文档库 最新最全的文档下载
当前位置:文档库 › 郑州创新大厦二期深基坑变形监测方案设计

郑州创新大厦二期深基坑变形监测方案设计

郑州创新大厦二期深基坑变形监测方案设计
郑州创新大厦二期深基坑变形监测方案设计

研究生课程学习考试考核成绩成绩单

研究生姓名吴昊学号141611010021

课程编号11E0104 课程名称精密工程测量技术与应用授课时间2014学年度秋季期学分

授课教师黄张裕是否学位课是

考核论题

总评成绩

(含平时成绩)

备注

任课教师签名:

批改日期:

注:

1、以撰写论文为考核形式的,填写此表,综合考试可不填;

2、本成绩单由任课教师填写,填好后与作业(试卷)一并送院(系)研究生秘书处;

3、学位课总评成绩须以百分制记分。

郑州创新大厦深基坑变形监测

【摘要】随着建筑物的规模和层数的扩大及增高,其基坑开挖的面积和深度也随之变化,基坑的高精度的变形监测和深入分析已然成为建筑物安全施工的科学可靠的措施。本文通过创新大厦深基坑变形监测工程,探讨了深基坑变形监测的监测方案、监测方法、监测流程等诸多内容,在监测方案、监测精度、监测手段等方面都得出了有益结论。

【关键词】深基坑开挖;GPS;变形观测;变形分析

1 引言

深基坑工程是高层建筑及地下空间开发中的重要组成部分,以变形大小作为控制手段的设计方法已普遍受到人们的重视,因为支护结构的变形量是基坑开挖过程中支护结构与土相互作用的直观反映,对基坑变形进行监测是信息化施工的重要内容。本文以创新大厦深基坑为例,在讨论其地质概况及支护方案的基础上,拟探讨在基坑支护开挖过程中,支护结构顶部的水平位移、沉降及周边建筑物沉降的监测方案、监测方法,以期为类似工程提供借鉴。

2 工程概况

拟建郑州创新大厦工程场地位于郑州市东风路与文博东路交叉口西北角。拟建场地形状大致为长方形,东西长约158米,南北宽约71米。工程为综合办公楼和地下车库。基坑深15.9-19.0m。本工程基坑侧壁安全等级为一级,变形控制等级为一级。基坑西侧为3栋7层住宅基坑北侧为3栋6层住宅,基坑东侧为文博路基坑南侧有锅炉房、配电房。

根据场地土质和周围环境等条件,经过多个方案的计算分析、比较及本场地的施工水平,采用钻孔灌注桩结合椼架式钢筋混凝土水平支撑,紧靠钻孔灌注顶上加深层水泥搅拌桩支护

3 监测方案

3.1 监测内容

为了确保施工的安全顺利进行,根据工程施工的特点,结合现场的周边环境情况以及设计单位提出的监测技术要求,基坑施工监测主要设置如下内容: ①基坑围护结构(支护墙体)水平位移监测; ②基坑周围建筑物的垂直位移监测; ③

地下水位观测。

3.2 技术要求

本次观测采用仪器:TOPCN GTS-102N全站仪,标称精度:测角2″、测距2+2ppm,激光对中。水准测量采用苏光DSZ05水准仪配合因瓦合金标尺,标称精度:±0.5mm/km,读数精度为0.1mm。

监测精度:本基坑工程为一级基坑,依据JGJ8-2007《建筑变形测量规范》,变形监测等级确定为一级。其基本精度要求为:沉降观测:观测点测站高差中误差为±0.15mm;位移观测:观测点坐标中误差±1mm

为更好地监测基坑及附近建筑物,根据现场状况和技术要求,特制定出如下设计要求: ①基坑施工土体变形影响范围(一般约为2倍基坑开挖深度)内的建(构)筑物和基坑本身作为工程监测及保护的对象; ②设置的监测内容及监测点必须满足工程设计方及有关规范的要求,并能全面反映工程施工过程中周围环境及基坑围护体系的变化情况;③监测过程中,采用的方法、监测仪器及监测频率应符合设计方和规范要求,能及时、准确地提供数据,满足信息化施工的要求。

3.3 监测方案

3.3.1 测点布设

为确保基坑开挖的安全顺利进行和周围建筑物的安全,在变形影响区外设置基准点,在基坑周围和周围建筑物设置变形监测点。

1)基准点布置

依据JGJ8-2007《建筑变形测量规范》要求,在距离基坑3倍基坑深度,约30米以外的稳定区域,设置3个稳定的平面基准控制点,埋设标石。在距离基坑3倍基坑深度(约30米),施工影响范围以外的稳定区域,选择与平面基准同点设置水准基准点

2)基坑水平位移监测点

监测点布置在围护结构冠梁顶部,沿基坑延伸方向每20m左右布置一个观测点,共布置21个观测点。在布设时建立初始读数,在基坑开挖当日起实施监测

3)周边建筑物沉降监测点

基坑周边建筑物沉降监测点,测点布置沿建筑物每20m左右布置一个观测点,共布置75个观测点。

图1 基坑边坡顶部沉降监测点位布置图

3.3.2 监测方案

1)沉降观测

周边建筑物沉降观测,按一级变形测量等级要求执行。

2)围护结构水平位移观测

基准点测量:建立GPSD级网,进行整体平差。

基点加密测量:无法实施GPS测量的基准点,利用一级电磁波测距导线进行加密控制。

观测点测量:水平位移采用测小角法,角度观测一测回,距离按1/5000的精度测量,测小角法是利用全站仪精确地测出基准线与置镜点到观测点视线之间所夹地微小角度(如图2所示),并按下式计算偏移值li:li=αi·Si/ρ;式中S

i为端点A到观测点Pi的距离,ρ=206265″。

图2 监测点布置图

3)监测频率

满足工程设计方及有关规范的要求。

3.3.3 监测流程

为确保监测结果的高质量和监测过程的顺利,特制定如下监测流程,并在实施过程中严格遵守,如图3。

图3 监测流程图

参考文献

[1] 陈忠汉,黄书秩,程丽萍.深基坑工程.机械工业出版社,第二版,1999:10-15.

[2] 孙凤江,段浩.深基坑监测的目的及项目和方法.2010,36(27):20-33.

[3] 赵万庆,鲍其胜.深基坑安全监测方案设计与实践》.南京市测绘勘察研究院有限公司 2004:23-44.

[4] 张正禄等.工程测量学.武汉大学出版社,2005:11-22.

[5] 李晓进.深基坑变形监测的分析和研究.中冶集团武汉勘察研究院有限公司,2006:40-60.

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

最新基坑开挖监测方案

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

基坑变形监测方案

本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This desig n is mai nly for a deep foun datio n pit duri ng the con struct ion of foun dati on pit deformatio n and cause the deformati on of the surro unding en vir onment monitoring methods and data processing program design and analysis.The main mon itori ng content of the foun dati on pit wall for mon itori ng horiz on tal displaceme nt and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision an alysis. Keyword: Horizontal displacement observation; settlement observation; tilt observati on; two level; polar coord in ates

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。 2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

基坑工程监测开题报告

山东科技大学 本科毕业设计(论文)开题报告题目基坑工程的综合监测 学院名称测绘科学与工程学院 专业班级 学生 学号 指导教师 填表时间:年 5 月 6 日

填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。

设计(论文) 题目 基坑开挖监测 设计(论文)类型(划“√”)工程实际科研项目实验室建设理论研究其它√ 一、本课题的研究目的和意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。监测在取得大量测试数据同时对工程总结经验、完善基坑的支撑、提高设计水平有着重要意义。 根据我市周边地区的基坑工程事故分析可知,由于部分单位不重视基坑施工过程的监测,从而造成了较严重的工程事故,甚至造成了人员伤亡事故。如基坑围护结构的失稳,周边建筑的裂缝及地下设施的破坏。因此,当前对于我基坑开展监测工作已经变得越来越重要。

深基坑排桩变形监测方案

深基坑变形监测方案 (1)主要技术内容 深基坑工程是开挖深度大于5m的基坑工程、深基坑工程的监测与控制则是一种比较复杂的信息反馈与控制。深基坑工程监测是指在深基坑开挖施工过程中,借助仪器设备和其他一些手段对围护结构、基坑周围的环境(包括土体、建筑物、构筑物、道路、地下管线等)的应力、位移.倾斜、沉降、开裂、地下水位的动态变化,土层孔隙水压力变化等进行综合监测。 深基坑工程控制则是根据前段开挖期间的监测信息,一方面与勘察、设计阶段预测的性状进行比较,对设计方案进行评价,判断施工方案的合理性;另一方面通过反分析方法或经验方法计算与修正岩上的力学参数,预测下阶段施工过程中可能出现问题,为优化和合理组织施工提供依据,并对进一步开挖与施工的方案提出建议,对施工过程中可能出现的险情进行及时的预报.以便采取必要的工程措施。 (2)技术指标 深基坑工程监测与控制技术应符合国家行业标准《建筑基坑支护技术规程》JGJl20-99和中华人民共和国行业标准《建筑基坑工程技术规范》YB9258-97的规定。 ⑶深基坑变形监测采用经纬仪测墙顶水平位移,在基坑四面埋设基准点,排桩施工时每一工况进行一次监测,根据位移大小对支护参数进行调整。排桩施工结束后每周及每次雨后进行一次位移监测,评价边坡安全状况,遇危险情况采取适当应急措施。 ⑷监测项目: ①、基坑水平位移监测,每隔20m布置1个位移观测点; ②、基坑土体变形检测,每隔30m布置1个测斜管; ③、对基坑周边50m范围内的建筑物进行沉降和水平位移监

测; ④、地下水位监测,在基坑每侧位置各布置1个,共4个水位观测井。 附:基坑位移观测点布置图

基坑支护监测方案(1)

XXX三期基坑支护 监 测 方 案 XXX有限公司 二O一四年十月十二日

XXX基坑支护监测方案 1.工程概述 工程概况 本工程合肥市XXX?XXX项目三期基坑支护指定分包工程由合肥新站XXX开发有限公司投资新建,工程地点位于合肥市万佛湖路与潜山路交口西北侧ZWQTC-036地块。 合肥市XXX?XXX项目三期基坑支护指定分包工程由江苏东南建筑工程结构设计事务所有限公司设计,基坑支护详见设计图纸。 本支护工程为临时性工程,基坑安全等级为二级,结构重要性系数为,基坑使用期为12个月。 、本工程支护范围内土层分布自上而下依次为素填土、粘土、强风化泥质砂岩、中风化泥质砂岩,基坑底落于粘土中,场地地下水类型为主要为上承滞水。 、基坑开挖深度约为—,基坑靠近星光东路有较多管线,北侧会所周边有天然气管道。经放线,管道在基坑上口线外侧3m,对基坑施工无影响。 、本次设计图纸分为4个剖面,分别为1-1剖面、1a-1a剖面,2-2剖面、3-3剖面。 1-1剖面设计为Φ800旋挖桩,间距,桩长10米,距桩顶2m处设置一道锚索,基坑内侧喷锚护面。1a-1a剖面设计为Φ1000旋挖桩,间距,桩长15米,基坑内侧喷锚护面。 2-2剖面、3-3剖面设计为土钉墙。潜山路一侧设计为自然放坡,放坡比例为1:。 地下底板面标高为,基坑开挖深度为约, 场地岩土工程条件 拟建场地地基土构成层序自上而下为: ①层杂填土(Q ml)——层厚~,层底标高为~。褐、褐灰,褐黄、黄褐色等,湿,松散状态,状态不均匀。该层主要成分为粘性土,表部主要含碎砖石、砼块等建筑垃圾,含有植物根茎,局部地段夹生活垃圾和淤泥质土等。 ②层粉质粘土(Q 4 al+pl)——此层仅局部分布,层厚~,层底标高为~。褐灰、灰黄色等,可塑状态,湿,有光泽,无摇振反应,干强度中等,韧性中等;含少量氧化铁、铁锰结核及高岭土等。 ③ 1层粘土(Q 3 al+pl)——层厚一般为~,层底标高为~。灰褐、褐灰、灰黄、褐黄色等,一般为硬

深基坑监测方案

目录 一、工程概况 (1) 二、编制依据 (1) 三、基坑侧壁安全等级划分 (1) 四、基坑支护方案 (1) 五、监测目的及要求 (2) 六、工程地质概要 (2) 七、监测内容 (3) 八、监测频率 (8) 九、测试主要仪器设备...................................... - 11 - 十、监测工作管理、保证监测质量的措施...................... - 11 - 十一、监测人员配备........................................ - 14 - 十二、监测资料的提交...................................... - 15 -

一、工程概况: 本项目为CENTER工程,本子项为通风中心;工程号为HB1001,子项号为VX。建设地点:四川省乐山市夹江县南岸乡。 通风中心长58.60m,宽33.10m,建筑高度(室外地坪至女儿墙)为22.900m,消防高度(室外地坪至屋面面层)为22.200m,地上二层,局部三层。占地面积1956.19㎡,建筑面积4298.00㎡。 建筑结构形式:钢筋混凝土框架——抗震墙结构,本建筑设计使用年限为50年,抗震Ⅰ类建筑。 二、编制依据: 1、《建筑基坑工程变形技术规范》(GB50497-2009) 2、《城市测量规范》(CJJ/T8-2011) 3、《精密水准测量规范》(GB/T15314-940) 4、《工程测量规范》(GB 50026-2007) 5、《建筑边坡工程技术规范》(GB50330-2002) 6、《建筑基坑支护技术技术规程》(JGJ120-2012) 7、基坑支护工程施工方案设计 三、基坑侧壁安全等级划分: 基坑 1-2交A-B,1-2交E-F,开挖的基坑深度较大约为8m,放坡系数80°,近似垂直开挖,如破坏后果较严重,因此侧壁安全等级定为一级,侧壁重要性系数1.1。 基坑其他位置地势相对开阔,无相邻建筑等级评定为二级,侧壁重要性系数1.0。

基坑变形监测方案

佳·5.4克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·5.4克拉项目部 二○一七年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图

一、编制依据 1、佳·5.4克拉基坑开挖图; 2、佳·5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·5.4克拉项目基坑支护结构设计》《佳·5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程±0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为11.77m;西塔筏板厚度为1 500mm,开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q4al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m。

隧洞施工期收敛变形监测方案样本

目录 1工程概况 (1) 2 执行技术规范和编制依据 (1) 3 资源配置 (1) 3.1 人员配置 (1) 3.2 设备配置 (2) 4 隧洞变形监测技术要求 (2) 5 隧洞变形监测方案 (3) 5.1 监测方案设计原则 (3) 5.2 洞内施工期变形监测 (3) 5.3 变形监测频率 (4) 5.4 变形监测方法及数据处理 (5) 6 隧洞沉降观测 (6) 6.1 沉降变形测量点的布设 (6) 6.2 沉降观测方法及频次 (7) 6.3 沉降观测精度要求 (8) 7 测量记录及资料管理 (8)

1 工程概况 吉林省中部供水辽源干线施工三标段工程项目位于四平市伊通满族自治县、辽源市东辽县。标段桩号33+949~49+657, 线路全长15.708km。主要施工内容包括: 隧洞、PCCP管道、钢管道、附属建筑物、交叉工程、出水闸工程、交通工程及其它临时工程等, 其中, 隧洞长11.347km, 成洞洞径2.6m; PCCP管道直径2.2m, 长3.937km; 钢管道( 包含钢管外包混凝土段) 直径2.2m, 长0.424 km。 本标段线路总体走向由北向南, 地势由高到低再到高, 地貌单元主要有河谷堆积地形(漫滩阶地)、剥蚀堆积地形(波状台地)和构造剥蚀地形(低山丘陵)。沿线山势起伏, 植被较发育, 洞室最大埋深135m。本标段穿越地层岩性主要有新生界第四系全新统冲积堆积层、中更新统冲洪积堆积、始渐新统泥岩和砂岩, 侵入岩为燕山及华力西期花岗岩和花岗闪长岩等。其中2#隧洞根据地质资料划分围岩类别为: Ⅱ类围占42.7%、Ⅲ类围岩占24. 0%、Ⅳ~Ⅴ类占33.3%。3#隧洞根据地质资料划分围岩类别为: Ⅱ类围占20.9%、Ⅲ类围岩占33.9%、Ⅳ~Ⅴ类占45.2% 2 执行技术规范和编制依据 施工测量依据如下: 《工程测量规范》 GB50026- 《水利水电工程施工测量规范》 DL/T5173- 《建筑变形测量规范》 JGJ8- 《铁路隧道监控量测技术规程》 Q/CR9218- 3 资源配置 3.1 人员配置 主要监测人员见表3.1。

基坑沉降观测方案共9页word资料

大兴康庄两限房(一期) 1#、5#、8#号住宅楼 基坑变形监测方案 北京住总第三开发建设有限公司 康庄工程项目经理部 2009年2月 目录 1. 编制依据 (2) 1.1. 施工图纸 (2) 1.2.主要规程规范 (2) 1.3.其他 (3) 2. 工程概况 (3) 3. 施工部署 (3) 3.1.人员部署 (3) 3.2.监测管理程序 (4) 4. 基坑变形监测的必要性、目的和内容 (4) 4.1.基坑变形监测的必要性 (4) 4.2.监测目的和内容 (4) 5. 监测要求及准备 (5) 5.1.监测要求 (5) 5.2.监测过程控制要求 (6)

5.3.对监测数据结果的要求 (6) 5.4.主要测试设备 (6) 6. 监测方法 (6) 6.1.肉眼观察 (6) 6.2.基坑外半永久性基准点的布置 (7) 6.3.水平位移监测 (7) 6.4.监测频率 (7) 6.5.变形控制标准 (7) 6.6.资料整理和分析反馈 (8) 6.7.其它注意事项 (8) 6.8.监控报警值 (8) 1.编制依据

2.工程概况 3.施工部署 3.1.人员部署 3.1.1.项目部组织机构

项目部施工监测管理人员为岳秀记,负责本工程的基坑变形监测工作;分包单位的监测工作必须严格执行项目部制定的一系列监测管理制度,做到持证上岗。 4.基坑变形监测的必要性、目的和内容 4.1.基坑变形监测的必要性 在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。 4.2.监测目的和内容 监测目的:检验设计所采取的各种假设和参数的正确性,指导基

深基坑变形监测的常见方法及应用

深基坑变形监测的常见方法及应用 本文主要介绍了深基坑的变形监测,分析了深基坑边坡的水平位移和竖向位移的监测方法,阐释了基坑变形监测过程中遇到的各种情况及需要注意的问题。 标签:深基坑;基坑变形监测;水平位移;竖向位移 随着科技的发展和技术的进步,为了解决土地资源日渐减少与城市人口不断增长的矛盾,越来越多的小高层、高层甚至超高层建筑物应运而生。伴随着高层建筑的崛起,深基坑工程也日益发展起来,深基坑的安全问题已经成为基础施工的重中之重。因此深基坑的变形监测也具有更实际更重要的意义。 深基坑工程是指基坑开挖的深度值超过5米(含5米)的基坑(槽)的土方开挖、边坡支护以及降水工程,或者基坑开挖的深度值虽未超过5米,但其地质条件情况、周围环境情况以及地下管线情况等较为复杂,或影响相邻建(构)筑物安全的基坑(槽)的土方开挖、边坡支护以及降水工程。根据规范要求,开挖深度值超过5m、或者开挖深度值虽不超过5m但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程变形监测。 基坑监测是指在施工及使用期限内,对深基坑及周边环境实施的检查、监控工作。监测项目主要包括:水平位移监测、竖向位移监测、深层水平位移监测、倾斜监测、裂缝监测、支护结构内力监测、土压力监测、孔隙水压力监测、地下水位监测、锚杆拉力监测、周边已建建筑的沉降监测等。其中基坑边坡的水平位移和竖向位移监测是最常见的基坑变形监测项目,本文就以此二项监测为例做相应的介绍和分析。 1、基坑变形测置点的设置 变形测量点分为基准点、工作基点和变形监测点。 基准点作为该工程的基准和检核点,必须保证其稳定性,每个基坑工程至少应设置3个基准点。当基准点离所测建筑距离较远致使变形测量作业不方便时,宜在稳定的位置设置工作基点。基准点和工作基点应避开交通干道主路、地下管线、仓库推栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀和破坏的地方,并应选设在变形影响范围以外且稳定、易于长期保存的地方。监测期间,应定期检查基准点和工作基点的稳定性。 基坑工程变形监测点是直接反应基坑变形情况的测量点。根据规范要求,基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。为了满足观测条件,应将点位沿基坑周边布置在边坡顶部,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20米,并应保证每条边坡上监测点数不少于3个。监测点宜采用1015cm长,直径20mm的钢筋,固定在边坡顶部,钢筋顶部刻十字花。

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

基坑变形监测方案

佳?5.4克拉项目基坑变形监测方案编制:______________ 甘肃统建建筑装饰工程集团有限公司佳?5.4克拉项目部 二O年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图 、编制依据 1、佳?5.4克拉基坑开挖图; 2、佳?5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳? 5.4克拉项目基坑支护结构设计》

《佳? 5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007 5、《建筑工程施工质量验收统一标准》GB50300-2013 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳? 5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳?水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程士0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm开挖深度为11.77m;西塔筏板厚度为1 500mm开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m ②圆砾(Q4al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色,重型动力触探试验修正值N63.5=14.6~23.4 击,中密- 密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中

深基坑逆作法施工监测与变形分析

深基坑逆作法施工监测与变形分析 发表时间:2019-01-09T10:54:41.980Z 来源:《防护工程》2018年第30期作者:徐爱成 [导读] 在深基坑工程施工过程中,容易受到周边环境以及施工方法等各种因素的影响,也就容易导致出现基坑结构以及地面建筑物出现较大程度的沉降与变形情况,从而引发一些重大的安全事故。 徐爱成 上海海洋地质勘察设计有限公司 摘要:在深基坑工程施工过程中,容易受到周边环境以及施工方法等各种因素的影响,也就容易导致出现基坑结构以及地面建筑物出现较大程度的沉降与变形情况,从而引发一些重大的安全事故。本文结合某工程为例,主要阐述了逆作法施工技术,将地下室的楼板结构作为永久性支撑结构,从而加快了施工的进度,降低了工程成本,并有效的控制了建筑基坑的不均匀沉降以及变形。 关键词:深基坑工程;逆作法;基坑监测 随着城市化进程的不断加快以及人民生活水平的提高,建筑行业得到了迅猛的增长,但是由于城市用地面积越来越紧张,高层、超高层建筑等仍然不能够满足人们的高需求。因此,建筑的地下室也得到了广泛的利用。基坑工程是整个建筑工程中的基础部分。从某个角度来看,虽然基坑工程的施工技术大多类似,但是由于建筑当地的地质条件、水文条件等各方面都有所差异,此时,如果施工人员没有根据实际情况来确定施工方案,那么工程中往往会含有更多不确定因素,所以在施工过程中,相关负责人必须要对其进行严格监测,及时发现工程中存在的各种问题,并予以解决,从而消除存在在工程中的不确定因素。 在城市中,为了满足人们的高要求,通常会设置多层地下室结构,在这种情况下,逆作法是一种非常好的施工手段,它能够有效的解决深基坑支护难的问题。这种结构通常是将地下结构来作为深基坑的支护结构,在我国沿海地区,这样的施工手段随处可见。相对于普通支护施工手段而言,这种具有刚度大、稳定性高、安全可靠等优点。所以如果建筑的地基出现了变形,那么采用这种方式就能够对其有效的控制,但是这种方式唯一的缺点就是不便于土方基坑的开挖。 1 工程概况 1.1 工程简介 本工程主要有5栋30层高的住宅区组成,采用的是框剪结构。这5栋建筑的5层属于商用区域,上部为住宅区,在该建筑的下部有三层地下室。在本工程当中,与其他住宅以及商业区域有一路之隔,基坑与道路最近距离约13m;南侧最近距民宅及商住楼约25m;西侧紧邻商务楼及新城大道,最近距离约8m;北侧为工业品批发市场,离基坑最近距离约16m。 基坑开挖面积18270m2,支护结构580延长米,开挖深度约14m,±0.000标高相当于绝对高程4.150m,基坑周边自然地坪绝对标高平均为3.900m。支护结构采用直径1000mm的钻孔灌注桩+3道钢筋混凝土支撑,利用±0.000层平板结构作第一道内支撑,第二、三道内支撑顶面标高分别为一5.100m和一8.700m,基坑中间设钢立柱承受竖向荷载,采用逆作法施工。 1.2 地质条件 由于本工程位于沿海地区,我们对该工程的土质条件进行勘测,其土质大致以灰色层粘土为主,这种土质的可塑性较强,但由于含水量过大,所以压缩性也就非常大。 1.3 水文条件 在本工程中,地下水主要分为两大类,一是地上潜水;二是地下承压水。在进行开挖基坑的过程中,基坑内部所存在的地下水主要是潜水,而且这种水质主要位于上部土层当中。但是在表层的图层当中,由于含水性相对较差,所以表层存在的这种潜水量也就相对较小。另外,由于地下水位会受到外界气候条件的影响,每一年水位的变化一般在±1.0m左右,经勘测者对潜水位的勘测,其深度在0.3~1.3m之间。而地下的承压水会存在于基坑的最底部,而此处由于土层厚度不大,并且分布不够连续,所以其含水量也就不大,对于整个工程的施工并没有太大的影响。 2 监测方案 2.1 监测目的及内容 在深基坑施工过程中,要求相关负责人对其进行严格的检测,其检测目的有以下加点:1)保证深基坑工程的施工安全,这是监测的最基本要求;2)对周边环境以及建筑物起到保护作用;3)采用现代化、信息化系统进行严格的检测,这样才能够及时的发现施工过程中存在的各种问题。另外,监测人员必须按照施工及国家的相关规定,并且根据基坑工程的特点以及实际情况、个人的相关经验对工程进行严格的监测。 2.2 监测时间和监测频率 一般来说,施工全过程都需要监测人员在一旁检测,一直都是施工竣工为止。在基坑开挖之前,监测人员需要对各个项目进行测定,并应将次数控制在2次以上,然后将各个参数进行计算,为了提高数据的准确度,可以取各个参数的平均值。在基坑开挖过程中,监测人员必须坚持每天一次的频率进行检测,等到基础底板浇筑完成之后可以慢慢减少频率。如果在施工过程中出现了异常情况,那么监测人员需要随时对工程进行检测,以提高工程的安全系数。 3 监测成果分析 3.1 围护结构侧移 围护桩墙及周围土体深层水平位移的监测是确定基坑围护体系变形和受力的最重要观测手段,采用测斜手段进行观测。本工程不仅对围护桩侧向位移进行监测.且对围护桩外侧对应的土体深层位移也进行了监测。由监测结果可知,土体深层位移曲线与围护结构侧向位移很相似。监测全过程中,围护桩侧向位移及周边土体深层位移均在40mm内,基坑变形控制较好。基坑底板浇筑后,围护结构变形基本稳定,坑底附近侧移反而有小幅回归,这是因为随地下结构的施工,基础底板和结构梁对整个围护体系形成了有效约束。随结构自重逐渐增加,坑底以下被动区土体回弹受到限制并产生少量压缩,为整个围护体系提供的反力逐渐增加,从而使围护桩侧向位移及周边土体深层位

高层建筑物变形监测方案设计

目录 第1章绪论.................................................................... II 1.1 建筑物变形观测的概述................................................ II 1.1.1 变形产生的原因和类型........................................... II 1.1.2 变形观测的主要任务............................................ III 1.1.3 变形观测的目的和意义........................................... IV 1.2 建筑物变形观测的概况................................................. V 1.2.1 我国的变形监测工作发展过程...................................... V 1.2.2 高层建(构)筑物的变形特点.................................... VII 1.2.3 其它建(构)筑物的主要变形特点............................... VIII 1.2.4 我国开展变形监测工作的主要内容............................... VIII 1.3 变形监测的精度和频率.............................................. VIII 1.3.1 制约变形监测质量的主要因素................................... VIII 1.3.2 变形监测的频率.................................................. X 1.3.3 变形监测频率确定的基本方法..................................... XI 1.3.4 沉降稳定期的确定............................................... XI 第2章位移观测............................................................... XII 2.1 倾斜观测的陈述..................................................... XII 2.2 一般建筑物的倾斜观测............................................... XII 2.3 特殊建筑物的倾斜观测.............................................. XIII 2.4 建筑物主体倾斜观测................................................. XIV 2.4.1 主体倾斜观测的方法............................................. XV 2.4.2 主体倾斜观测的周期............................................ XVI 2.4.3 倾斜观测实例................................................. XVII 2.4.4 建筑物水平位移观测.......................................... XVIII 2.5 裂缝观测........................................................... XIX 2.5.1 裂缝观测的概述................................................ XIX 2.5.2 裂缝观测的方法................................................. XX 2.6 挠度观测.......................................................... XXII 2.6.1 建筑物基础挠度观测........................................... XXII 2.6.2 弹性挠度观测................................................. XXII 2.6.3 建筑物主体挠度观测........................................... XXII 2.7 日照和风振变形监测............................................... XXIII

相关文档
相关文档 最新文档