色晶体,每种氨基酸都有特殊得结晶形状,可以用来鉴别怨种氨基酸。除胱氨酸与酪氨酸外,都能溶于水中。脯氨酸与疑脯氨酸还能溶于乙醇或乙MI中。 除甘氨酸外.a-氨基酸都有旋光性.*碳原子具有手性。苏氨酸与异亮氨酸有两个手性碳原子。从蛋白质水解得到得氨基酸都就是L-型。但在生物体内特别就是细菌中.D-氨基酸也存在, 如细菌得细胞壁与某些抗菌素中都含有D-氨基酸。

氨基酸和肽类

第17章氨基酸和肽 本章重点:介绍20种编码氨基酸的结构、分类和命名;氨基酸的两性电离和等电点;氧化脱氨、茚三酮反应、脱羧反应;肽的命名;肽键的结构及其与医药相关的生物活性肽。 蛋白质可以被酸、碱或蛋白酶催化水解,在水解过程中,蛋白质分子逐渐降解成相对分子质量越来越小的肽段,直到最终成为氨基酸混合物。氨基酸(amino acid)是分子中具有氨基和羧基的一类含有复合官能团的化合物,是蛋白质的基本组成成分;肽(peptide)是氨基酸分子间脱水后以肽键(peptide bond)相互结合的物质,除蛋白质部分水解可产生长短不一的各种肽段外,生物体内还有很多肽游离存在,它们具有各种特殊的生物学功能,在生长、发育、繁衍及代谢等生命过程中起着重要的作用。本章主要介绍组成蛋白质的氨基酸结构、种类、性质。 学完本章以后,你能否回答以下问题: 1.组成天然蛋白质的氨基酸有多少种?其结构特点是什么? 2.何谓氨基酸的等电点?中性氨基酸的等电点是小于7、等于7、还是大于7? 3.什么是肽单位?它有哪些基本特征? 17.1氨基酸的结构、分类和命名 17.1.1 氨基酸的结构 温习提示:羟基酸和羰基的结构。手性碳原子,D/L和R/S构型标记法。 氨基酸是一类取代羧酸,可视为羧酸分子中烃基上的氢原子被氨基取代的一类产物,根据氨基和羧基在分子中相对位置的不同,氨基酸可分为α-,β-,γ-,…,ω-氨基酸。 R CHC OOH R CHC H COOH R CHC H2CH2C OOH 2 NH2NH NH2 2 α-氨基酸β-氨基酸γ-氨基酸 目前在自然界中发现的氨基酸有数百种,但由天然蛋白质完全水解生成的氨基酸中只有20种,与核酸中的遗传密码相对应,用于在核糖体上进行多肽合成,这20种氨基酸称为编码氨基酸(coding amino acid)。它们在化学结构上具有共同点,即在羧基邻位α-碳原子上有一氨基,为α-氨基酸(脯氨酸为α-亚氨基酸)。由于氨基酸分子中既含有碱性的氨基又含有酸性的羧基,在生理条件下,羧基几乎完全以—COO-形式存在,大多数氨基主要以—NH3+形式存在,所以氨基酸分子是一偶极离子,一般以内盐形式存在,可用通式表示为: R C H C OO +NH 3 式中R代表侧链基团,不同的氨基酸只是侧链R基不同。20种编码氨基酸中除甘氨酸外,其它各种氨基酸分子中的α-碳原子均为手性碳原子,都有旋光性。 氨基酸的构型通常采用D/L标记法,有D-型和L -型两种异构体。以甘油醛为参考标准,

多肽氨基酸知识

(一)基本氨基酸 组成蛋白质的20种氨基酸称为基本氨基酸。它们中除脯氨酸外都是α-氨基酸,即在α-碳原子上有一个氨基。基本氨基酸都符合通式,都有单字母和三字母缩写符号。 按照氨基酸的侧链结构,可分为三类:脂肪族氨基酸、芳香族氨基酸和杂环氨基酸。 1.脂肪族氨基酸共15种。 侧链只是烃链:Gly, Ala, Val, Leu, Ile后三种带有支链,人体不能合成,是必需氨基酸。 侧链含有羟基:Ser, Thr许多蛋白酶的活性中心含有丝氨酸,它还在蛋白质与糖类及磷酸的结合中起重要作用。 侧链含硫原子:Cys, Met两个半胱氨酸可通过形成二硫键结合成一个胱氨酸。二硫键对维持蛋白质的高级结构有重要意义。半胱氨酸也经常出现在蛋白质的活性中心里。甲硫氨酸的硫原子有时参与形成配位键。甲硫氨酸可作为通用甲基供体,参与多种分子的甲基化反应。 侧链含有羧基:Asp(D), Glu(E) 侧链含酰胺基:Asn(N), Gln(Q) 侧链显碱性:Arg(R), Lys(K) 2.芳香族氨基酸包括苯丙氨酸(Phe,F)和酪氨酸(Tyr,Y)两种。酪氨酸是合成甲状腺素的原料。 3.杂环氨基酸 包括色氨酸(Trp,W)、组氨酸(His)和脯氨酸(Pro)三种。其中的色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)。所以可通过测量蛋白质的紫外吸收来测定蛋白质的含量。组氨酸也是碱性氨基酸,但碱性较弱,在生理条件下是否带电与周围内环境有关。它在活性中心常起传递电荷的作用。组氨酸能与铁等金属离子配位。脯氨酸是唯一的仲氨基酸,是α-螺旋的破坏者。 B是指Asx,即Asp或Asn;Z是指Glx,即Glu或Gln。 基本氨基酸也可按侧链极性分类: 非极性氨基酸:Ala, Val, Leu, Ile, Met, Phe, Trp, Pro共八种 极性不带电荷:Gly, Ser, Thr, Cys, Asn, Gln, Tyr共七种 带正电荷:Arg, Lys, His 带负电荷:Asp, Glu (二)不常见的蛋白质氨基酸 某些蛋白质中含有一些不常见的氨基酸,它们是基本氨基酸在蛋白质合成以后经羟化、羧化、甲基化等修饰衍生而来的。也叫稀有氨基酸或特殊氨基酸。如4-羟脯氨酸、5-羟赖氨酸、锁链素等。其中羟脯氨酸和羟赖氨酸在胶原和弹性蛋白中含量较多。在甲状腺素中还有3,5-二碘酪氨酸。 (三)非蛋白质氨基酸 自然界中还有150多种不参与构成蛋白质的氨基酸。它们大多是基本氨基酸的衍生物,也有一些是D-氨基酸或β、γ、δ-氨基酸。这些氨基酸中有些是重要的代谢物前体或中间产物,如瓜氨酸和鸟氨酸是合成精氨酸的中间产物,β-丙氨酸是遍多酸(泛酸,辅酶A前体)的前体,γ-氨基丁酸是传递神经冲动的化学介质。 二、氨基酸的性质 (一)物理性质 α-氨基酸都是白色晶体,每种氨基酸都有特殊的结晶形状,可以用来鉴别各种氨基酸。除胱氨酸和酪氨酸外,都能溶于水中。脯氨酸和羟脯氨酸还能溶于乙醇或乙MI中。 除甘氨酸外,α-氨基酸都有旋光性,α-碳原子具有手性。苏氨酸和异亮氨酸有两个手性碳原

多肽知识

什么是肽 肽(peptide)是α-氨基酸以肽链连接在一起而形成的化合物,它也是蛋白质水解的中间产物。 一般肽中含有的氨基酸的数目为二到九,根据肽中氨基酸的数量的不同,肽有多种不同的称呼:由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等,一直到九肽。通常由10~100氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质,换言之,蛋白质有时也被称为多肽。 由多个分子α-氨基酸的-NH2与-COOH互相缩合失水后形成10个肽键(-CONH-)以上的长链化合物。它包括多种在人的机体中具一定生理活性的化合物,可以从动物组织中提取,也可能人工合成。蛋白质即是以各种氨基酸按一定顺序以肽键形成的长链肽,通过多种次级键交联结合而成的高分子化合物,蛋白质具有复杂的四级结构,通过不同程度的水解,破析结构可得包括多肽等的产物:蛋白质→蛋白脉(proteose) →蛋白胨(pe ptone) →多肽→寡肽(oligopeptide,2~10个肽键的长链肽) →氨基酸。这同时也表明了蛋白质的合成途径。因此,借人工合成多肽,不仅可用于生化制药工业,还可用来研究阐明蛋白质的合成途径及其结构。 人体很多活性物质都是以肽的形式存在的,没有肽,就没有活性,就没有生命。肽涉及人体的激素、神经、细胞生长和生殖各领域,其重要性在于调节体内各个系统和细胞的生理功能,激活体内有关酶系,促进中间代谢膜的通透性,或通过控制DNA转录或影响特异的蛋白合成,最终产生特定的生理效应。肽是涉及人体内多种细胞功能的重要物质。肽可以合成细胞,并调节细胞的功能活动。肽在人体作为神经递质,传递信息。肽可在人体作为运输工具,将人体所食的各种营养物质与各种维生素、生物素、钙及对人体有益的微量元素输送到人体各细胞、器官和组织。肽是人体重要的生理调节物,它可全面调节人体生理功能,增强和发挥人体生理活性,它具有重要的生物学功能。肽对人的细胞活性、功能活动、生命存在太重要了。但现代人因各种因素使人体中的肽流失、损失,合成肽的能力大大减弱,因此现代人体缺乏肽,必须补充人工合成肽,补肽就是补活性,补肽就是补活力,补肽就是补生命。(摘自酶法多肽专家邹远东教授《酶法多肽论》)

氨基酸合成多肽过程中的相关计算

一、氨基酸合成多肽过程中的相关计算: 1、蛋白质分子量、氨基酸数、肽链数、肽键数和失去水分子数的关系 肽键数=失去水分子数=氨基酸数—肽链数(不适用于环状肽链) 蛋白质相对分子质量=氨基酸数×氨基酸平均相对分子质量—脱去水分子数 2、蛋白质中游离氨基或惢基数目的计算 至少含有氨基数或羧基数=肽链数 游离氨基或羧基数目=肽链数+R基中含有的氨基或羧基数 3、蛋白质中含有N、O原子数的计算 N原子数=肽键数+肽链数+R基上的N原子数=各氨基酸中N原子总数 O原子数=肽键数+2×肽链数+R基上O原子的数=个氨基酸中O原子总数—脱去水分子数 4、已知肽链分子式求各氨基酸个数,先看原子数最少的,一般从N原子和O原子 个数着手,若含有S原子,则只需要看S原子数即可 一条肽链上至少含有的N原子数为:氨基酸总数(每个氨基酸上含有1个N原子,脱水缩合对此并无影响) 一条肽链上至少含有的O原子数为:肽键数(肽键上含有1个O原子)+2(游离的羧基含有的O原子数) 5、氨基酸的排列与多肽种类的计算 (1)假若有n种氨基酸形成一个三肽,那么形成三肽的种类有:n3 种 (2)假若n种氨基酸形成一个m肽,则形成的多肽种类有:n m 种 (3)假若有n种氨基酸形成一个三肽,且每种氨基酸只有一个,则形成三肽的种类: n×(n—1)×(n—2)种 (4)假若有n种氨基酸形成一个n肽且每种氨基酸只有一个则形成n肽的种类: n×(n—1)×(n—2)×……×1=n! 例题:现有1000个氨基酸其中氨基有1020个,羧基有1050个则由此合成的4条肽链中共有肽键、氨基、羧基的数目是() A.996、1016、1046 B.996、4、4 C.996、24、54 D.996、1016、1046

多肽合成---氨基酸分子量表

cps029@https://www.wendangku.net/doc/048957190.html, 亲水性氨基酸:D、E、H、K、Q、R、S、T、N 疏水性氨基酸:A、F、 I、L、M、P、V、W、 Y 碱性氨基酸:R 、K 、H 酸性氨基酸:D 、E 带正电荷的氨基酸:K、R、H 带负电荷的氨基酸:D、E 茚三酮法检测显砖红色或无色:S 、P 、D 、N 英文简写英文名英文缩写中文名分子量分子量(带保护基) A Alanine Ala 丙氨酸89.1311.38C Cysteine Cys(Trt)半胱氨酸121.2585.7D Aspartic acid Asp(But)天门冬氨酸133.1411.46E Glutamic acid Glu(But)谷氨酸147.1425.48F Phenylalanine Phe 苯丙氨酸165.2387.4G Glycine Gly 甘氨酸75.1297.3H Histidine His(Trt)组氨酸155.2619.7I Isoleucine Ile 异亮氨酸131.2353.4K Lysine Lys(Boc)赖氨酸146.2468.55L Leucine Leu 亮氨酸 131.2353.4M Methionine Met 甲硫氨酸(蛋氨酸) 149.2371.5N Asparagine Asn(Trt)天门冬酰胺132.1596.7P Proline Pro 脯氨酸115.1337.4Q Glutamine Gln(Trt)谷氨酰胺146.2610.7R Arginine Arg(Pbf)精氨酸174.2648.77S Serine Ser(But)丝氨酸105.1383.4T Threonine Thr(But)苏氨酸119.1397.5V Valine Val 缬氨酸117.1339.4W Tryptophan Trp(Boc)色氨酸204.2526.5Y Tyrosine Tyr(But) 酪氨酸 181.2 459.5

氨基酸、多肽与蛋白质

第十四章 氨基酸、多肽与蛋白质 14.2 写出下列氨基酸分别与过量盐酸或过量氢氧化钠水溶液作用的产物。 a. 脯氨酸 b. 酪氨酸 c. 丝氨酸 d. 天门冬氨酸 答案: N H 2 COOH N COO - HO CH 2CHCOOH b. a. O - CH 2CHCO O - c. CH 2-CH-COOH OH + NH 3CH 2-CH-COO - OH 2 d.HOOC-CH 2-CH-COOH + NH 3 - OOC-CH 2-CH-COO - NH 2 + + NH 3 NH 2 14.3 用简单化学方法鉴别下列各组化合物: a.CH 3CHCOOH N H 2 H 2NCH 2CH 2COOH N H 2 b. 苏氨酸 丝氨酸 c. 乳酸 丙氨酸 答案: a. CH 3CHCOOH NH 2 (A)H 2NCH 2CH 2COOH (B) NH 2 (C) A B C A B b. OH NH 2 NH 2 苏氨酸 H 3CCH-CHCOOH 丝氨酸 HOCH 2CHCOOH I 2/NaOH CHI 3 无变化 c. 乳酸H 3CCHCOOH OH 丙氨酸 H 3CCHCOOH NH 2 茚三酮 显色 不显色 14.4 写出下列各氨基酸在指定的PH 介质中的主要存在形式。 a. 缬氨酸在PH 为8时 b. 赖氨酸在PH 为10时 c. 丝氨酸在PH 为1时 d. 谷氨酸在PH 为3时 答案: (CH 3)2CHCH(NH 2)COOH (CH 3)2CHCH(NH 2)COO -H 2N(CH 2)4CH(NH 2)COOH H 2N(CH 2)4CHCOO - NH 2 IP 5.96PH=8时 主要存在形式 b. 赖氨酸 IP 9.74 PH=10时 a. 缬氨酸 CH 2-CHCOOH CH 2-CHCOOH OH N H 2 OH N H 3 c. 丝氨酸 IP 5.68 PH=1时 + HOOC(CH 2)2CHCOOH HOOC(CH 2)2CHCOOH NH 2 d.. 谷氨酸 IP 3.22 PH=3时 NH 3 + 14.5 写出下列反应的主要产物

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一

多肽氨基酸知识

(一)基本氨基酸 组成蛋白质的20种氨基酸称为基本氨基酸。它们中除脯氨酸外都就是α-氨基酸,即在α-碳原子上有一个氨基。基本氨基酸都符合通式,都有单字母与三字母缩写符号。 按照氨基酸的侧链结构,可分为三类:脂肪族氨基酸、芳香族氨基酸与杂环氨基酸。 1、脂肪族氨基酸共15种。 侧链只就是烃链:Gly, Ala, Val, Leu, Ile后三种带有支链,人体不能合成,就是必需氨基酸。 侧链含有羟基:Ser, Thr许多蛋白酶的活性中心含有丝氨酸,它还在蛋白质与糖类及磷酸的结合中起重要作用。 侧链含硫原子:Cys, Met两个半胱氨酸可通过形成二硫键结合成一个胱氨酸。二硫键对维持蛋白质的高级结构有重要意义。半胱氨酸也经常出现在蛋白质的活性中心里。甲硫氨酸的硫原子有时参与形成配位键。甲硫氨酸可作为通用甲基供体,参与多种分子的甲基化反应。 侧链含有羧基:Asp(D), Glu(E) 侧链含酰胺基:Asn(N), Gln(Q) 侧链显碱性:Arg(R), Lys(K) 2、芳香族氨基酸包括苯丙氨酸(Phe,F)与酪氨酸(Tyr,Y)两种。酪氨酸就是合成甲状腺素的原料。 3、杂环氨基酸 包括色氨酸(Trp,W)、组氨酸(His)与脯氨酸(Pro)三种。其中的色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)。所以可通过测量蛋白质的紫外吸收来测定蛋白质的含量。组氨酸也就是碱性氨基酸,但碱性较弱,在生理条件下就是否带电与周围内环境有关。它在活性中心常起传递电荷的作用。组氨酸能与铁等金属离子配位。脯氨酸就是唯一的仲氨基酸,就是α-螺旋的破坏者。 B就是指Asx,即Asp或Asn;Z就是指Glx,即Glu或Gln。 基本氨基酸也可按侧链极性分类: 非极性氨基酸:Ala, Val, Leu, Ile, Met, Phe, Trp, Pro共八种 极性不带电荷:Gly, Ser, Thr, Cys, Asn, Gln, Tyr共七种 带正电荷:Arg, Lys, His 带负电荷:Asp, Glu (二)不常见的蛋白质氨基酸 某些蛋白质中含有一些不常见的氨基酸,它们就是基本氨基酸在蛋白质合成以后经羟化、羧化、甲基化等修饰衍生而来的。也叫稀有氨基酸或特殊氨基酸。如4-羟脯氨酸、5-羟赖氨酸、锁链素等。其中羟脯氨酸与羟赖氨酸在胶原与弹性蛋白中含量较多。在甲状腺素中还有3,5-二碘酪氨酸。 (三)非蛋白质氨基酸 自然界中还有150多种不参与构成蛋白质的氨基酸。它们大多就是基本氨基酸的衍生物,也有一些就是D-氨基酸或β、γ、δ-氨基酸。这些氨基酸中有些就是重要的代谢物前体或中间产物,如瓜氨酸与鸟氨酸就是合成精氨酸的中间产物,β-丙氨酸就是遍多酸(泛酸,辅酶A前体)的前体,γ-氨基丁酸就是传递神经冲动的化学介质。 二、氨基酸的性质 (一)物理性质 α-氨基酸都就是白色晶体,每种氨基酸都有特殊的结晶形状,可以用来鉴别各种氨基酸。除胱氨酸与酪氨酸外,都能溶于水中。脯氨酸与羟脯氨酸还能溶于乙醇或乙MI中。 除甘氨酸外,α-氨基酸都有旋光性,α-碳原子具有手性。苏氨酸与异亮氨酸有两个手性碳原子。

相关文档