文档库 最新最全的文档下载
当前位置:文档库 › 高考数学一轮复习函数的奇偶性与周期性教案(无答案)

高考数学一轮复习函数的奇偶性与周期性教案(无答案)

高考数学一轮复习函数的奇偶性与周期性教案(无答案)
高考数学一轮复习函数的奇偶性与周期性教案(无答案)

函数的奇偶性与周期性

一、考纲要求

函数的奇偶性与周期性B

二、复习目标

1.理解函数奇偶性的定义; 2、会判断函数的奇偶性 ;3、能证明函数的奇偶性;4、理解函数周期性的定义;5、会求周期函数的周期。

三、重点难点

函数奇偶性的判断及证明;函数周期性判断及周期求法。

四、要点梳理

1.奇、偶函数的定义:

对于函数()f x 定义域内的任意一个x ,都有_______________,称()f x 为偶函数,对于函数()f x 定义域内的任意一个x ,都有________________,称()f x 为奇函数.

2.奇、偶函数的性质

(1)具有奇偶性的函数,其定义域关于_________对称;

(2)奇函数的图像关于____对称,偶函数的图像关于_________对称;

(3)若奇函数的定义域包含0,则_____________;

(4)在偶函数中,()()f x f x =.

(5)在公共定义域内,①两个奇函数的和是___函数,两个奇函数的积是____函数;②两个偶函数的和、积是___函数;③一个奇函数,一个偶函数的积是____函数. (填“奇”,“偶”)

3.对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有 ,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.

4.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小正数,那么这个 就叫做f (x )的最小正周期.

5.周期性三个常用结论

对f (x )定义域内任一自变量的值x : (1) 若f (x +a )=-f (x ),则T =2a ;

(2)若f (x +a )=

1f x ,则T =2a ; (3) 若f (x +a )=-1f x

,则T =2a .(a > 0 ) 五、基础自测

1.对于定义在R 上的函数()f x ,下列命题正确的序号是___________.

(1)若(2)(2)f f -=,则函数()f x 是偶函数;

(2)若(2)(2)f f -≠,则函数()f x 不是偶函数;

(3)若(2)(2)f f -=,则函数()f x 不是奇函数;

(4)若()f x 是偶函数,则(2)(2)f f -=.

2.给出4个函数:①241()3x f x x +=-;②()25f x x =-+;③1()lg 1x f x x -=+;④1()1

x f x x -=+. 其中 是奇函数; 是偶函数; 既不是奇函数也不是偶函数.

3.已知函数2()43f x x bx a b =+++是偶函数,其定义域是[6,2]a a -,则点(),a b 的坐标为__________.

4.已知定义在R 上的函数()f x 满足3()2f x f x ??=-+ ??

?,且(1)2f =,则f (2 014)=________. 5.若函数2()1

x a f x x bx +=

++在[1,1]-上是奇函数,则()f x = . 六、典例精讲:

例1 判断下列函数的奇偶性,并说明理由:

(1)2

(12)()2x x f x +=; (2)()lg(f x x =; (3)()(1f x x =-

(4)2()|1|1f x x x =+-+; (5)()f x =;(6) 22(0),()(0).x x x f x x x x ?-+?=?+

(1)求证:()f x 是周期函数;

(2)当x ∈[2,4]时,求()f x 的解析式.

例3、 已知函数()f x 的定义域是不等于0的所有实数,对定义域内的任意12,x x ,都有1212()()(),f x x f x f x =+

(1)求(1)f 的值; (2)判断函数()f x 的奇偶性并证明;

(3)如果(4)1,(31)(26)3f f x f x =++-≤,且()f x 在()0,+∞上是增函数,求x 的取值范围.

七、千思百练:

1.下列函数中是奇函数的是___________. (1) 1()lg 1x f x x +=- (2) 2()121

x f x =+- (3) ()11f x x x =++-

(4) ()f x x

= (5) 2()33f x x x =+ 2.函数3()sin 1()f x x x x R =++∈

,若2f =

,则(f 的值为___________.

3.若偶函数y =f (x )为R 上的周期为6的周期函数,且满足f (x )=(x +1)(x -a )(-3≤x ≤3),则f (-6)等于________.

4.已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时

,()(1f x x =,则()f x 的解析式 为__________.

5.已知定义在实数集R 上的偶函数()f x 在区间[)0,+∞上是单调增函数,若(1)(lg )f f x <,则x 的取值范围为___________.

6.已知定义在R 上的偶函数()f x 满足:(1)()3,f x f x ++=当[]0,1x ∈时,()2,(2005.5)f x x f =--则=_________________.

7.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=?????

ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ? ????12=f ? ??

??32,则a +3b 的值为________. 8.函数()f x 的定义域为[1,1]-.

(1)若()f x 是奇函数,在区间[1,0)-上为增函数,且102f ??= ???

,解不等式()0xf x <; (2)若()f x 是偶函数,在区间[1,0]-上为增函数,解不等式2(51)(6)f x f x -<.

9. 已知函数2220()000

x x x f x x x mx x ?-+>?==??+

(1) 求实数m 的值;

(2) 若函数()f x 在区间[-1,a -2]上单调递增,求实数a 的取值范围.

10.已知函数1()log (01)1

a

mx f x a a x -=>≠-且是奇函数 (1) 求m 的值;

(2) 判断()f x 在区间()1,+∞的单调性并加以证明;

(3)当1,(1a x >∈时,()f x ∞的值域是(1,+),求a 的值.

八、总结反思:

函数的奇偶性试讲教案

1.3.2 函数的奇偶性 教材分析: 函数的奇偶性选自人教版高中新课程教材必修1第一章第三节《函数的基本性质》的内容,本节安排为二课时,《函数的奇偶性》为本节中的第二课时。 从在教材中的地位与作用来看,函数是高中数学学习中的重点和难点,函数的思想贯穿整个高中数学。而函数的奇偶性是函数的重要性质之一,它与现实生活中的对称性密切联系,为接下来学习指数函数、对数函数和幂函数的性质奠定了坚实的基础。因此,本节课的内容是十分重要的。 学情分析: 授课对象为xxxx中学高一(x)班的学生,从学生现有的学习能力来看,学生已具有一定的分析问题和解决问题的能力,能根据以前学习过的二次函数和反比例函数这两个特殊函数的图象观察出图象对称的思想,使本节通过观察图象学习函数奇偶性的定义成为可能。教学目标: 1、知识与技能目标: 通过本节课,学生能理解函数奇偶性的概念及其几何意义,掌握判别函数奇偶性的方法。 2、过程与方法目标: 通过实例观察、具体函数分析、图形结合、定性与定量的转换,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。 3、情感态度与价值观目标: 在经历概念形成的过程中,培养学生归纳、概括的能力,使学生养成善于观察、勇于探索的良好习惯和严谨的科学态度。

教学重难点: 重点:函数奇偶性概念的形成和函数奇偶性的判断。 难点:理解函数奇偶性的概念,掌握判断函数奇偶性的方法。 教法分析: 为了实现本节课的教学目标,在教法上,我通过大自然中对称的例子和学生已掌握的对称函数的图象来创设问题情境,启发学生自主思考,归纳共同点,从而调动学生主体参与的积极性。 在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念,在给出偶函数的定义之后,让学生类比得出奇函数的定义。 教学过程: 一、知识回顾 平面直角坐标系中的任意一点P(a,b)关于X轴、Y轴及原点对称的点的坐标各是什么? (1)点P(a, b)关于x轴的对称点的坐标为P(a,-b) .其坐标特征为:横坐标不变,纵坐标变为相反数; (2)点P(a, b)关于y轴的对称点的坐标为P(- a, b) ,其坐标特征为:纵坐标不变,横坐标变为相反数; (3)点P(a, b) 关于原点对称点的坐标为P(-a,-b) ,其坐标特征为:横坐标变为相反数,纵坐标也变为相反数. 二、新课教学 (一)偶函数

函数的奇偶性教学设计

函数的奇偶性教学设计 一、教材分析 函数是描述客观世界变化规律的重要数学模型,函数的思想方法贯穿高中数学课程的始终.奇偶性是函数的一个重要性质,是学生在学了函数的概念和单调性的基础上进行学习的,学习本节课对巩固前面的知识,以及为后面进一步学好指、对、幂函数和三角函数等内容都具有很重要的意义. 二、学情分析 由于学生刚进入高中,逻辑思维能力初步形成,思维尽管活跃,敏捷,却缺乏冷静,深刻,因此片面,不严谨。从学生的思维特点看,学生很难从前面所学的函数的单调性联系到函数图形的对称性所反映的函数的奇偶性,这对学生的思维是一个突破。 三、概念解析 函数的奇偶性是函数的一个整体性质,定义域关于原点呈中心对称是一个函数具有奇偶性的必要条件,当自变量互为相反数时,函数值相等或相反,表现在图象上,偶函数关于y轴对称,奇函数关于原点呈中心对称。 四、教学目标 1,知识与技能 使学生理解奇函数、偶函数的概念,学会运用定义判断函数奇偶性;

2,过程与方法 通过观察、归纳、抽象、概括,经历自主建构奇函数、偶函数等概念的过程;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力. 3.情感态度与价值观 通过绘制和展示优美的函数图象来陶冶学生的情操,通过组织学生分组讨论,培养学生的合作精神和勇于探索的良好品质。 五、教学重难点 重点:函数奇偶性概念。 难点:对函数奇偶性的概念的理解及判定函数奇偶性 六、教学流程 创设情境,引入课题观察归纳 ,形成概念设疑答问深化概念应用新知巩固概念引导回顾知识小结布置作业 七、教学过程 创设情境引入课题 (观察课件中物体的特点) 设计意图 由生活中的对称到数学中的对称,引入课题,拉近数学与生活的距离,让学生感受到数学来源于生活。 问题1-1:填空:在直角坐标系中,点p(x,y)关于y轴对称点P’( , )

函数的奇偶性教学设计

《函数的奇偶性》教学设计 五华县高级中学叶双霞 教材来源:人教版高中数学必修一 一、教材分析 “奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基木性质”的第2小节。 函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。尝试画出f(x) = χ2和f(x)=∣x∣的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性?从知识结构看,奇偶性既是函数概念的拓展和深入,乂是为以后学习基本初等函数奠定了基础。因此,本节课起着承上启下的重要作用。二、学情分析 从学生的认知基础看,学生在初中己经学习了轴对称图形和中心对称图形, 并且有了一定数量的简单函数的储备。同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。 三、教学目标 【知识与技能】 1. 理解奇函数、偶函数的概念及其几何意义; 2. 能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。 【过程与方法】 通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。【情感、态度与价值观】 1. 在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力: 2?通过H主探索,体会数形结合的思想,感受数学的对称美。

. 教学重点和难点 重点:函数奇偶性的概念和函数图像的特征。 难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。 五、教学方法 引导发现法为主,直观演示法、类比法为辅。 PPT 课件。 七、教学过程 (一) 情境导入、观察图像 设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。 师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它 们有什么特点吗? ” 生:“它们的共同点都是关于某一地方是对称的。” 师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们 来尝试画一下f(x) = X 2和f(x)=∣x ∣的图像,并一起探究儿个问题。” (二) 探究新知、形成概念 探究1 ?观察下列两个函数f(x) = X 2和f(x)=仪|的图象,它们有什么共同特征吗? !1! 六、教学手 出示一组轴对称和中心对称的图片。

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿 揭西县棉湖中学 林松彬 尊敬的各位专家评委、老师们:大家好! 今天我说的课是人教A 版必修1第一章第3节第2课时“函数的奇偶性”。我将从教材分析、教法和学法的分析、教学过程三个方面对本节课进行说明。 一、教材分析 1.教材所处的地位和作用 “奇偶性”是人教A 版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。 奇偶性是函数的一条重要性质,教材从学生熟悉的 ()()()()x x f x x f x x f x x f ====和及和21入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。 从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。 2.学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。 从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题. 3. 教学目标 基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 【知识与技能】 1.能判断一些简单函数的奇偶性。 2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。 【过程与方法】 经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。 【情感、态度与价值观】 通过自主探索,体会数形结合的思想,感受数学的对称美。 从课堂反应看,基本上达到了预期效果。 4、教学重点和难点 重点:函数奇偶性的概念和几何意义。 几年的教学实践证明,虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验f(-x)=-f(x)或f(-x)=-f(x)成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反

苏教版高中数学高一必修1教学案 第19课时 函数的奇偶性1

一、复习引入 1、函数的单调性、最值 2、函数的奇偶性 (1)奇函数 (2)偶函数 (3)与图象对称性的关系 (4)说明(定义域的要求) 二、例题分析 例1、判断下列函数是否为偶函数或奇函数 (1)1)(2-=x x f (2)x x f 2)(= (3)||2)(x x f = (4)2)1()(-=x x f 例2、证明函数x x x f 5)(3+=在R 上是奇函数。 例3、试判断下列函数的奇偶性 (1)x x x x u -+-=11)1()( (2)22(1), 0()0, 0(1), x x x g x x x x x ?- >?==??-+

例4、设3()1f x ax bx =++,且0)2(=f ,求)2(-f 的值。 三、随堂练习 1、函数5)(2+=x x f 、 A 是奇函数但不是偶函数 、 B 是偶函数但不是奇函数 、 C 既是奇函数又是偶函数 、 D 既不是奇函数又不是偶函数 2、下列4个判断中,正确的是_______. (1)1)(=x f 既是奇函数又是偶函数; (2)1 )(2--=x x x x f 是奇函数 (3)x x x x f -+? -=11)1()(是偶函数; (4)12)(2+-=x x x f 是非奇非偶函数 3、函数x x x f 2)(2+=的图象是否关于某直线对称?它是否为偶函数? 4、证明函数x x x f -=3 )(在R 上是奇函数。 5、判断下列函数的奇偶性 (1)1()f x x x =+ (2)421()x f x x -=

四、回顾小结 1、判断函数奇偶性。 2、证明一些简单函数的奇偶性。 课后作业 班级:高一( )班 姓名__________ 一、基础题 1、若函数(]2,1,)(2 ∈=x x x f ,则下列说法中,正确的是______。 (1)奇函数 (2)偶函数 (3)既是奇函数又是偶函数 (4)既不是奇函数也不是偶函数 2、函数3x y =的奇偶性是_______,它的图象关于_______对称。 3、设函数x x f -= )(,则)(x f 的奇偶性是___________。 4、设函数22)(-+-=x x x f ,则)(x f 的奇偶性是___________。 5、设)(x f 在[]5,5-上是偶函数,则)2(-f 与)2(f 的大小关系是___________。 二、提高题 6、已知函数)2)(1()(+-=x x x f 。 (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出其定义域、值域、奇偶性、单调区间。 7、已知函数12)(2 --=x x x f ,试判断函数)(x f 的奇偶性,并画出函数的图象。

奇偶性教学案例

函数奇偶性教学案例 课题:函数奇偶性 —数学组 一、教学目标 知识与技能: 1. 理解函数的奇偶性及其几何意义; 2. 学会判断函数的奇偶性; 3. 学会运用函数图像理解和研究函数的性质。 过程与方法: 经历从具体情境抽象出函数的奇偶性定义的过程,提高观察、分析、抽象和概括等方面的能力,感悟数形结合和类比的数学思想方法。 情感、态度与价值观: 1、通过本节课学习,培养学生从特殊到一般的概括归纳问题的能力。 2、体会数学中的对称美。 二、教学重点、难点 1、重点:函数的奇偶性及其几何意义。 2、难点:判断函数的奇偶性的方法。

三、学情分析 根据就业1205烹饪班的实际情况,学生刚来我校时数学基础较差,学习习惯和方法落后,进校后对学习数学感到吃力,对学好数学信心不足。但通过半学期来同学们的刻苦努力,本班学生已熟悉中职数学的学习,对相关数学知识有了一定了解和掌握,也形成了自己的学习方法和习惯,对学习数学有了一些兴趣和信心。 四、学法与教学用具 1、学法:实践,观察,归纳,应用。 2、教学用具:白纸,直尺,粉笔,多媒体设备等。 五、教学过程 (一):创设情景,揭示课题 同学们,我们生活在美的世界中,有过许多对美的感受,如:外表美,自然美,和谐美,对称美……;今天,我们就来讨论对称美,在我们日常生活中,存在许多对称的事物,比如:宏伟的建筑、美丽的蝴蝶,展翅飞翔的白鸽。。。 教师:你们还能列举出生活中的对称的实例吗? 学生自由回答。 教师:如果把生活中的对称美引入到我们数学领域中,它又是怎样的情况呢?今天,我们就来学习函数中的对称问题。(引出课题:函数的奇偶性) 设计意图: 用多媒体展示一组图片,使学生感受到生活中的对称美。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

《正弦函数的性质》教学反思

《正弦函数的性质》教学反思 神木职教中心张瑜 通过数学组对笔者《正弦函数的性质》的集体评课,获益匪浅。我将自己的优、劣势以及需要改进的地方,从以下几个方面反思: 首先,三角函数这部分内容知识点较为琐碎,对学生的要求较高,而我们的学情是学生基础差,底子薄,理解、计算能力不强;其次,我们的学生动手能力和积极性都很差。这两方面都给我教学环节的设计和教学语言的组织带来了困难。如何提升他们的学习兴趣,科学有效地引导他们,使他们“听得懂,学得会”,是我面临的最大问题。 自我感觉这节课的亮点有以下几个方面: 1、教学设计准备充分,达到预计效果。为提高学生学习积极性,以及帮助学生理解起来更轻松,我采用多媒体辅助教学,在多媒体中作了动画---正弦函数的图像,从图像入手引入正弦函数的性质。能让学生在浓烈的学习气氛中开始探索新知识。 2、数学中体现学生为主,教师引导的原则。本课主要从正弦函数的图像中观察性质,主要从正弦函数的周期性、奇偶性、单调性方面进行探究,在教室的引导下,学生能主动思考,得到重要结论。 3、在处理教材上,思路清晰,难易把握适中。大多数学生吸收情况良好,而且能灵活运用所学知识解决相关数学问题。 尽管公开课上得比较顺利,但并没有达到最好的效果,主要存在以下几个方面的不足,需要我认真反思,并在今后不断努力改进: 1、在重点知识的强调上稍快,给学生的思考和发挥的空间不足。比如学生根据图像得出性质后,应该让学生给出完整的结论。这样学生才能进行充分的独立思考,并能调动学生的积极性。 2、在进行课堂小结的过程中有点仓促,应该多提问几个学生,了解他们这节课的知识掌握情况。而不是蜻蜓点水,几句话给出总结。 3、教学语言还需要不断锤炼。数学这一门严谨的学科决定了老师的语言必

函数奇偶性试讲教案

数学与信息科学学院 教 案 课题奇偶性 专业数学与应用数学指导教师 班级 姓名 学号 2012年4月12日

课题:§1.3.2 奇偶性 教学目标 (一)知识与技能 1、理解和掌握函数奇偶性的定义,会判断函数的奇偶性; 2、能证明一些简单函数的奇偶性. (二)过程与方法 经历从具体情境抽象出函数奇偶性定义的过程,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想方法. (三)情感、态度与价值观 1、通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学习积极性,养成积极主动,勇于探索,不断创新的学习习惯和品质; 2、体会数学中的对称美. 教学重点、难点 1、重点:函数奇偶性定义及其判定; 2、难点:对函数奇偶性的概念的理解. 教、学法 1、教法:探究研讨法,讲练结合法; 2、学法:观察,归纳,应用. 教学准备(教具):直尺,彩色粉笔,小黑板,多媒体等. 课型:新授课. 教学过程 第1教学段:创设情景,揭示课题 在我们的日常生活中,可以观察到许多对称现象:美丽的蝴蝶,盛开的花朵,六角形的雪花晶体,建筑物和它在水中的倒影 “对称”是大自然的一种美,无处不在,是生活的一种美,这种“对称美”在数学中也有很多的反映.我们今天就来学习函数中的对称. 第2教学段:学法指导,研探新知 多媒体展示函数图象,并提出问题:

2()f x x = f (x )=|x | y y x x 图1 图2 x 2 -3 -2 -1 0 1 2 3 f (x ) 9 4 1 0 1 4 9 x -3 -2 -1 0 1 2 3 f (x ) 3 2 1 1 2 3 (1)观察函数x x f x x f ==)(,)(2的图象,从对称的角度观察它们有什么共同的特征?(图形关于原点对称) (2)相应的两个函数值对应表是如何体现这些特征的? (当自变量任取定义域内互为相反数的两个值时,对应的函数值恰好相等) (3)你能用数学语言来说明这个特征吗? (如用解析式表示) 概括:如果点(x,y )在函数f (x )=x 2或者 f (x )=|x |的图象上,则该点关于y 轴的对称点(-x,y )也在相应函数的图象上. 用解析式表示:当f (x )=x 2时,f (-x )=(-x )2 = x 2=f (x ); 当f (x )=|x |时,f (-x )= |-x |=|x |=f (x ). 引出偶函数定义:一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )= f (x ),那么函数f (x )就叫做偶函数. 最后挖掘定义中隐含的关键点: (1)由偶函数的定义可知,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域必须关于原点对称); (2)对定义中的任意一个x ,都有)()(x f x f =-; (3)图象特征;偶函数图象关于y 轴对称(这是判断偶函数的直观方法). 类比学习偶函数的方法,观察函数1(),()(0)f x x f x x x == ≠的图象,同样提

函数的奇偶性公开课优秀教案(比赛课教案)

《函数的奇偶性》教案 一、教材分析 “奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。 函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。尝试画出和的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后学习基本初等函数奠定了基础。因此,本节课起着承上启下的重要作用。 二、学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。 三、教学目标 【知识与技能】 1.理解奇函数、偶函数的概念及其几何意义; 2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。 【过程与方法】 通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。 【情感、态度与价值观】 1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力; 2.通过自主探索,体会数形结合的思想,感受数学的对称美。 四、教学重点和难点 重点:函数奇偶性的概念和函数图像的特征。

难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。 五、教学方法 引导发现法为主,直观演示法、类比法为辅。 六、教学手段 PPT课件。 七、教学过程 (一)情境导入、观察图像 出示一组轴对称和中心对称的图片。 设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。 师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它们有什么特点吗?” 生:“它们的共同点都是关于某一地方是对称的。” 师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们来尝试画一下和的图像,并一起探究几个问题。” (二)探究新知、形成概念 探究1.观察下列两个函数和的图象,它们有什么共同特征吗?

三角函数图像及性质教学反思

三角函数图像及性质复习课的反思 高三数学的一轮复习时,教师们往往只注意知识点复习是否全面,而使一些重要的、本质的东西在不经意间忽略,可说是“赢了起点,却失去了终点”,实在令人感到可惜.而且现在高考考试说明中除了的图像和性质、几个三角恒等式是A级要求外,其他都是B级要求,特别两角和(差)的正弦、余弦和正切是C级要求,只记公式而不注重知识的生成发展过程是不能适应三角函数题的千变万化的。下面就高三一轮复习中三角函数复习中的“滑过”现象谈谈本人的反思。 一:三角函数复习中知识的发生过程 许多教师认为三角函数这章重点是公式的灵活应用,于是让学生背公式、默公式,而对三角函数中知识的发生过程则一带而过,使得学生对三角函数这章最本质的东西没有概念。 教师在复习三角函数时往往首先复习角的概念的扩充(任意角),任意角的三角函数的定义,忽视了三角函数定义的生成过程:怎样将锐角的三角函数推广到任意角?忽视了这一过程,学生往往没有将角放在直角坐标系下研究的意识,使有些问题可能错过一些直接的简单的解法。 二:三角函数复习中知识的发展过程 三角函数这章内容最主要的特点之一就是公式多,尤其是三角恒等变换这节内容。教师们往往要学生强化记忆,甚至默写、罚抄,再反复操练,认为熟能生巧,做多了自然就会。然而内容的复习具有阶段性,短期内可能有效果,但时间一长,就渐渐淡忘了。我们应让学生理解知识的发展过程。如复习三角恒等变换时要让学生理解公式的作用——用单角的三角函数表示复角的三角函数,公式间的内在关系,使各公式之间形成公式链,通过公式间的内在关系的复习,不仅巩固了学生前面所学内容,还培养了学生换角的思想方法、进一步体会数学上的化归思想;培养了学生将知识链接化、网络化的学习能力,这是对他终生受益的。 复习课虽不能像新授课那样细致,但也不能只是知识点的简单罗列,要注重知识的前后联系,可更有效地让学生掌握相关内容。如:诱导公式,一方面可让学生根据角和终边的关系得到此公式,另一方面,也可与后面三角函数的奇偶性联系起来,更方便学生掌握。 三:三角函数复习课堂中的人为忽视 教师的教学观念、教学习惯也常常造成教学中的忽视现象。例如多数情况下,教师都很擅长提出引导性问题来发学生思考,但往往又不留下思考的空间,而是习惯地自问自答,从而使学生错失许多自主活动的机会,使得“滑过”现象发生得自然而然,而教师并不能经常意到。比如,在“求满足的角x”时,教师常常在学生还没有思考或还没有思考完成就会提出警告:定位要好、定量要准,看它的终边在哪一象限呢?这样一来,就使学生体验“犯错误”的机会白白流失。要知道适当地引导学生在关键地方犯些错误,远比正面强调来得深刻、有力的多。又如,曾有某教师用这样一道题“若α,β为锐角,sinα=,cos(α+β)= ,求cosβ”来锻炼学生灵活应用公式的能力,但有一学生直观观察后发现:这样的角根本不存在,因为α+β<α,该题本身就是一错题。但这使这位教师很不乐意,训斥该生:“你能学会使用公式就不错了,就会胡思乱想”。教师对这种“求异思维”不是宽容,不是肯定,而是排斥,任其“滑过”,着实令人扼腕。诚然,这道错题并不影响使用公式,但学生基于批判性的创造性思维可能是多少公式也难以换来的,善待学生出现的“非标准思路”,不使其轻易“滑过”,可能不亚于机械地解数十、百道题。这与路政建设中有一条不成文的规定:道路并非越直越好,适当增加转弯是一种科学的做法是一致的。 原因在于,笔直的路往往促成车速太快,“一滑而过”的效应不仅易于造成路边“景点”的流失,而且容易削弱司机的注意力和操作能动性,并滋生其惰性心理。教学中如果教师将教学任务设置的面面俱到、自然顺畅,学生无需费多少心力,即可一蹴而就;或者即便设置了“障碍”,但由于教学进程太快,没有留下跨越“障碍”的余地,就容易使许多具备探索价值的内容不经意间“滑

高中数学_函数的奇偶性教学设计学情分析教材分析课后反思

2.1.4《函数的奇偶性》 一、教材分析 (一)教材所处的地位和作用 函数的奇偶性是普通高中标准实验教科书数学必修一B版第二章函数的第4小节,函数的奇偶性是函数的一条重要性质,教材从学生熟知的函数入手,结合初中学生已经学习过的轴对称和中心对称感受奇函数和偶函数的图像特征,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地学习函数的奇偶性。从知识结构上,奇偶性既是函数概念的拓展和深化,又是后续研究基本初等函数的基础。起着承上启下的作用。 (二)学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。 从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题. (三)教学目标 基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 【知识与技能】 1.理解函数奇偶性的概念和图象特征。 2.能判断一些简单函数的奇偶性。

【过程与方法】 经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。 【情感、态度与价值观】 通过自主探索,体会数形结合的思想,感受数学的对称美。通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。 (四)教学重点和难点 重点:函数奇偶性的概念及其建立过程,判断函数的奇偶性。 “函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验f(-x)=f(x)及f(-x)=-f(x) 成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把“函数的奇偶性概念”设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。 难点:对函数奇偶性概念理解与认识。 二、教法与学法分析 (一)教法 根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主

函数的奇偶性教学反思

函数的奇偶性教学反思 数学组喻俊邦 在本节课教学过程中,我让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的”任意”值都成立,最后在这个基础上建立奇偶函数的概念。 在本节课的教学中我还要注意到以下几个方面的问题: 1.幻灯片的设计 幻灯片的使用在一定程度上很好的辅助我的教学活动,但是数学学科中应注意到幻灯片的设计,在出现某些字或者数字时应直接出现,而不要设计成动画的形式,以免学生分散注意力。 2.学生练习 在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,可以采用学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。 3.例题书写 在数学教学中我们都要对例题的解题过程进行讲解,并书写解题过程,以便让学生更好的模仿。在书写解题过程或定义时要认真板书,保证字迹清楚,便于学生仿照。 4.语言组织 在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。 5.教学环节的完整 在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,有时候可能因为紧张等各种因素往往忽略小细节,遗漏其中的某一环节,造成教学设计不完善。在以后的教学过程中要注意这些环节。 6.教案设计的完整 在本节课教学中我因为考虑到有幻灯片而没有在教案中设计“板书设计”这个环节,但是在授课过程中又用到了板书,所以一定要设计“板书设计”,以保证教案的完整性。 以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。

函数的奇偶性获奖教案

一.课题:函数奇偶性(1) 二.教学目标: 1. 使学生理解奇函数、偶函数的概念;使学生掌握判断函数奇偶性的方法; 2. 培养学生判断、推理的能力、加强化归转化能力的训练。 三.教学重点:函数奇偶性的概念 四.教学过程: (一)复习:(提问) 增函数、减函数的定义,并复述证明函数单调性的步骤; (二)新课讲解: 请同学们观察图形,说出函数2x y =和1y x =-(0x ≠)的图象各有怎样的对称性? 1.奇偶性的定义: (1)偶函数的定义:一般地,如果对于函数()f x 的定义域内任意一个x , 都有()()f x f x -=,那么函数()f x 就叫做偶函数。例如:函数2()1f x x =+, 4()2f x x =-等都是偶函数。 (2)奇函数的定义:一般地,如果对于函数()f x 的定义域内任意一个x , 都有()()f x f x -=-,那么函数()f x 就叫做奇函数。例如:函数x x f =)(,x x f 1)(=都是奇函数。 (3)奇偶性的定义:如果函数()f x 是奇函数或偶函数,那么我们就说函数 ()f x 具有奇偶性。 说明:从函数奇偶性的定义可以看出,具有奇偶性的函数: (1)其定义域关于原点对称; (2) ()()f x f x -=或()()f x f x -=-必有一成立。 因此,判断某一函数的奇偶性时,首先看其定义域是否关于原点对称,若对称,再计算()f x -,看是等于()f x 还是等于()f x -,然后下结论;若定义域关于原点不对称,则函数没有奇偶性。

(3)无奇偶性的函数是非奇非偶函数。 (4)函数0)(=x f 既是奇函数也是偶函数,因为其定义域关于原点对称且既满足)()(x f x f -=也满足)()(x f x f --=。 (5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。偶函数的图象关于y 轴对称,反过来,如果一个函数的图形关于y 轴对称,那么这个函数是偶函数。 (6)奇函数若在0x =时有定义,则(0)0f =. 2.例题分析: 例1.判断下列函数的奇偶性: (1)3()f x x x =+ (2 )()f x = (3)64()8f x x x =++ [2,2)x ∈- (4)42()23f x x x =+ 例2.判断下列函数的奇偶性: (1 )()||f x x = (2 )()2|2|f x x =-+

函数的奇偶性公开课教案

教案 教者李德双科目数学班级3班课题函数的奇偶性课型启发式教学 时间2019年12 月19 日地点多媒体教室 教学目标1.知识与技能目标:理解奇(偶)函数概念;会利用定义判断简单函数是否为奇(偶)函数;掌握奇(偶)函数图象性质; 2.过程与方法目标:在学习过程掌握从特殊到一般的研究方法;学会用对称的方法来方便问题的解决; 3.情感态度与价值观目标:锻炼学生思维的严谨性;体验探究的乐趣; 教学重点函数的奇偶性定义及其图像性质; 教学难点函数的奇偶性判断; 学情分析学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的知识储备,并能进行简单的特殊到一般的推导。 课前准备对称的图片和函数奇偶性的PPT 教学环节教学内容学生活动教学方 法 导入新授 一、创设情景,兴趣导入 出示一组轴对称和中心对称的图片 给出一组函数图像,根据图像对称性认识偶函数和 奇函数 二、动脑思考、探索新知 1.偶函数 探究1.观察函数 2 ) (x x f=的图象 (1).求值并观察 f (-x) 与 f (x)的规律: f (1) = ;f (-1) = ; f (2) = ;f (-2) = ; f (a) = ;f (-a) = ; 关系:) (x f-______) (x f (2).思考图像有何对称的特征? 这类函数就是偶函数,具体定义和性质如下: 一般地,如果函数) (x f的定义域关于原点对称, 并且对定义域内任意一个值x,都有) ( ) (x f x f= -, 观察并回 答 回答 结果 通过图片 引起学生 的兴趣, 培养学生 的审美 观,激发 学习兴 趣。 从熟悉的 函数入 手,符合 学生的认 知规律 从“形”

高中数学《函数的奇偶性》教学设计

课题:函数的奇偶性的教学设计(一) [任务分析] “函数的奇偶性”是函数的一个重要性质,常伴随着函数的其他性质出现。函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的对称性。利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。函数的奇偶性也是今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等式问题、方程问题、作图问题等变得简单明了。 [方法简述] 本节课有着丰富的内涵,是继函数单调性以后的又一个重要性质。教法上本着“以教师为主导,学生为主体,问题解决为主线,能力发展为目标”的指导思想,结合我校学生实际,主要采用“问题导引,分析、比较,自主探究,讲练结合”的教学方法。通过复习提问呈上其下的引入,通过观察图像,从具体到抽象的引入,通过与单调性研究方法的的类比的引入,使学生对函数的奇偶性先有了一定的感性认识;通过设置一条问题链,采用多角度的,启发式的,学生积极参与的,有思想交锋的方式,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。 [目标定位] 数学教学不仅仅是知识的教学、技能的训练,更应使学生的能力得到提高。本节课应使学生掌握函数奇偶性的定义,会用定义判断简单函数的奇偶性。在学生经历函数奇偶性的探究和应用过程中,体会数形结合、分类讨论等数学思想方法,

进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。在教学中,重点应为理解函数奇偶性概念的本质特征;掌握函数奇偶性的判别方法。对高一学生来说,由于初中代数主要是具体运算,因而代数推理能力较弱,许多学生甚至弄不清代数形式证明的意义和必要性。因此教学难点是有关偶函数问题的证明,与培养驾驭知识、解决问题的能力。突出重点、突破难点的关键是设计有一定思维含量的问题与实例,引导学生思考、分析讨论,加深学生对函数奇偶性的认识与应用。结合直观的图形,充分发挥数形结合思想的功能,使学生的感性认识提高到理性认识。[课堂设计] 一、复习旧知、引入定义 基于学生前面已经学习过函数的单调性,先从复习函数单调性入手。 问题1:回顾上一节课如何定义增函数、减函数?试举例说明。 由学生回答,学生应该容易得出定义, 单调增、减函数(定义略) 并能举出一些常见的单调函数,如一次函数,三次函数。 设计意图:从学生已学过的函数单调性复习引入,因为函数的单调性的定义是学生 第一次接触用函数的对应关系的性质来刻画函数的性质,他不同于初中是通过图像看性质。学生在复习中体验用代数手段刻画函数性质的方法,为后面用函数对应关系来刻画函数的奇偶性做好准备。为突破难点奠定基础。 问题2:判断下列两函数在其定义域内单调性如何? 反比例函数x x f 1)(= 二次函数1)(2+=x x f 设计意图:让学生注意函数的单调性要分区间讨论。对于同一函数而言,不同的区

《函数的奇偶性》公开课优秀教案

《函数的奇偶性》教案 授课教师 授课时间:授课班级: 教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》(广东高等教育出版社出版) 教材主要特点:这本教材注意与初中有关知识紧密衔接,注重基础,增加弹性,使用教材可以根据有关专业的特点,选用相关的章节,教学要求和练习内容分A、B两档,适应分层教学。练习A的题目主要是基础练习,供全体学生学习,也是最低的要求;练习B的题目为拓展延伸的练习,供学有余力并且准备进一步深造的学生学习。 教学要求:教师在授课时主要是探究用奇、偶函数的定义判断函数的奇、偶性,奇、偶函数的性质(课本不要求证明)是作为拓展延伸的内容,以学生自学为主,教师适当给予辅导。教材已经分层编写,有利于实施分层教学时可以不分班教学。 任教班级特点:会计072班共有学生62人,男生6人,女生56人。学生数学平均入学成绩为58.3分,上课纪律良好,学生上课注意力比较集中,使用了这本教材后,绝大多数学生喜欢学数学,学生的学习成绩越来越好。

教学目标 知识与技能目标:使学生了解奇函数、偶函数的概念,掌握判断函数奇偶性的方法,培养学生判断、推理的能力。 过程与方法目标:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想 情感、态度、价值观目标:通过数学的对称美来陶冶学生的情操.使学生学会认识事物的特殊性与一般性之间的关系。 教 学重点 用定义判断函数的奇偶性. 教 学难点 弄清的关系. 教 学手段 多媒体辅助教学(展示较多的函数图像) 【教学过程】: 一、创设情境,引入新课 [设计意图:从生活中的实例出发,从感性认识入手,为学生认识奇偶函数的图像特征做好准备] 对称性在自然界中的存在是一个普遍的现象.如美丽的蝴蝶是左右对称的(轴对称)。现实生活中有许多以对称形式呈现的事物,如汽车的车前灯、音响中的音箱,汉字中也有诸如“双”、“林”等对称形式的字体,这些都给以对称的感觉。函数里也有这样的现象。 提出问题让学生回答:1、中心对称图形的概念(提醒学生:中心对称——图

函数的奇偶性优秀教案

1.3.2(1)函数的奇偶性 【教学目标】 1.理解函数的奇偶性及其几何意义; 2.学会运用函数图象理解和研究函数的性质; 3.学会判断函数的奇偶性; 【教学重难点】 教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法与格式 【教学过程】 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 提出问题 ①如图所示,观察下列函数的图象,总结各函数之间的共性. 结论:这两个函数之间的图象都关于y轴对称. ②那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征? 表1 表2 结论:这两个函数的解析式都满足:f(-3)=f(3); f(-2)=f(2); f(-1)=f(1). 可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任意一个x,都有f(-x)=f(x). 定义: 1.偶函数 1 / 5

2 / 5 一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数. 观察函数f(x)=x 和f(x)=x 1 的图象,类比偶函数的推导过程,给出奇函数的定义和性质? 2.奇函数 一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数. 注意: 1、如果函数()y f x =是奇函数或偶函数,我们就说函数()y f x =具有奇偶性;函数的奇偶性是函数的整体性质; 2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函 数也不是偶函数; 3、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称).如果一个函数的定义域不关于“0”(原点)对称,则该函数既不是奇函数也不是偶函数; 4、偶函数的图象关于y 轴对称, 反过来,如果一个函数的图象关于y 轴对称,那么这个函数为偶函数 且()(||)f x f x = 奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点对称,那么这个函数为奇函数. 且f(0)=0 5、可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法 用定义判断函数奇偶性的步骤是 (1)、先求定义域,看是否关于原点对称; (2)、再判断()()f x f x -=- 或 ()()f x f x -= 是否恒成立; (3)、作出相应结论. 若()()()()0,()f x f x f x f x f x -=--=或则是偶函数; 若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数 例.判断下列函数的奇偶性 (1)2 ()[1,2]f x x x =∈- 为非奇非偶函数 (2)32 ()1x x f x x -=-为非奇非偶函数 (3)x x x f +=3 )( 奇函数 (4)1 1 ) 1()(-+-=x x x x f

技术支持的方法指导 《函数的奇偶性》教学反思

《函数的奇偶性》教学反思 函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。“函数的奇偶性” 是函数的一条重要性质,从知识结构上看,函数的奇偶性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数等内容的基础,在研究各种具体函数的性质,解决各种问题中都有广泛的应用。因此, 本节课的内容是至关重要的,它对知识起到了承上启下的作用。 在本节课的教学过程中,我从图形和数字两方面引导,使学生从文字、图形、符号三种数学语言理解了函数奇偶性的概念, 并会利用定义判断简单函数的奇偶性。在奇偶性概念形成过程中,培养了学生的观察、归纳、类比的能力,同时渗透数形结合思想、运用符号及变元表示的思想、以及从特殊到一般的数学思想方法。本节课教学的成功和不足总结如下: 1.精心的设计调动学生参与概念形成 清晰、准确的数学概念是正确思维的前提,也是解题能力的必备条件。因此,如何提出、理解以及引导学生如何探究、发现函数的奇偶性这个概念是本节课的重点与难点。由于学生在初中里已经学习过轴对称图形与中心对称图形,在本节课开始 ,我先设计学生熟悉的对称图象(蝴蝶,天坛,宇宙等图象),通过画图引发学生探究函数关于轴对称和中心对称的特性,从而将本次教学中的难点“奇偶函数的图像特征”引入了课堂。学生通过图像直观获得函数奇偶性的认识,然后利用代数式

探究数量变化的特征,通过代数运算,验证发现数量特征f(x)与

f(-x)的等量关系,最后在这个基础上引出函数奇偶性的概念。2.师生的合理互动助推教学效果 在数学教学过程中,我们要注重培养学生提出问题、分析问题、解决问题的能力,而不是填鸭教育。为了体现这个教学理念,本节课中采用了探究式和类比式教学模式,依据课程目标的要求并结合教材内容及学生实际情况,创造性地为学生设计了一系列活动,学生完成任务后,由小组讨论、探索、归纳出偶函数有两大特征:(1)图形关于y轴对称;(2)对定义域中任一个值都有f(x)=f(- x)成立。但对于定义域问题学生缺乏发现的眼睛,故老师引导:偶函数的定义域是(a,b),发问:是行不行?抛出问题。由学生接:不一定行。师问:什么时候行?学生答:如果区间端点互为相反数就行。(定义域关于原点对称,虽然学生答得不完全对,但已达到教学要求),师继续问:什么时候不行?学生答:区间端点不互为相反数时就不行。师追问:为什么?学生答:那么函数的图像就会一边多一些,一边小一些。(多么朴实无华的语言,恰恰是我们学生的心理认知的真实表现)。整个过程教师没有越俎代庖,更多的是突出学生的主体作用,让学生自己经历问题的分析解决过程。 3.充分利用几何画板教学,活跃课堂氛围 在课堂上根据教学内容选择恰当的信息技术工具,来呈现

相关文档
相关文档 最新文档