文档库 最新最全的文档下载
当前位置:文档库 › 大学概率论习题五详解

大学概率论习题五详解

大学概率论习题五详解
大学概率论习题五详解

概率论习题五详解

1、设X 为离散型的随机变量,且期望EX 、方差DX 均存在,证明对任意0>ε,都有

()2

ε

εDX

EX X P ≤

≥-

证明 设()i i p x X P == ,...2,1=i 则

()()∑≥

-==

≥-ε

εEX x i

i x X P

EX X P ()i

EX x i p EX x i ∑≥

--≤εε2

2

()i

i

i p EX x ∑

-≤2

2ε=2

εDX

2、设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5,请利用切

比雪夫不等式证明:

()12

16≤

≥-Y X P 。 证 ()0=-Y X E

()1,cov ==DXDY Y X ρ

()()325,cov 2=-=-+=-Y X DY DX Y X D

()()()()()12

1

6662

=-≤≥---=≥-Y X D Y X E Y X P Y X P 3、一枚均匀硬币要抛多少次才能使正面出现的频率与0.5之间的偏差不小于0.04的概率

不超过0.01?

解设n X 为 n 次抛硬币中正面出现次数,按题目要求,由切比雪夫不等式可得

01.004.05.05.004.05.02≤??≤???

? ??≥-n n X P n 从而有 1562504

.001.025

.02

=?≥n 即至少连抛15625次硬币,才能保证正面出现频率与0.5的偏差不小于0.04的概率不超过0.01。

4、每名学生的数学考试成绩X 是随机变量,已知80=EX ,25=DX ,(1)试用切比雪夫不等式估计该生成绩在70分到90分之间的概率范围;(2)多名学生参加数学考试,要使他们的平均分数在75分到85分之间的概率不低于90%,至少要有多少学生参加考试?

解 (1)由切比雪夫不等式 ()

2

εDX

EX X P -

≥<- ()0>ε

又 ()()()101090709070

≤-≤-=-≤-≤-=≤≤EX X P EX EX X EX P X P

=()75.0100

25

11080=-≥≤-X P 即该生的数学考试成绩在70分到90分之间的概率不低于75%

(2)设有n 个学生参加考试(独立进行),记第i 个学生的成绩为i X ()n i i ...2,=,则平均成绩

为∑==n i i X n X 11,又8011==∑=n

i i EX n X E , n

DX n X D 251==

则由切比雪夫不等式可得:()()

n

n n X P X P 1525

1158085752-=?-≥≤-=≤≤ 要使上述要求不低于90%,只需9.01

≥-n

n ,解得10≥n ,即有10个以上的学生参加考试,就

可以达到要求。

5、设800台设备独立的工作,它们在同时发生故障的次数()01.0,800~B X ,现由2名维修工看管,求发生故障不能及时维修的概率。

解 ()()i i i i C X P X P -=∑

-

=≤-=>8008002

99.001.01212

在二项分布表(附表1)中不能查出。8=np ,使用正态分布近似计算: 若使用正态分布近似计算:X 近似

~()92.7,8N ,

()()()9834

.0132.2132.292.781212=Φ=?

??

??-≤--≈≤-=>X P X P X P

6、对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长来、有1名家长来、有2名家长来参加会议的概率分别为0.05、0.8、0.15。若学校共有400名学生,设每个学生参加会议的家长数相互独立且服从同一分布,求:(1)参加会议的家长数X 超过450的概率;(2)每个学生有一名家长来参加会议的学生数不多于340的概率。

解 (1)以i X ()400...2,1=i 表示第i 个学生来参加会议的家长数,则i X 的分布律为:

所以1.1=i EX ,=i DX , 而∑==

400

1

i i

X

X

由中心极限定理知:()76,440~N X 近似

()()1257.0147.11450=Φ-≈>X P

(2)以Y 表示每个学生有一名家长来参加会议的个数,则()8.0,400~B Y

由中心极限定理知:()64,320~N Y 近似

则()()9938.05.2340=Φ≈≤Y P 7、射手打靶得10分的概率为0.5,得9分的概率为0.3,得8分、7分和6分的概率分别0 .1、0.05和0.05,若此射手进行100次射击,至少可得950分的概率是多少?

解 设i X 为射手第i 次射击的得分,则有

且∑==

100

1

i i

X

X , 15.9=i EX ,95.842

=EX ,2275.1=DX

由中心极限定理得:

()0008.0159.312275.110091595019501001=Φ-=??? ???-Φ-=??

? ??≥∑=i i X P

8、某产品的不合格率为0.005,任取10000件中不合格品不多于70件的概率为多少?

解 依题意,10000件产品中不合格品数()005.0,10000~B X ,由50=np ,()51>-p n ,故可用二项分布的正态近似,所求概率为

()()()9977.08355.2005.0150507070=Φ=???

? ??--Φ≈≤X P 9、某厂生产的螺丝钉的不合格品率为0.01,问一盒中应装多少只螺丝钉才能使盒中含有100

只合格品的概率不小于0.95?

解 设 n 为一盒装有的螺钉数,其中合格品数记为X ,则有()99.0,~n B X ,该题要求n ,使得下述概率不等式成立。

()95.0100≥≥X P 或()05.0100<

利用二项分布的正态近似,可得:()645.105.00099.099.0100-Φ=

?

??-Φn n

因此,n n 0099.0645.199.0100-<-

解得,19.103>n

这意味着,每盒应装104只螺钉,才能使每盒含有100只合格品的概率不小于0.95。

(B )

1、为确定一批产品的次品率要从中抽取多少个产品进行检查,使其次品出现的频率与实际次品率相差小于0.1的概率不小于0.95。

解:依题意,可建立如下概率不等式

()

95.01.0≥<-'P P P

其中P 是这实际的次品率,如抽取n 个产品则次品的频率n

x x x P n

...21++=',由中心极限

定理,P '近似服从正态分布:

()()()()n n P P P N /P 1P ,0N ~P P /1,--'-或

从而有 ()975.0295

.0111.0=+≥???

? ??-ΦP P n 查表可得 :

()

96.111.0≥-P P n

或()P P n -≥16.19

由于P 未知,只得放大抽检量,用1/2代替

()P P -1 ,可得:8.9≥n

96≥n ,可见,需抽查96个产品才能使其次品率与实际次品率相差0.1小于的概率不小于

0.95。

2、 假设批量生产的某产品的优质品率为60%,求在随机抽取的200件产品中有120到150件优质品的概率α.

解 记n ν——随机抽取的200件产品中优质品的的件数,则n ν服从二项分布,参数为n =200,p =0.60;48)1(120=-=p np np ,.由于n =200充分大,故根据棣莫佛-拉普拉斯中心极限定理,近似地

{}{}.

; 5.0)0()33.4(33.40 4812015048120

0150120)1 ,0(~48

120

)

1( ≈-≈≤≤=???

?

??

-≤

-≤

=≤≤=-=--=

ΦΦνναννn n n n n n U N p np np

U P P P

3、设随机变量X 服从参数为λ的泊松分布,n X X X ,,,21 是独立与X 同分布随机变量,证明:对任意0>ε,都有

0})(1{lim 21

2

=≥+-∑=∞→ελλn k i n X n P 证明 由于n X X X ,,,21 独立同泊松分布,可见2

2221,,,n X X X 也独立同分布,而且数学

期望存在:

222)(λλ+=+=i i i X X X E D E .

因此,根据辛钦大数定律,有

0})(1{lim 21

2

=≥+-∑=∞→ελλn k i n X n P .

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

概率论第五章习题解答(科学出版社)

概率论第五章习题解答(科学出版社) 1、据以往的经验,某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和1920h 的概率。 解 设这16只元件的寿命为i X ,1,2, ,16i =,则16 1 i i X X ==∑, 因为()100i E X μθ===,22()10000i D X σθ=== 于是随机变量 16 16 1600 1600 400 i i X n X X Z μ -?--= = = ∑∑近似的服从(0,1)N 160019201600{1920}{ }400400X P X P -->=>1600 {0.8}400X P -=> 1600 1{0.8}400 X P -=-<1(0.8)=-Φ=10.78810.2119=-=. 2\(1)一保险公司有10000个汽车保险投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额不超过2700000美元的概率; (2)一公司有50张签约保险单,每张保险单的索赔金额为i X ,1,2, ,50i =(以千美元 计)服从韦布尔分布,均值()5i E X =,方差()6i D X =求50张保险单索赔的合计总金额大于300的概率。 解 (1)设每个投保人索赔金额为i X ,1,2,,10000i =,则索赔总金额为10000 1 i i X X == ∑ 又 ()280i E X =,2()800i D X =,所以, 索赔总金额不超过2700000美元的概率 {2700000}1`{270000}P X P X >=-≤ 10000 1 28010000 27000002800000 1{ }800100 80000 i i X P =-?-=-≤ ?∑ 10000 1 2800000 101{ }80000 8 i i X P =-=-≤- ∑ 10000 1 2800000 1{ 1.25}80000 i i X P =-=-≤-∑近似的服从(0,1)N

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

概率论(复旦三版)习题五答案

概率论与数理统计(复旦第三版) 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

10.760.840.9.n i i X P n =??????≤ ≤≥???????? ∑ 根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位. 问至少供应多少单位电能才可以95%的概率保证不致因供电不 足而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论第五章答案

习题5-1 1. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||2}P X E X -()≥. 解 由切比雪夫不等式, 对于任意的正数ε, 有 2 () {()}D X P X E X εε -≥≤ , 所以 1{||2} 2 P X E X -()≥≤. 2. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计 {|2|P X Y +≥12}. 解 {2}2()() 22(4) E X Y E X E Y +=+=?+-=, {2}4()()22Cov(,)D X Y D X D Y X Y +=+-? 840.5124=-???=. 所以, {|2|P X Y +≥12}≤ 2 4112 36 = . 3. 设随机变量X 的数学期望E (X ) = μ, 方差D (X ) = σ2 , 由切比雪夫不等式估计P {|X -μ|≥3σ}. 解 令ε = 3σ, 则由切比雪夫不等式P {|X -μ|}≥ε}≤ 2 () D X ε , 有 P {|X -μ|≥3σ}≤ 22 1(3) 9 σ σ= . 4. 独立重复地做一项试验, 假设每次试验成功的概率为0.7 5. 用切比雪夫不等式求: 至少需要做多少次 试验, 才能以不低于0.90的概率使试验成功的频率保持在0.74和0.76之间? 解 假设做n 次试验, 才能以0.90的概率使试验成功的频率保持在0.74和0.76之间. 用X 表示试验成功的次数, 从而~(,0.75)X B n , 由题设, 要使 {0.740.76}{ 0.750.01}0.90X X P P n n < <=-<≥. 又由切比雪夫不等式得 2 2 ( )0.750.25{0.740.76}{ 0.750.01}110.01 0.01 X D X X n P P n n n ?< <=-<- =- ?≥. 要满足题意, 只需2 0.750.2510.900.01 n ?- ?≥即可. 解之得 2 0.750.25 187500.010.10 n ? =?≥ . 习题 5-2 1. 一本书有十万个印刷符号, 排版时每个符号被排错的概率为0.0001, 用中心极限定理求排版后错误不多于15个的概率. 解 设

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

天津理工大学概率论与数理统计第五章习题答案详解

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1ξξ,写出所满足的切彼雪夫不等式 2 28εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥ <-}|{|4μξP n 21 1- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2,,9)i DX i == , 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有22{||}.P X σμεε-≥≤由此得 221 {||4}.(4)16 P X σμσσ-≥≤=

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

李贤平 第2版《概率论基础》第五章答案

1 第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 221~2n m n n n m -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

概率论习题答案

一.填空题(82142'=?') 1.已知41)(=A P ,31)(=A B P ,2 1)(=B A P ,则=)(B A P Y 31。 2.有零件8件,其中5件为正品,3件为次品。从中任取4件,取出的零件中有2件正品2件次品的概率为7 3482325=?C C ; 3.抛掷均匀的硬币,直到出现正面向上为止,则抛掷次数X 的概率分布为K ,2,1,5.05.05.0)(1==?==-k k X P k k ,X 服从分布)5.0(G 。 4.设随机变量X 的密度函数为?????<≥=1 ,01,)(2x x x c x p ,则常数=c 1 ,X 的分布函数 =)(x F ?? ???>-≤1,111 ,0x x x 。 5.设随机变量X 的密度函数为???<<=其他 ,010,2)(x x x p X ,则随机变量2X Y =的密度函数=)(y p Y ???<< 其它,010,1y 。 6.已知),(Y X 的联合分布函数为),(y x F ,且d c b a <<,,则=≤<≤<),(d Y c b X a P ),(),(),(),(c a F d a F c b F d b F +--。 7.设)2,1(~N X ,)4,3(~N Y ,且X 和Y 相互独立,则Y X Z +=2的密度函数=)(z p Z +∞<<-∞--z e z ,621 24)5(2 π。 8.)5.0,9,4,0,1(~),(N Y X ,则~Y )9,0(N ,=-])[(2Y X E 8 。 9.设),(Y X 的联合概率分布为

则X 的概率分布为 相关系数=XY ρ3 2-。 10.设随机变量n X X X ,,21Λ独立同分布, μ=1EX , 81=DX ,记∑==n i i n X n Y 11,则用切比雪夫不等式估计≥<-)2(μn Y P n 21-。 二.简答题(6') 叙述数学期望和方差的定义(离散型),并且说明它们分别描述什么? 数学期望:i i i p x ∑∞=1绝对收敛,则i i i p x EX ∑∞ ==1。(2分) EX 描述X 取值的平均。(1分) 方差: 2)(EX X E -存在,则2 )(EX X E DX -=(2分) DX 描述X 相对于EX 的偏差。(1分) 三.分析判断题(判断结论是否正确,并说明理由,0125'=?') 1.设随机变量X 的分布函数为)(x F ,b a <,则=≤≤)(b X a P )()(a F b F -。 不一定正确。(2分) 如X 为连续型随机变量,则=≤≤)(b X a P )()(a F b F -;如X 为离散型随机变量,且 0)(≠=a X P ,则≠≤≤)(b X a P )()(a F b F -(或举反例) 。(3分) 2.若随机变量X 和Y 不相关,则DX Y X D ≥-)(。 正确。(2分) .) 1)(,(2)(分)(分(分) 11DX DY DX Y X Cov DY DX Y X D ≥+=-+=- 四.计算题(65018810101'='+'+'+'+') 1.(01334'='+'+')进行4次独立试验,在每次试验中A 出现的概率均为3.0。如果A 不出现,则B 也不出现;如果A 出现一次,则B 出现的概率为6.0;如果A 出现不少于两次,

概率论与数理统计第五章习题解答.dot资料

第五章 假设检验与一元线性回归分析 习题详解 5.01 解:这是检验正态总体数学期望μ是否为32.0 提出假设:0.32:, 0.32:10≠=μμH H 由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~61 .10 .320 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u 计算得: 6.31)6.318.310.326.310.306.32(6 1=+++++?=x 89.061 .10 .326.310 0-=-= -= n x u σμ 因 0.89 1.96u =< 它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为 0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显著为 32.0kg/cm 2。 5.02 解:这是检验正态总体数学期望μ是否大于10 提出假设:10:, 10:10>≤μμH H 即:10:, 10:10>=μμH H 由题设,样本容量5n =,221.0=σ,1.01.020==σ,

km x 万1.10=,所以用U 检验 当零假设H 0成立时,变量:)1,0(~51 .010 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251 .010 1.100 =-= -= n x u σμ 因 2.24 1.64u => 它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ 所以可以认为这批新摩托车的平均寿命μ有显者提高。 5.03 解:这是检验正态总体数学期望μ是否小于240 提出假设:240:,240:10<≥μμH H 即:240:, 240:10<=μμH H 由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~625 240 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.1625 240 2200 -=-= -= n x u σμ 因 1.959 1.64u =-<-

大学概率统计试题及答案 (1)

)B= B (A) 0.15 B是两个随机事件, )B= (A) 0(B) B,C是两个随机事件

8.已知某对夫妇有四个小孩,但不知道他们的具体性别。设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N (D) (2)π 9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布 ()πλ来描述.已知{49}{50}.P X P X ===则该市公安机关每天接到的110报警电话次数的方差为 B . (A) 51 (B) 50 (C) 49 (D) 48 10.指数分布又称为寿命分布,经常用来描述电子器件的寿命。设某款电器的寿命(单位:小时)的密度函数为 则这种电器的平均寿命为 B 小时. (A) 500 (B) 1000 (C) 250000 (D) 1000000 11.设随机变量X 具有概率密度 则常数k = C . (A) 1/4 (B) 1/3 (C) 1/2 (D) 1 12.在第11小题中, {0.50.5}P X -≤≤= D . (A) 14 (B) 34 (C) 1 8 (D) 38 13.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的点数之和(Z=X+Y)为6的概率为 C . (A) 336 (B) 436 (C) 5 36 (D) 636 14.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗 0.0010.001, 0()0, t e t f t -?>=? ?其它,01,()0, 其它. x k x f x +≤≤?=? ?

概率论与数理统计 习题(5)答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=? ???????? 即有 P {V >105}≈ 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少

概率论与数理统计复旦大学出版社第一章课后参考答案

精心整理 第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1)A 发生,B ,C 都不发生; (2)A , B , C 都发生; (3)A ,B ,C (4)A , B , C 都不发生; (5)A ,B ,C (6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC 3. . 4.设A ,?B )=0.3,求P (. 【解】P 5.设A ,(A )=0.6,P (B )=0.7, (1AB (2AB 【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得 =14+14+13?112=34 7.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”, 则样本空间Ω中样本点总数为13 52n C =,A 中所含样本点533213131313k C C C C =,所求概率为 8. (1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故

P (A 1)= 5 17 =(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567=(67 )5 (3)设A 3={五个人的生日不都在星期日} P (A 3)=1?P (A 1)=1?(1 7 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

相关文档
相关文档 最新文档