文档库 最新最全的文档下载
当前位置:文档库 › 定位误差分析-例4

定位误差分析-例4

定位误差分析-例4
定位误差分析-例4

定位误差分析-例4

有一批如下图所示的工件,()0016.0650?h φmm 外圆,

()021.00730+H φmm 内孔和两端面均已加工合格,并保证外圆对内孔的同轴度误差在015.0)(φ=e T mm 范围内。今按图示的定位方案,

用()007.0020.0630?

?g φmm 心轴定位,在立式铣床上用顶尖顶住心轴,铣宽为()0046.0912?h mm 的键槽。

除槽宽要求外,还应满足下列要求:

(1)槽的轴向位置尺寸()0

21.01225?=h l mm 。

(2)槽底位置尺寸mm 。

10.042?=H (3)槽两侧面对58φ外圆轴线的对称度公差06.0)(=c T mm 。

试计算上述三尺寸定位误差。

解:

除槽宽由铣刀相应尺寸保证外,现分别分析上面三个加工精度参数的定位误差。 1)()021.012

25?=h l 尺寸的定位误差 设计基准是工件左端面,定位基准也是工件左端面(紧靠心轴的定位工作端面),基准重

合,,

01jb =?又,

01jw =?所以 0jw1jb1dw1=?+?=?2)尺寸的定位误差

10.042?=H 该尺寸的设计基准是外圆的最低母线,定位基准是内孔轴线,定位基准和设计基准不重

合,两者的联系尺寸是外圆半径好外圆对内孔的同轴度误差,

并且与)(e T H 尺寸的方向相同。故基准不重合误差:

023.0015.02/016.0)(2/)(jb2=+=+=?e T d T mm

工件内孔轴线是定位基准,定位心轴轴线是调刀基准,内孔与心轴作间隙配合。因此,一批零件的定位基准相对于夹具的调刀基准在H 尺寸方向上的基准位移误差(按调整螺母时工件内孔与定位心轴可在任意边接触的一般情况考虑,可求得:

041.0)007.0013.0021.0()()(jw2=++=?++=?d T D T mm

因此,定位误差:

mm 064.0041.0023.0jw2jb2dw2=+=?+?=?

3)对称度的定位误差

06.0)(=c T 外圆轴线是对称度的基准轴线,是设计基准。定位基准是内孔轴线,二者不重合,以同轴度联系起来,故基准不重合误差)(e T 015.0)(jb3==?e T mm 。

而此时的基准位移误差仍如2)中所求,即041.0jw3=?mm ,只不过位于水平方向上,与对称度的方向一致,故,总的定位误差为:

()mm 065.0mm 041.0015.0jw3jb3dw3=+=?+?=?

在本例中,尺寸H 和同轴度的定位误差占工序公差的比例较大,分别为以及。从上面的分析过程可以看出,尺寸)(c T %6410.0/064.0=%9306.0/056.0=H 和同轴度的设计基准分别为外圆母线和外圆轴线,但定位基准却是内孔轴线,因此带来了一系列的误差因素,形成了较大的定位误差。若采用下图所示的V 型块定位方案,直接定位外圆柱面,此时,尺寸的定位误差仍为零。)(c T l H 尺寸的定位误差为

()0.003mm mm 14sin 12016.012sin 122=?????

????????????????????=?????????????=?d T dw 只占工序公差的。

%310.0/003.0=对称度的设计基准为外圆轴线,用V 型块定位外圆时定位基准也是外圆轴线,基准重合,。虽然因外圆直径的变化引起外圆轴线在垂直方向(由于V 型块的对中作用只能在

垂直方向)上产生的基准位移为

03jb =?()

0.011mm mm 4sin 2016

.02

sin 2jw ===παδd T

但基准位移jw δ的方向是垂直方向,而对称度公差带位于水平方向因此,由基准位移产生的定位误差02cos jw jw3==?π

δ。这就是V 型块对中作用的结果。最后得到:

000jw3jb3dw3=+=?+?=?

完全可以保证对称度的加工要求。

本例也说明了:定位误差是分析比较定位方案并从中选择合理方案的重要依据。

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

定位误差的分析与计算

华北航天工业学院教案 教研室:机制工艺授课教师:陈明

第十章机床夹具的设计原理 第三节定位误差的分析与计算一批工件逐个在夹具上定位时,各个工件在夹具上所占据的位置不可能完全一致,以致使加工后各工件的加工尺寸存在误差,这种因工件定位而产生的工序基准在工序尺寸上的最大变动量,称为定位误差,用?D表示。 一、定位误差的组成 1.基准不重合误差 如前所述,当定位基准与设计基准不重合时便产生基准不重合误差。因此选择定位基准时应尽量与设计基准相重合。当被加工工件的工艺过程确定以后,各工序的工序尺寸也就随之而定,此时在工艺文件上,设计基准便转化为工序基准。 设计夹具时,应当使定位基准与工序基准重合。当定位基准与工序基准不重合时,也将产生基准不重合误差,其大小对于定位基准与工序基准之间尺寸的公差,用?B表示。工序基准与定位基准之间的尺寸就称为定位尺寸。 2.基准位移误差 工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,从而使各个工件的位置不一致,给加工尺寸造成误差,这个误差称为基准位移误差,用?Y表示。 基准位移误差的大小对应于因工件内孔轴线与心轴轴线不重合所造成的工序尺寸最大变动量。 当定位基准的变动方向与工序尺寸的方向相同时,基准位移误差等于定位基准的变动范围,即 ?Y = ?i 当定位基准的变动方向与工序尺寸的方向不同时,基准位移误差等于定位基准的变动范围在加工尺寸方向上的投影,即 ?Y = ?i cos a 二、各种定位方式下定位误差的计算 1.定位误差的计算方法 如上所述,定位误差由基准不重合误差与基准位移误差两项组合而成。计算时,先分别算出?B和?Y,然后将两者组合而成?D。组合方法为:如果工序基准不在定位基面上:?D =?Y + ?B 如果工序基准在定位基面上:?D = ?Y±?B 式中“+”、“-”号的确定方法如下: 1)1)分析定位基面直径由小变大(或由大变小)时,定位基准的变动方向。 2)2)当定位基面直径作同样变化时,设定位基准的位置不变动,分析工序基准的变动方向。 3)3)两者的变动方向相同时,取“+”号,两者的变动方向相反时,取“-”号。 2.工件以圆孔在心轴(或定位销)上定位 (1)(1)定位副固定单边接触 当心轴水平放置时,工件在重力作用下与心轴固定单边接触,此时

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。 例3-3 如图3.25所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差? 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸h 和h 1,故jb ?由两部分组成: φD 半径的变化产生2 D ? 尺寸h 1变化产生12h T ,所以 底平面,对刀基准(2)基准位置误差jw ? 定位基准为工件 为与定位基准接触的支承板的工作表面,不记形状误差,则有 所以槽底尺寸h 的定 位误差为 122 h dw T D +?= ? 例3-4 有一批直径为0 d T d -φ的工件如图3.27所示。外圆已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差jw ? 在图3.26中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,则基准位置误差jw ?为图中O 1 点到O 2点的距离。在ΔO 1CO 2中,2 2212 α =∠= O CO T CO d ,,根据勾股定理求得 2 21sin 2α d jw T O O E = =?=? (2)分别计算图3.27三种情 况的定位误差 ①图a )中1L 尺寸的定位误差 ②图b )中2L 尺寸的定位误差 需要说明的是2L 尺寸定位误差dw ?的合成问即外圆直径的变化 题。由于jb ?和jw ?中都含有d T ,要判别二者合成时 同时引起jb ?和jw ?的变化,因而 的符号。当外圆直径由大变小时,设计基准相对定位基准向上偏移,而当此圆放入V 形块中定位时,因外圆直 径的变小,定位基准相对调刀基准是向下偏移的,二者变动方向相反。故设计基准相对对刀基准的位移是二者之差,即 ③图c )中3L 尺寸的定位误差 与②类似,只是当外圆直径由大变小时jb ?和jw ?的变动方向相同,故jb ?和jw ?合成时应该相加,即 L 2 L 3 L 1 d T d -φ b 图3.27 V 形块定位外圆时定位误差的计算 图3.25 内键槽槽底尺寸定位误差计算 图3.26 V 形块定位外圆时 基准位置误差jw ?的计算 1—最大直径 2—平均直径 3—最小直径

最新定位误差计算解析

323 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工 序图则是设计专用夹具的主要依据。 由于在夹具设计、制造、使用中都不可能做到完美精确, 故当使用夹具装夹加工一批工件时, 不可避免地会使工序的加工精度参数产生误差, 定位误 差就是这项误差中的一部分。 判断夹具的定位方案是否合理可行, 夹具设计质量是否满足工 序的加工要求,是计算定位误差的目的所在。 1. 用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设 计图上确定几何要素的位置所依据的基准; 工艺基准是指在工艺过程中所采用的基准。 与夹 具定位误差计算有关的工艺基准有以下三种: (1) 工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单 地理解为工序图上的设计基准。 分析计算定位误差时所提到的设计基准, 是指零件图上的设 计基准或工序图上的工序基准。 (2) 定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹 具定位元件定位工作面接触或配合的表面。 为提高工件的加工精度,应尽量选设计基准作定 位基准。 (3) 对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工 刀具位置所依据的基准。 必须指出,对刀基准与上述两工艺基准的本质是不同, 它不是工件 上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等) 。 如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图 3.3中,刀具的高 度尺寸由对导块 2的工作面来调整,而对刀块2工作面的位置尺寸 7.85土 0.02是相对夹具体 4的 上工作面(相当支承板支承工作面)来确定 的。夹具体 4的上工作面是对刀基准, 它确定了 刀具在高度方向的 位置,使刀具加工出来的槽底 位置符合设计的要求。图 3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴 线, 对刀基准 则为夹具上定位圆柱销的轴线。再如图 3.21所 示,轴套件以内孔定位, 在其上加工一直径为 0 d 的 孔,要求保证0 d 轴线到左端面的尺寸 L 1及 孔中心线对 内孔轴线的对称度要求。尺寸 L 1的 设计基准是工件左端面 A 对刀基准是定位心 轴的台阶面A ; 0 d 轴线对内孔轴线的对称度的 设计基准是内孔轴 线, 对刀基准是夹具定位心轴 2的轴线00。 2. 定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起 该批工件某加工精度参数(尺寸、位置) 的加工误差, 称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计 算,其值为设计基准在加工精度参数方向上 的最大变动 量,用."■:dw 表示。 a) b 图3.21 钻模加工时的基准分析

定位误差计算

定位误差计算 定位误差计算是工艺设计中经常的事。下面的几个例题属于典型定位条件下的计算。 例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。 解:① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。

③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?B 基准位移误差0=?Y 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ? 例题二:如下图所示齿轮坯,内孔及外圆已加工合格( 025 .00 35+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。

解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T (mm) 例题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。 例3-3 如图所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸h 和h 1,故jb ?由两部分组成: φD 半径的变化产生2 D ? 尺寸h 1变化产生12h T ,所以 122 h jb T D +?= ? 底平面,对刀基准(2)基准位置误差jw ? 定位基准为工件为与定位基准接触的支承板的工作表面,不记形状误差, 则有 0=?jw 所以槽底尺寸h 的定位误差为 122 h dw T D +?= ? 例3-4 有一批直径为0 d T d -φ的工件如图所示。外圆已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差jw ? 在图中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,则基准位置误差jw ?为图中O 1点到O 2点的距离。在ΔO 1CO 2中,2 2212α =∠= O CO T CO d ,,根据勾股定理求得 《 2 21sin 2α d jw T O O E = =?=? (2)分别计算图三种情况的 定位误差 ①图a )中1L 尺寸的定位误差 2 )(2 sin 2sin 20 1αα d L dw d jw jb T T E B = ?= ?=?=?=? $ L 2 L 3 L 1 0d T d -φb 图 V 形块定位外圆时定位误差的计算 图 内键槽槽底尺寸定位误差计算 @ 图 V 形块定位外圆时基准 位置误差jw ?的计算 1—最大直径 2—平均直径 3—最小直径 B A α/ 2 1 C 3 2 @ O O

定位误差计算习题

习题一:如下图所示零件,外圆及两端面已加工好(外圆直径0 1.050-=D )。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中 示意画出; 3)计算所选定位方法的定位误差。 习题二:如下图所示齿轮坯,内孔及外圆 已加工合格(025 .0035+=φD mm ,01.080-=φd mm ) ,现在插床上以调整法加工键槽,要求保证尺寸2.005.38+=H mm 。 试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。 习题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。 例题四:计算以图示定位方案加工尺寸A 时的定位误差。

习题五: 如图下图工件分别以A 、B 面定位加工E 面,计算定位误差。 习题六:如图两种方案铣平面,试分析定位误差。 习题七:如图,工件以内孔 在心轴 上固 定单边接触或任意边接触定位加工平面,试分析工序尺寸分别为 h1、h2、h3(工序基准为外圆中心线)、h4、h5时的定位误差。(工件外圆和内孔的同轴度误差为△b ) 习题八:有一批如图所示的工件, 外圆, 内 孔和两端面均已加工合格,并保证外圆对内孔的同轴度误差在T (e)=φ0.015范围内。今按图示的定位方案,用 心轴定位,在立式铣床上用顶尖顶住心轴铣 的槽子。除槽宽要求外,还应保证下列要求: (1) 槽的轴向位置尺寸 (2) 槽底位置尺寸 (3) 槽子两侧面对φ50外圆轴线的对称度公差 T (c)=0.25 习题九:用角度铣刀铣削斜面,求加工尺寸为39±0.04mm 的定位误差 习题十: D D ?+d -d ?00.016506()h φ-0.021 0307()H φ+0.007 0.020306() g φ+-00.043 129h -0 10.212512()L H -=010.254212()H h - =00.010 10.0120.056 30,55,400.15,0.03d mm d H mm t mm φφφ---===± =

定位误差分析与计算(一)

定位误差分析与计算(一) 在机械加工过程中,使用夹具的目的是为保证工件的加工精度。那么,在设计定位方案时,工件除了正确地选择定位基准和定位元件之外,还应使选择的定位方式必须能满足工件加工精度要求。因此,需要对定位方式所产生的定位误差进行定量地分析与计算,以确定所选择的定位方式是否合理。 1 定位误差产生的原因和计算 造成定位误差ΔD的原因可分为性质不同的两个部分:一是由于基准不重合而产生的误差,称为基准不重合误差Δ B;二是由于定位副制造误差,而引起定位基准的位移,称为基准位移误差Δ Y。当定位误差Δ D≤1/3δK(δK为本工序要求保证的工序尺寸的公差)时,一般认为选定的定位方式可行。 (1) 基准不重合误差的计算 由于定位基准与工序基准不重合而造成的工序基准对于定位基准在工序尺寸方向上的最大可能变化量,称为基准不重合误差,以ΔB表示。如图4.36所示的零件简图,在工件上铣一通槽,要求保证的工序尺寸为A、B、C,为保证B尺寸,工件用以K1面或以K2面来定位,都可以限制工件在B尺寸方向上的移动自由度。但两种定位方式的定位精度是不一样的。由于加工过程中,是采用夹具上定位件的定位表面为基准来对刀的。当以K1面为定位基准时, 如图 4.37(a)所示B就为确定刀具与夹具相互位置的对刀尺寸,在一批工件的加工过程中 B的位置是不变的。当以K2面为定位基准时,如图4.37(b)所示B′为确定刀具与夹具相互位置的对刀尺寸,由于工序基准是K1面,与K2面不重合。当一批工件逐个在夹具上定位时,受尺寸L±Δl的影响,工序基准K1面的位置是变动的,K1的变动影响工序尺寸B的大小,给B造成误差。 由图 4.37(a)可知ΔB=0 由图 4.37(b)可知ΔB=Lmax-Lmin=2Δl (4.1)

定位误差计算方法

定位误差计算方法 皇甫彦卿 (杭州电子科技大学信息工程学院,浙江杭州310018) 摘要:分析了定位误差产生的原因和定位误差的本质,并结合具体的实例,对定位误差的计算提出了三种方法:几何法、微分法、组合法,并且为正确选择计算方法提供了依据。 关键词:定位误差;几何法;微分法;组合法 Position error calculation method Abstract:To analyze the causes of the positioning error and the nature of the positioning error, and combined with concrete examples, three methods are put forward for the calculation of position error: geometric method, differential method, group legal, and provide the basis for correct selection of calculation method. Key words: positioning error; Geometry method; Differentiation; Set of legal 1 引言 定位误差分析与计算,是机床夹具设计课程中的重点和难点。在机械加工中,能否保证工件的加工要求,取决于工件与刀具间的相互位置。而引起相互位置产生误差的因素有四个,定位误差就是重要因素之一(定位误差一般允许占工序公差的三分之一至五分之一)。定位误差分析与计算目的是为了对定位方案进行论证,发现问题并及时解决。 2 工件定位误差 2.1定位误差计算的概念 按照六点定位原理,可以设计和检查工件在夹具上的正确位置,但能否满足工件对工序加工精度的要求,则取决于刀具与工件之间正确的相互位置,而影响这个正确位置关系的因素很多,如夹具在机床上的装夹误差、工件在夹具中的定位误差和夹紧误差、机床的调整误差、工艺系统的弹性变形和热变形误差、机床和刀具的制造误差及磨损误差等。 因此,为保证工件的加工质量,应满足如下关系式: δ ?式中:?--各种因素产生的误差总和;δ--工件被加工尺寸的公差。 ≤ 2.2定位误差及其产生原因 所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。因为对一批

定位误差分析计算

定位误差分析计算 所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。因为对一批工件来说, 刀具经调整后位置是不动的,即被加工表面的位置相对于定位基准是不变的,所以定位误差就是工序 基准在加工尺寸方向上的最大变动量。 ㈠引言 ①△总≤δ其中△总为多种原因产生的误差总和,δ是工件被加工尺寸的公差,△总包括夹具在机床上的装夹误差,工件在夹具中的定位误差和夹紧误差,机床调整误差,工艺系统的弹性变形和热变形误差,机床和刀具的制造误差及磨损误差等。 ②△定+ω≤δ 其中,ω除定位误差外,其他因素引起的误差总和,可按加工经济精度查表确定。 所以由①和②知道:△定≤δ-ω(是验算加工工件合格与否的公式) 或者:△定≤1/3δ(也是验算加工工件合格与否的公式) ㈡定位误差的组成 1、定义:定位误差是工件在夹具中定位,由于定位不准造成的加工面相对于工序基准沿加工要求方向上的最大位置变动量。 2、定位误差的组成: 1) 定位基准与工序基准不一致所引起的定位误差,称基准不重合误差,即工序基准相对定位基准在加工尺寸方向上的最大变动量,以△不表示。图示零件,设e面已加工好,今在铣床上用调整法加工f面和g面。在加工f面时若选e面为定位基准,则f面的设计基准和定位基准都是e面,基准重合,没有基准不重合误差,尺寸A的制造公差为TA。加工g 面时,定位基准有两种不同的选择方案,一种方案(方案Ⅰ)加工时选用f面作为定位基准,定位基准与设计基准重合,没有基准不重合误差,尺寸B的制造公差为TB;但这种定位方式的夹具结构复杂,夹紧力的作用方向与铣削力方向相反,不够合理,操作也不方便。另一种方案(方案Ⅱ)是选用e面作为定位基准来加工g面,此时,工序尺寸C是直接得到的,尺寸B是间接得到的,由于定位基准e与设计基准f不重合而给g面加工带来的基准不重合误差等于设计基准f面相对于定位基准e面在尺寸B方向上的最大变动量TA。 定位基准与设计基准不重合时所产生的基准不重合误差,只有在采用调整法加工时才会产生,在试切法加工中不会产生。 基准不重合误差分析示例 2)定位基准面和定位元件本身的制造误差所引起的定位误差,称基准位置误差,即定位基准的相对位置在加工尺寸方向上的最大变动量,以△基表示。故有:

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算, 在夹具设计中占有重要的地位, 定位误差的大小是定位方案能否确定的重要依据。 为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会 贯通的学习效果。 例3-3 如图3.25所示,工件以底面定位加工孔内键槽,求尺寸 解: ( 1) 和h i ,故厶j b h 的定位误差? 基准不重合误差求.jb 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸 由两部分组成: 0 D 半径的变化产生卫 2 尺寸h 1变化产生2T h 1,所以 D —2T h 1 (2)基准位置误差 3 O a / 2 2 ■"■=jw 定位基准为工件 为与定位基准接触 面,不记形状误差, 也 jw =0 底平面,对刀基准 的支承板的工作表 则有 所以槽底尺寸h 的定位误差为 例3-4 有一批直径为 d ; A iD --dw 2T h, 2 的工件如图3.27所示。外圆已加工合格,今用 V 形块定位铳宽度为 b 的槽。若要求保证槽底尺寸分别为 L 1、L 2和L 3。试分别分析 计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差 图3.26 V 形块定位外圆时 基准位置误差一的计算 -■ jw 1—最大直径2 —平均直径 3—最小直径 八jw 在图3.26中,对刀基准是一批工件平均轴线所处的位置 O 点,设定位基准为 外圆的轴线,加工精度参数的方向与 O 1O 2相同,则基准位置误差 jw 为图中 O 1 点到02点的距离。在 △ O 1CO 2中,CO 2 Ct —C0102 ,根据勾股定理求 2 T d 2sinf (2)分别计算图3.27三种情 ①图a )中L i 尺寸的定位误 ■\w =.E Td . 2s in 号 T d Ct 2 图3.27 V 形块定位外圆时定位误差的计算 况的定位误差 ②图b )中L 2尺寸的定位误差

孔定位误差计算实例[1]

孔定位误差计算实例(用定位销) 例 1 钻铰图 3-65 所示的零件上φ 10H7 的孔,工件以孔 定位 求:工序尺寸 50 ± 0.07mm 及平行度的定位误差。 解: ( 1 )工序尺寸 50 ± 0.07mm 的定位误差 Δ B = 0mm( 定位基准与工序基准重合 ) 按式( 3-5 )得: Δ Y = δ D + δ d 0 +X min =0.021+0.009+0.007= 0.037mm 则由式(3-12)得 Δ D =Δ Y = 0.037mm ( 2) 平行度 0.04mm 的定位误差 同理 , Δ B = 0mm 按式( 3-7 )得: 则平行度的定位误差为 Δ D = Δ Y = 0.018mm

定位误差的计算 由于定位误差Δ D 是由基准不重合误差 和基准位移误差组合而成的。因此在计算定位 误差时,先分别算出Δ B 和Δ Y ,然后将两者组合而得Δ D 。组合时可有如下情况: 1 .Δ Y ≠ 0 ,Δ B =0 时,Δ D = Δ B ( 3-1 2 ) 2 .Δ Y =0 ,Δ B ≠ 0 时,Δ D = Δ Y ( 3-1 3 ) 3 .Δ Y ≠ 0 ,Δ B ≠ 0 时, 如果工序基准不在定位基面上:Δ D = Δ B + Δ Y ( 3-14 ) 如果工序基准在定位基面上,Δ D = Δ B ±Δ Y ( 3-15 ) “ + ”、“—”的判别方法为: ①分析定位基面尺寸由大变小(或由小变大)时,定位基准的变动方向; ②当定位基面尺寸作同样变化时,设定位基准不动,分析工序基准变动方向; ③若两者变动方向相同即“ + ”,两者变动方向相反即“—”。 定位误差及其要示 为保证工件的加工精度,工件加工前必须正确的定位。所谓正确的定位,除应限制必要的自由度、正确地选择定位基准和定位元件之外,还应使选择的定位方式所产生的误差在工件允许的误差范围以内。 由定位引起的同一批工件的设计基准在加工尺寸方向上的最大变动量,称为定位误差。当定位误差Δ D ≤1/3 δ K ,一般认为选定的定位方式可行。 造成定位误差的原因有两个: 一个是由于定位基准与设计基准不重合,称为基准不重合误差(基准不符误差); 二是由于定位副制造误差而引起定位基准的位移,称为基准位移误差。

定位误差的分析计算

主轴结构分析要求: 1、写出主轴结构中各轴承的名称。分析前、后轴承精度的选 择原则(前轴承精度要选得高一些)。 2、写出主轴轴承的配置形式(速度型,刚度型,速度刚度型), 并写出该配置形式适用的场合。 3、写出主轴推力轴承的配置方式及优缺点,并能画 出主轴推力轴承配置的结构简图。 4、写出角接触球轴承和圆锥滚子轴承的配置形式(背靠背, 面对面等P127;正排列,反排列)。 5、那些轴承需要预紧,如何预紧?(双列短圆柱滚子轴承等) 6、分析主轴部件中径向力有什么轴承承受?轴向力(两个方 向)分别有哪些轴承承受。 7、主轴轴承采用的密封和润滑形式是什么?密封和润滑的 作用是什么?该密封形式有何特点? 8、在图中标出主轴的支承跨距L,并分析当支承跨距: L实际<L合理时,应提高。 L实际>L合理时,应提高。 9、跨距较长的主轴部件,采用三支承轴承,要求判断该结构中 的主支承和辅助支承,并说明辅助支承的工作情况P123

第三章作业 P210题42 圆柱轴承承载能力大(双列轴承承载能力更大) 滚子轴承转速高 角接触球轴承和圆锥滚子轴承可既能承受径向力,又能承受轴向力 图Ⅲ:刚度型配置 双向推力角接触球轴承(234000B型,原2268100型)与圆锥孔双列圆柱滚子轴承(NN3000K型,原3182100型)配合使用。 参见P130图3-64(b);P131图3-66 (刚度型配置) 与该题一样配置 前支承采用双列圆柱滚子轴承承受径向载荷,和60°角接触双列推力球轴承承受双向轴向载荷,后轴承采用双列圆柱滚子轴承。 推力轴承为中间配置,特点见P123图3-54(b)(2) 这种轴承配置的主轴部件,适用于中等转速和切削负载较大,要求刚性高的机床。如数控车床主轴,镗削主轴单元等。 图Ⅱ:刚度速度型 参见P130图3-64 C,P131图3-67为刚度速度型 前轴承采用一对背靠背角接触球轴承(背靠背安装具有较高的抗颠覆力矩的能力)。 后轴承采用双列圆柱滚子轴承,动力可以从后端传入,后轴承能承载较大的传动力。 推力轴承前端布置,特点见P123图3-54 ( a)(1) 应用于要求径向刚度好,并有较高的转速的场合,例:图3-67的卧式铣床主轴。 图Ⅰ:为刚度速度型 前轴承采用双列圆柱滚子轴承,能承受较大的径向力,主要承受加工中的径向力。 后轴承采用背靠背角接触球轴承,承受轴向力 推力轴承后端布置,特点见P123图3-54(c)(3) 43题: 向右轴向力的传递:

定位误差计算.doc

3.2.3定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工 序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确, 故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工 序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设 计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: ( 1)工序基准在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单 地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 ( 2)定位基准在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹 具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 ( 3)对刀基准(即调刀基准)由夹具定位元件的定位工作面体现的,用于调整加工 刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图中,刀具的高度尺 寸由对导块 2 的工作面来调整,而对刀块 2 工作 面的位置尺寸 ±是相对夹具体 4 的上工作面(相 当支承板支承工作面)来确定的。夹具体 4 的上 工作面是对刀基准,它确定了刀具在高度方向的 位置,使刀具加工出来的槽底位置符合设计的要 求。图中,槽子两侧面对称度的设计基准是工件 a 上大孔的轴线,对刀基准则为夹具上定位圆柱销 的轴线。再如图所示,轴套件以内孔定位,在其 上加工一直径为φd的孔,要求保证φd轴线到 左端面的尺寸L1及孔中心线对内孔轴线的对称 度要求。尺寸L1的设计基准是工件左端面A′, 对刀基准是定位心轴的台阶面A;φd轴线对内 b 图钻模加工时的基准分析

误差分析习题解答

“误差分析和数据处理”习题及解答 1.指出下列情况属于偶然误差还是系统误差? (1)视差;(2)游标尺零点不准;(3)天平零点漂移;(4)水银温度计毛细管不均匀。 答:(1)偶然误差;(2)系统误差;(3)偶然误差;(4)系统误差。 2.将下列数据舍入到小数点后3位: 3.14159; 2.71729; 4.510150; 3.21650; 5.6235; 7.691499。 答:根据“四舍六入逢五尾留双”规则,上述数据依次舍为: 3.142; 2.717; 4.510; 3.216; 5.624; 7.691。 3.下述说法正确否?为什么? (1)用等臂天平称衡采取复称法是为了减少偶然误差,所以取左右两边所称得质量的平均值作为测量结果,即 ()1 2 m m m = +左右 (2)用米尺测一长度两次,分别为10.53 cm 及10.54 cm ,因此测量误差为0.01 cm 。 答:(1)错。等臂天平称衡时的复称法可抵消因天平不等臂而产生的系统误差。被测物(质量为m )放在左边,右边用砝码(质量为m r )使之平衡,ml 1 = m r l 2,即 2 r 1 l m m l = 当l 1 = l 2时,m = m r 。当l 1 ≠ l 2时,若我们仍以m r 作为m 的质量就会在测量结果中出现系统误差。为了抵消这一误差,可将被测物与砝码互换位置,再得到新的平衡,m l l 1 = ml 2,即 1 l 2 l m m l = 将上述两次称衡结果相乘而后再开方,得 m =这时测量结果中不再包含因天平不等臂所引起的系统误差。 (2)错。有效数字末位本就有正负一个单位出入;测量次数太少;真值未知。 4.氟化钠晶体经过五次重复称量,其质量(以克计)如下表所示。试求此晶体的平均质量、平均误差和标准误差。

定位误差计算

例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。

解: ① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。 ③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?jb 基准位移误差0=?jy 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ?

例题二:如下图所示齿轮坯,内孔及外圆已加工 合格(025 .0035+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与 内孔同轴度误差)。 解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T

(mm) 例题三:a)图工件设计图。试分别计算按b)、c)、d)三种定位方式加工尺寸A 时的定位误差。

. 例题四:计算以图示定位方案加工尺寸A时的定位误差。

机械制造工艺定位误差经典例题

二、 定位误差的计算 定位误差产生的原因: 1、 一批工件,各工件相应表面尺寸和位置,在公差范围内的差异 2、定位元件和各元件之间的尺寸和位置公差 定位误差允许的大小:小于等于工件有关尺寸或位置公差的1/3 定位误差的组成: 基准位移误差:(工件定位基准面的误差,定位元件制造误差,两者的配合间隙) 基准不重合误差:定位基准与工序基准不重合 定位误差的计算方法: 1、两种极端位置通过几何关系求 2、按定位误差的组成(极限位置): c w dw ?±?=? (同向为正,反向为负) 3、用微分方法求 [被加工面工序尺寸的标注方向、工序基准、定位基准面、 定位基准、工件在公差范围内变动时定位基准移动方向、 定位基准面变化(工序基准变化方向、定位基准变化方向)、 定位元件的变化] 1A )用平面定位(1) 加工面 c w dw ?+?=? 2) 加工面 =?dw

4、外圆定位: V型块(定位基准——外圆中心线)

工件外圆 最小2 d T d - → 最大2 d T d + 工序尺寸:0H 0sin 22 2 2 sin 2 2 2 += +-- +=?α α d T d d T T dw d d 工序尺寸:1H 2sin 2 2 d d T T dw - = ?α (工件变大→定位基准上移,工序基准下移) 工序尺寸:2H 2sin 2 2 d d T T dw + = ?α (工件变大→定位基准上移,工序基准上移) 校的学生并没有专心听讲、认真思考,而是写其他科目的作业,与周围同学聊天,发短信聊天,等等。这些现象说明了同学们的思想道德素质建设还需进一步加强。这件事对我触动很大,让我深切地感到,加强自我修养,应该从我做起,“不以恶小而为之,不以善小而不为”。 作为一名入党积极分子,我感到一定要时刻以一(转载自中国教育文摘,请保留此标记。)名党员的标准来衡量自己,以一名党员的条件严格要求自己,在周围同学当中时时处处体现出先锋模范作用,只有这样才能有资格加入这个光荣而先进的组织。我意识到,有时距离成功只有一步之遥,但如果采用消极的态度,可能成功会将自己拒之门外;倘若是积极态度去对待,可能成功就会属于自己。可见积极态度的重要性。同时我也在自制力方面有了很大的提高。只要决定要做了,而且是对的,就要坚持到最后,排除一切杂念,抵制诱惑,把它完整地做好。 最后,我深深的感到,作为新时期的先进青年,先进大学生,我们应该在生活里克勤克俭,严格要求;在工作中身先士卒,勤勤恳恳,不断增强贯彻党基本路线的自觉性;在学习上,以“书山有路勤为径,学海无边苦作舟”的精神,不断增加新的文化知识,不断提高自我政治理论修养,努力争取在建设有中国特色社会主义过程中建功立业。 请党组织考验我。 此致 敬礼 汇报人:xxx 2011年5月x 日 敬爱的党组织: 老聃说:“圣人不积,既以为人,己愈有;既己与人,己愈多。”老子的哲学,“沿波讨源,虽幽必显。世远莫见其面,觇文辄见其心”,我的理解是,把自己投入社会之中,我为人人,人人为我,最后在心灵和物质上达到一种富足。如列宁所说,“一人为大家,大家为一人”,我们活在这个社会,生命是自己的,个人创造的价值是社会的。 树立正确的世界观、人生观、价值观是个体适应社会发展的根本要求。***人要树立和坚持辩证唯物主义和历史唯物主义的世界观、全心全意为人民服务的人生观、集体利益高于一切的价值观,树立****远大理想,弘扬爱国主义、集体主义和社会主义的主旋律。这是作为一名先进的***员的必然选择。 这种选择不是抽象的口号,而是具体的实践。在“***员的人生价值观”这一课中,随着梅教授生动地讲述,我对两弹元勋邓稼先有了进一步的了解,感触良多,崇高的敬畏之情油然而生。试想一下,为了中国的强盛,为了千万万中国人民在世界上挺直身干,邓稼先可以隐姓埋名,置身于自己的研究中,持之以恒,默默二十八年与家人朋友不相见,甚至最后因核辐射而离世。这样的付出,有多少人可以做到呢?他的工作伟大而崇高,他的精(转载自中国教育文摘,请保留此标记。)神执着而强大,为作为***员的人们树立了光辉的旗帜。当然,这样的例子不计其数,他们是自豪的***员,也是普通的群众的一员,平凡却又伟大。 北师大教授董藩老师的“4000万”论遭到网络上各种评议,绝大部分站在反对的角度,否定了他的人生价值观,认为他的价值观是偏激的。我也赞成此观点。真正的富有,不是占有,而是付出。幸福也不是建立在金钱至上。一个人的价值观直接影响一个人的生活方式,影响到他为社会创造的价值的多少和好歹。如果人人只为自己,社会还从何处谈起和谐? 那么,要想加入中国***,入党动机的端正、人生价值观的正确性,是必须经历时间和实践的考验。学习先进***员的先进事迹和理论知识,重视社会实践,密切联系群众,站在人民的立场上立身处世。中国***所需要的是可以真心诚意为人民服务的先进分子,如果是为了一己私利,作为有着高智商和高素质的大学生,反思自己的作为,是不是应该感到惭愧和羞耻?面对那些为****事业献身的***人,是否会自惭形秽呢?立志加入***,我们便活在先进***员的光辉下,我们要做的就是全力以赴地把光辉传承下去,撒向未来! 汇报人: 2011年6月1

相关文档
相关文档 最新文档