文档库 最新最全的文档下载
当前位置:文档库 › 反函数与函数图像20111101

反函数与函数图像20111101

反函数与函数图像20111101
反函数与函数图像20111101

反函数与函数图像20111101

练习题:1求出以下的反函数:1)()2x f x = 22)()l o g f x x = 3)()23f x x =+ 24)()3f x x

=

注意,若原函数过点(a,b ),则反函数一定过点(b,a ).

2.函数f(x)有反函数f -1(x),已知f(x)图象经过点(0,-1),则f(x+4)的反函数图象必经过点( )

A.(-1,-4)

B.(-4,-1)

C.(0,-5)

D.(-5,0)

3.设f(x)=4x -2x+1(x ≥0),则f -1(0)=__________________.

4.已知f (x )=a x-2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图像是( )

5.函数y =x α(x ≥1)的图象如上右图所示,则α满足条件( )

A.α<-1

B.-1<α<0

C.0<α<1

D.α>1

6.函数y =n

x 9||(n ∈N ,n >9)的图象可能是( )

7.上右图是函数y =n m x (m ,n ∈N *,m 、n 互质)的图象,则( ) A.m ,n 是奇数,且

n

m <1 B.m 是偶数,n 是奇数,且n m >1 C.m 是偶数,n 是奇数,且n m <1 D.m 是奇数,n 是偶数,且n m >1 8.设a =31log 2,b =21log 31,c =(2

1)0.3,则a ,b ,c 大小关系为( ) A.a <c <b B.a <b <c

C.b <a <c

D.b <c <a 9. 设a =log 32,b =ln2,c =5

21

-,则 A.a <b <c B.b <c <a C.c <a <b D.c <b <a 10.当0<x <1时,f (x )=x 2,g (x )=21x ,h (x )=x

-2的大小关系是( ) A.h (x )<g (x )<f (x )

B.h (x )<f (x )<g (x )

C.g (x )<h (x )<f (x )

D.f (x )<g (x )<h (x ) 11.设y 1=31

4.0,y 2=31

5.0,y 3=415.0,则( )

A.y 3<y 2<y 1

B.y 1<y 2<y 3

C.y 2<y 3<y 1

D.y 1<y 3<y 2

12.若0<x <y <1,则下列不等式成立的是( ) A.(21)x <(21)y

B.31

-x <31

-y C.log x 21<log y 21 D.log x 3<log y 3

13.下列函数表达式中表不幂函数的是( )A .y =2x 3 B .y =x 2 C .y =-x 21 D .y =πx

14.已知幂函数y =f (x )通过点(2,22),则幂函数的解析式为( )

A .y =2x 21

B .y =x 21

C .y =x 23

D .y =2

1x 25 15.设指数函数C 1:y =a x ,C 2:y =b x ,C 3:y =c x 的图象如图,则( )

A .0

B .0

C .c

D .0

16.函数y =a x-1(a >0,a ≠1)过定点,则这个定点是( )

A .(0,1)

B .(1,2)

C .(-1,0.5)

D .(1,1)

17.若指数函数y =a x 经过点(-1,3),则a 等于( )

A .3

B .3

1 C .

2 D .21 18在同一坐标系中,函数y =2-x 与y =log 2x 的图象是( )

19. 如果奇函数)(x f 在区间[3,7]上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )

A. 增函数且最小值是5-

B. 增函数且最大值是5-

C. 减函数且最大值是5-

D. 减函数且最小值是5- 预备知识:

1、分段函数的定义在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数;

2、分段函数定义域,值域;分段函数定义域各段定义域的并集,其值域是各段值域的并集

3、分段函数图象画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象; 1求分段函数的解析式

例1.已知奇函数()f x (x R ∈),当x >0时,()f x =x (5-x )+1.求()f x 在R 上的表达式。

练习:1.已知奇函数()f x (x R ∈),当x >0时,()f x =x (5-x )+1.求()f x 在R 上的表达式。

2.已知偶函数()f x (x R ∈),当x ≥0时,()f x =x (x +5)+1.求()f x 在R 上的表达式。

当函数y = f (x )分别满足以下条件时,各具有相应的对称性:

偶函数型:若f (a -x ) = f (a +x )对于定义域中的任意x 都成立,则y = f (x )的图像关于直线()()f x f x a =--+轴对称.奇函数型:若f (a -x ) = - f (a +x )对于定义域中的任意x 都成立,则y

= f (x )的图像关于点(

()()2

a x a x -++a ,0)中心对称. 同理:()()f x f x a =-+关于x=()()2x x a +-+=a 对称,()()f x f x a =--+关于x=()()(,0)2x x a +-+点对称 例.1已知函数(2)(2)f x f x +=-+(x R ∈),当x ≥2时,()f x =x (5-x )+1.求()f x 在R 上的表达式。 练习:已知函数(2)(2)f x f x +=-+(x R ∈),当x ≥2时,()f x =2x (5-x )+1.求()f x 在R 上的表达式。 例.2 已知函数(2)(4)f x f x +=---(x R ∈),当x >-2时,()f x =x (5-x )+1.求()f x 在R 上的表达式。 练习:已知函数(4)()f x f x +=--(x R ∈),当x >2时,()f x =3x (5-x )+1.求()f x 在R 上的表达式。

反函数与函数的图像变换

反函数与函数的图像变换 一、反函数 当一个函数是一个一一映射时,可以把这个函数的因变量作为一个新函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数。比如,指数函数2x y =与对数函数2log x 互为反函数。函数()y f x =的反函数用1()y f x -=表示。 设函数()y f x =()x A ∈的值域是C ,根据这个函数中,x y 的关系,我们可以用y 把x 表示出来,得到()x y ?=,若对于y 在C 中每一个值,都只有唯一的x A ∈与它对应,那么()x y ?=就表示以y 为自变量,x 为因变量的一个函数,这样的函数()x y ?=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=。 1f -是对应法则,1()y f x -=是表示反函数的符号,是一个整体。 1f -表示的对应是f 的逆对应,11()() f x f x -≠。 ()y f x =也是1()y f x -=的反函数,()y f x =、1()y f x -=互为反函数。 只有当()y f x =是一一映射时,()f x 才有反函数。 特例:2x y =,2log x y →=,2log y x →=, 一般:()y f x =,1()x f y -→=,1()y f x -→=。 例1 求下列函数的反函数: (1)21x y -=+()0x >;(2)211,()11,x x f x x x ≤-?+=?>--+?。 二、互为反函数的两个函数的性质: 指数函数2x y =与对数函数2log x 的图像关于直线y x =对称。 根据反函数的定义,如果点(),a b 在函数()y f x =上,则点(),b a 在函数1()y f x -=上,从而可知函数()y f x =的图像与函数1()y f x -=的图像关于直线y x =对称。 指数函数2x y =与对数函数2log y x =都是增函数,一般的, ()y f x =与1()y f x -=的单调性一致。 例2 函数()y f x =反函数是自己本身,请写出一个这样的函数。 思考:若函数()y f x =是奇函数,且有反函数,那么1()y f x -=是奇函数吗? 奇函数一定有反函数吗? 偶函数呢?

三角函数和反三角函数图像性质、知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑??? ?2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y ②:函数)sin(?ω+=x A y 的图像与性质:

指数函数、对数函数、幂函数的图像与性质.doc

指数函数、对数函数、幂函数的图像与性质 (一)指数与指数函数 1 .根式 ( 1 )根式的概念 根式的概念 符号表示 备注 如果 x n a , 那么 x 叫做 a 的 n 次方根 n 1且 n N 当 n 为奇数时 ,正数的 n 次方根是一个正数 , 负数的 n 次 n a 零的 n 次方根是零 方根是一个负数 当 n 为偶数时 , 正数的 n 次方根有两个 , 它们互为相反 n a ( a 0) 负数没有偶次方根 数 ( 2 ).两个重要公式 a n 为奇数 ① n a n a( a 0) ; | a | 0) n 为偶数 a(a ② (n a ) n a (注意 a 必须使 n a 有意义)。 2 .有理数指数幂 ( 1 )幂的有关概念 m n a m (a ①正数的正分数指数幂 : a n 0, m 、 n N ,且 n 1) ; m 1 1 ②正数的负分数指数幂 : a n 0, m 、 n N , 且 n 1) m (a a n n a m ③0 的正分数指数幂等于 0,0 的负分数指数幂没有意义 . 注: 分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 ( 2 )有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、 s ∈ Q); ②(a r )s =a rs (a>0,r 、 s ∈ Q); ③(ab) r =a r b s (a>0,b>0,r ∈Q);.

3.指数函数的图象与性质 y=a x a>100 时, y>1; (2) 当 x>0 时, 01 (3) 在( - ,+ )上是增函(3)在( - ,+ )上是减函数 数 注:如图所示,是指数函数( 1 ) y=a x, ( 2) y=b x,( 3 ) ,y=c x( 4 ),y=d x的图象,如何确定底数 a,b,c,d 与 1 之间的大小关系? 提示:在图中作直线x=1 ,与它们图象交点的纵坐标即为它们各自底数的值,即 c1 >d 1 >1>a 1 >b 1 , ∴ c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1 )对数的定义 如果 a x N (a 0且 a 1) ,那么数 x 叫做以 a 为底,N的对数,记作 x log a N,其中 a 叫做对数的底数,N 叫做真数。 (2 )几种常见对数 对数形式特点记法 一般对数底数为 a a 0,且a 1 log a N 常用对数底数为 10 lg N 自然对数底数为 e ln N

最新幂函数的性质、常考题型及对应练习

幂函数 分数指数幂 正分数指数幂的意义是:m n m n a a =(0a >,m 、n N ∈,且1n >) 负分数指数幂的意义是:m n n m a a - = (0a >,m 、n N ∈,且1n >) 一、幂函数的定义 一般地,形如 y x α =(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. 从中可以归纳出以下结论: ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点.

三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 规律总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 四、幂函数的应用 题型一.幂函数的判断 例1.在函数22031 ,3,,y y x y x x y x x ===-=中,幂函数的个数为 ( ) A .0 B .1 C .2 D .3 练1.下列所给出的函数中,是幂函数的是( )

反函数_典型例题精析

2.4 反函数·例题解析 【例1】求下列函数的反函数: (1)y (x )(2)y x 2x 3x (0]2= ≠-.=-+,∈-∞,.352112x x -+ (3)y (x 0)(4)y x +1(1x 0) (0x 1) =≤.=-≤≤-<≤11 2x x +????? 解 (1)y (x )y y (2y 3)x y 5x y (x )∵= ≠-,∴≠,由=得-=--,∴=所求反函数为=≠.352112323521 53253232 x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域为y ∈[2,+∞), 由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----22 2 解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵= ≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11 111122x x y y x x ++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤, 得值域≤≤,反函数=-≤≤.由=-<≤, x x +-1 得值域-≤<,反函数=-≤<, 故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-?????x

【例2】求出下列函数的反函数,并画出原函数和其反函数的图像. (1)y 1(2)y 3x 2(x 0)2=-=--≤x -1 解 (1)∵已知函数的定义域是x ≥1,∴值域为y ≥-1, 由=-,得反函数=++≥-. 函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11 解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23 它们的图像如图2.4-2所示. 【例3】已知函数=≠-,≠.f(x)(x a a )3113 x x a ++ (1)求它的反函数;(2)求使f -1(x)=f(x)的实数a 的值. 解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠, 31x x a ++ 若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313 -----ay y ax x (2)f(x)f (x)x 1若=,即 =对定义域内一切的值恒成立,-++--3113 x x a ax x 令x =0,∴a =-3.

幂函数的图像与性质

【知识结构】 1.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂 :0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂 : 1 0,,1)m n m n a a m n N n a -*==>∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q );②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 例2 (1)计算:25 .021 21325.0320625.0])32.0()02.0()008.0()945()833[(÷?÷+---; (2)化简:533233232332 3134)2(248a a a a a b a a ab b b a a ???-÷++-- 变式:(2007执信A )化简下列各式(其中各字母均为正数): (1) ;)(653 12121 132b a b a b a ????--(2).)4()3(6521332121231----?÷-??b a b a b a (3) 1 00.256371.5()86-?-+

(三)幂函数 1、幂函数的定义 形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幂函数的是( ) A .y x = B .3y x = C .2y x = D .1y x -= 例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式 已知幂函数2 223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数y =_______. 2.幂函数的图像 幂函数y =x α的图象由于α的值不同而不同. α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升; α<0时,图象不过原点,在第一象限的图象下降,反之也成立;

互为反函数的两个函数图象 之间的关系

互为反函数的两个函数图象之间的关系 问题1(祥见页面1——“画图象”) 在同一平面直角坐标系中,画出函数及其反函数的图象。 操作步骤: 1.打开新绘图,单击[图表]菜单中的[绘制新函数],在“新建函数”对话框内依次单击2,^,x,这些均在函数编辑器上,单击[确定]后立即出现函数的图象。把上述图象设置成粗线,并选择一种颜 色。(选中曲线,单击[显示]菜单中的[线型]中的粗线。)2.单击[图表]菜单中的[绘制新函数],在“新建函数”对话框内依次单击ln,(,x,),/,ln,(,2,),ln在函数编辑器的函数选择菜单上,如图1, 单击[确定]后立即出现函数的图象。把上述图象设置为粗线,并选择一种颜色。(选中曲线,单击[显示]菜单中的[线型]中的粗 线。) 3.屏幕上出现图象2。让学生观察上述图象,发现它们的对称关系。 问题2 操作步骤: 4.单击[图表]菜单中的[绘制点],出现绘制点对话框,如图3。在直角坐标处分别输入-1,0.5,单击[绘制],就在屏幕上出现一个 点。再分别输入0,1,单击[绘制],屏幕上又出现一个点,再分 别输入1,2,单击[绘制],屏幕上又出现一个点,单击[完成]。 在的图象上出现了三个点,选择[文本工具],将上述三个点的标 签分别改为P1,P2,P3。如图4。 5.绘制点(1,1),选择[直线工具],过原点和(1,1)点绘制直线,选择[文本工具],将直线标签为“”,并双击直线,即将直线 [标记镜面],用[选择箭头工具]同时选中P1,P2,P3,单击[变换]菜单中的[反射],屏幕上出现它们的对称点,用[文本工具]分别 将它们P1/,P2/,P3/。 6.用[选择箭头]同时选中P1,P2,P3,单击[度量] 菜单中的[坐标],屏幕上出现图5;用[选择箭头工具]同时选中P1/, P2/,P3/单击[度量]菜单中的[坐标],屏幕上出现图6。 7.学生既可以从点的位置上形象的看到点P1/,P2/,P3/均落在函数

函数图像+反函数+基本初等函数(讲义+例题)

精心整理 函数图像+反函数+基本初等函数 一、函数图像:注意数形结合 (1)平移:??????→?=个单位向右平移a x f y )()(a x f y -=;)(x f y =??????→?个单位向上平移b .)(b x f y += (2)对称:)(x f y =?????→?轴对称关于 x )(x f y -=;)(x f y =?????→?轴对称关于y )(x f y -=; )(x f y =?????→?关于原点对称 )(x f y --=. *若有等式)()(x a f x a f -=+成立,那么函数关于a x =对称; a 2 (3|).(|x f 习题习题2.函数1 1--=x y 的图象是(B ) 习题3.已知)(x f 是偶函数,则)2(+x f 的图像关于)2是偶函数,则函数)(x f 的图像关于____2x =_____二、反函数 (1)互为反函数的两个函数y =f (x )与y 直线(2(3(b )把第一步得到的式子中的x 、y 对换位置,得到y =f -1(x ). (c )求出并说明反函数的定义域〔即函数y =f (x )的值域〕. 习题4.函数y =-1 1+x (x ≠-1)的反函数是(A ) A.y =-x 1-1(x ≠0)B.y =-x 1+1(x ≠0)C.y =-x +1(x ∈R ) D.y =-x -1(x ∈R )

习题5..函数y =log 2(x +1)+1(x >0)的反函数为(A ) A.y =2x -1-1(x >1) B.y =2x -1+1(x >1) C.y =2x +1-1(x >0) D.y =2x +1+1(x >0) 习题6.函数f (x )=-12+x (x ≥-2 1)的反函数(D ) A.在[-21,+∞)上为增函数 B.在[-2 1,+∞)上为减函数 C.在(-∞,0]上为增函数 D.在(-∞,0]上为减函数 习题(4习题习题(1a.c.时函数为增函数, e.0∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (2)对数函数:)1,0(log ≠>=a a x y a 且

对数函数的图像与性质知识点与习题

对数函数的图像与性质知识点与习题 一、知识回顾: 1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 的图象与性质 2、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 互为反函数,其 图象关于直线x y =对称 二、例题与习题 1.)35lg(lg x x y -+=的定义域为___ __; 2. 已知函数=-=+-=)(,2 1 )(,11lg )(a f a f x x x f 则若 3.04 1 log 2 12≤-x ,则________∈x 4.函数)2(log )(π≤≤=x x x f a 的最大值比最小值大1,则__________∈a

5.若函数m y x +=+-1 2 的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m 6.函数x x f a )1(2log )(-=是减函数,则实数a 的取值范围是 . 7.若13 2 log >a ,则a 的取值范围是 8.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g 9.方程lgx -x +1=0的实数解有______个. 10.)2lg(2 x x y +-=的递增区间为___________ ,值域为 . 11.求)1,0() (log ≠>-=a a a a y x a 的定义域。 12.已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系。 13.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且, (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|

· 反比函数与图象

【模拟试题】(答题时间:30分钟) 1. 若反比例函数的图象过点A (-1,-2),则图象在第______________象限。 2. 点P 既在双曲线x 3y -= (x>0)上,又在直线2x y --=上,则点P 的坐标为( ,______)。 3. 当k>0时,双曲线x k y = 与直线kx y -=的公共点有( ) A. 0个 B. 1个 C. 2个 D. 3个 4. 已知函数x k y = (k<0)的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),已知1x < A. C. 5. ) A. 6. A. D. x =2时,12y y > 7. 3 8. 如图,Rt △ABO 的顶点A 是双曲线x k y = 与直线1k x y ++-=在第四象限的交点,AB ⊥x 轴于B ,且23S A BO = ?。 ①求这两个函数的解析式。②求它们的两个交点A 、C 的坐标以及△AOC 的面积。

9. 已知一次函数8x y +-=与反比例函数x k y = (k ≠0) ①k 满足什么条件时,这两个函数的图象(在同一个直角坐标系中)有两个交点? ②设①中的两个交点为A 、B ,试比较∠AOB 与90°角的大小。 10. 已知关于x,y 的方程组? ??+-==++b x y 2y )1x (22有唯一的一个实数解,且反比例函数x 1b y +=的图象在每个象限内,y 随着x 的增大而增大,若点M (a ,3)在该双曲线上,求a 的值。 *11. 设双曲线x 6y = 与直线3kx y +=的两个交点为A (1x ,1y )和B (2x ,2y )且5x x 2 221=+,求A 、B 两点的距离。

反函数与函数图像习题

反函数、函数图像 1.已知()1a x f x x a -=--的反函数图像的对称中心为(1,3)-,则a 的值为( ) A.2 C.3 2.函数()01>=+x e y x 的反函数是( ) A.()0ln 1>+=x x y B.()0ln 1>+-=x x y C.()e x x y >+=ln 1 D.()e x x y >+-=ln 1 3.若函数)(x f y =是函数x a y = 0(>a ,且)1≠a 的反函数,其图象经过点a (,a ),则=)(x f A.x 2log B.x 21log C.x -2 D.2x 4.函数的图象为( ) 已知函数()x f x π=和函数()sin 4 g x x =,若()f x 的反函数为() h x ,则()h x 与()g x 两图象交点的个数为( ) A .1 B .2 C .3 D .0 7.已知命题p :函数12x y a +=-的图象恒过定点(1,2);命题q :若函数y =(1)f x -为偶函数,则函数y =()f x 的图象关于直线1x =对称,则下列命题为真命题的是( ) A .p ∨﹁q B .p ∧q C .﹁p ∧q D. p ∨q 8.函数的图象大致为( ) A . B . C . D . 9.函数()cos x x y x e ππ= -≤≤的大致图象为 10.下列图象中,可能是函数x x x x e e y e e ---=+图象的是 11.函数y x x = 的图像大致是( ) 12.函数ln y x x =?的大致图像是( ) 13.定义在R 上的偶函数()y f x =的部分图象如图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是 A. 2 1y x =+ B. 1y x =+ C. 321010x x y x x +≥?=?+

幂函数的性质与图像教案

【课题】 幂函数的性质与图像 【执教者】:关雅南(上海师范大学附属外国语中学) 【教学目标】:知识和技能:理解幂函数的概念,掌握幂函数的性质与图像并能 简单应用。 过程和方法:通过研究性质培养学生分析归纳的思维能力,体会 从特殊到一般的研究问题的数学方法和数形结合 的数学思想。 情感、态度和价值观:培养学生积极探究、合作交流的学习品质,激发学 生的学习兴趣和探究热情。 【教学重点】:幂函数的性质与图像 【教学难点】:幂函数性质与图像特征的归纳 【教学过程】: 一. 创设情境,引入新知 回顾初中阶段所学的正比例函数如y=x,反比例函数如y=x 1即y=1-x ,二次函数如y=2x ,另外正方体的体积y 关于边长x 的函数解析式为y=3x ,正方形的边长y 关于面积x 的函数关系式为y=x 即y=21x ,分析这些函数有什么共同特征? 解析式右边为幂的形式,底数为自变量,系数为1. 这些函数可统一写成y=k x 的形式,引出幂函数的定义。 二. 幂函数定义 一般地,函数y=k x (k 为常数,k ∈Q )叫做幂函数(power function ) 概念巩固:判断下列函数是否为幂函数? (1) y=x 3.0 (2)y=21 _x (3)y=3x +x (4) y=23x 三. 研究特殊的幂函数的性质与图像的方法 例题:研究函数y=21 _x 的定义域、奇偶性和单调性,并且作出它的图像。

(师生共同探究此幂函数性质,课件演示利用描点法作出的函数图像,并 观察此幂函数性质在图像上的体现)。 自主探究: 研究函数y=32x 的定义域、奇偶性、单调性和最大值或最小值。 (在课堂练习单上独立完成,投影演示,师生共同评价) 四. 合作探究一般的幂函数性质与图像特征 1.教师演示:在同一直角坐标系分别演示幂函数y=21_x 、 y=2 x 和y=31_x 的图像,认真观察图像,体会其中蕴含的函数性质。 2.小组讨论: 归纳幂函数(k 0)的性质和图像特征 (1) 在第一象限单调性如何? (2) 有无公共点? (3) 图像与坐标轴的位置关系? (4) 图像的象限分布有何特点?特点由什么确定? 3.类比探究:在同一直角坐标系分别演示幂函数y=21x 、 y=32x 和y=31x 的图 像,幂函数y=23x 、 y=2x 和y=3x 的图像,类比探究当0 k 1 和k 1时幂函数性质 五. 课堂巩固、简单应用 练习:比较下列两组数的大小 ①253_________251.3 ② (-0.96) 31__________ (-0.95)31_ 六. 课堂小结 今天的学习内容和方法有哪些?你有哪些收获? 七. 布置作业:课本81页:习题4.1 写一篇题为《幂函数研究方法初探》的数学小论文

互为反函数的两个函数图象之间的关系

课件5 互为反函数的两个函数图象之间的关系 课件编号: AB Ⅰ-2-2-3. 课件名称:互为反函数的两个函数图象之间的关系. 课件运行环境:几何画板4.0以上版本. 课件主要功能:利用几何画板绘制函数图象的功能,动态演示互为反函数的两个图象之间的关系,配合教科书“探究与发现 互为反函数的两个图象之间的关系”的教学. 问题1 课件制作过程: (1)新建画板窗口.单击【Graph 】(图表)菜单中的【Define Coordinate System 】(建立直角坐标系),建立直角坐标系.选中原点,按Ctrl +K ,给原点加注标签A ,并用【文本】工具把标签改为O . (2)单击【Graph 】菜单的【Plot New Function 】(绘制函数图象),弹出 “New Function ”函数式编辑器,编辑函数f (x )=x 2,单击【OK 】后画出函数f (x )=x 2的图象.同法编辑函数2ln ln x ,画出g (x )=2 ln ln x 的图象(即x x g 2log )(=) .选中所有函数图象,单击【Display 】(显示)菜单、单击【Line Width 】(线型)中的【Thick 】(粗线),把上述图象都设置成粗线. (3)选中函数f (x )=x 2的图象,单击【Display 】菜单【Color 】(颜色), 把该图象的颜色设置成红色.同样把函数x x g 2log )(=的图象设置成蓝色. (4)单击【Graph 】菜单的【Plot Points 】(绘制点),绘制点(1,1).选 中该点与原点单击【Construct 】(构造)菜单中的【Line 】(直线),把这点与原点用直线连结起来,并把直线设置成粗线. (5)用【文本】工具编辑文本f (x )=2x ,x x g 2log )(=,y =x (图1). 课件使用说明:让学生观察上述图象,发现它们的对称关系. 问题2 课件制作过程:

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 与 x=a 的图像与走势 2)、图象及其性质:函数f (x )的图象就是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。 补充:反函数定义: 例题:定义在r 上的函数y=f(x); y=g(x)都有反函数,且f(x-1)与g -1 (x)函数的图像关于y=x 对称,若g(5)=2016,求f(4)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: 2、与曲线函数的联合运用 反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限; 定 义 域: 值 域:单 调 性: 周 期 性:奇 偶 性:反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)与y=1/x-2的图像移动比较 2)、y=1/(-x)与y=-(1/x)图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) x y b O f (x )=b x y O f (x )=kx +b x y O f (x )= d cx b ax ++ R 2)点关于直线(点)对称,求点的坐标

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ① ? ? ? ? ? ? ? ? < - ≥ = = )0 ( )0 ( | | a a a a a a a n n; ②a a n n= ) ((注意a必须使n a有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1) m n m n a a a m n N n * =>∈> 、且; ②正数的负分数指数幂: 1 0,,1) m n m n m n a a m n N n a a - * ==>∈> 、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s=a r+s(a>0,r、s∈Q); ②(a r)s=a rs(a>0,r、s∈Q); ③(ab)r=a r b s(a>0,b>0,r∈Q);. 3.指数函数的图象与性质 y=a x a>1 0

图象 定义域R 值域(0,+∞) 性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,01 (3)在(-∞,+∞)上是增函数(3)在(-∞,+∞)上是减函数 注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b,c,d与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01) x a N a a =>≠ 且,那么数x叫做以a为底,N的对数,记作log N a x=,其中a 叫做对数的底数,N叫做真数。 (2)几种常见对数 对数形式特点记法 一般对数 底数为a0,1 a a >≠ 且log N a 常用对数底数为10 lg N 自然对数底数为e ln N 2 (1)对数的性质(0,1 a a >≠ 且):①1 log0 a =,②log1 a a =,③log N a a N =,④log N a a N =。(2)对数的重要公式:

三角函数和反三角函数图像性质知识点总结

三角函数 1.特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2.角度制与弧度制 设扇形的弧长为l,圆心角为a(rad),半径为R,面积为S 角a的弧度数公式2π×(a/360°) 角度与弧度的换算 ①360°=2π r ad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式l a R = 扇形的面积公式12 s lR = 3.诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k的奇偶性(k·π/2+a) 所谓符号看象限是看原函数的象限(将a看做锐角,k·π/2+a之和所在象限)注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑??? ?2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

幂函数的图像与性质

【知识结构】 1.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂 :0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂 : 10,,1)m n m n a a m n N n a -*= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q);②(a r )s =a rs (a>0,r 、s ∈Q); ③(ab)r =a r b s (a>0,b>0,r ∈Q);. 例2 (1)计算:25 .021 21 3 2 5 .032 0625.0])32.0()02.0()008.0()945()833[(÷?÷+---; (2)化简:533233 23 23 3 23 134)2(248a a a a a b a a ab b b a a ??? -÷++-- 变式:(2007执信A )化简下列各式(其中各字母均为正数): (1) ;)(6 5 3 121211 3 2 b a b a b a ????- -(2).)4()3(6 521 3 32121231----?÷-??b a b a b a (3) 100.2563 71.5()86-?-+-

(三)幂函数 1、幂函数的定义 形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幂函数的是( ) A .y x = B .3y x = C .2y x = D .1 y x -= 例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式 已知幂函数2 223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数 y =_______. 2.幂函数的图像 幂函数y =x α的图象由于α的值不同而不同. α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升; α<0时,图象不过原点,在第一象限的图象下降,反之也成立;

反函数、函数图像、函数的对称性

反函数 ●知识梳理 1.反函数定义:若函数y=f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到x=?(y ).如果对于y 在C 中的任何一个值,通过x=?(y ),x 在A 中都有唯一的值和它对应,那么,x=?(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x=?(y )(y ∈C )叫做函数y=f (x )(x ∈A )的反函数,记作x=f -1(y ). 在函数x=f -1(y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量,y 表示函数,因此我们常常对调函数x=f -1(y )中的字母x 、y ,把它改写成y=f -1(x ). 2.互为反函数的两个函数y=f (x )与y=f -1(x )在同一直角坐标系中的图象关于直线y=x 对称. 3.求反函数的步骤: (1)解关于x 的方程y=f (x ),得到x=f -1(y ). (2)把第一步得到的式子中的x 、y 对换位置,得到y=f -1(x ). (3)求出并说明反函数的定义域〔即函数y=f (x )的值域〕. 一. 条件存在型 例1.函数f x x ax ()=--2 23在区间[] 12,上存在反函数的充要条件是( ) A. (] a ∈-∞,1 B. [)a ∈+∞2, C. (][)a ∈-∞+∞,,12 D. [] a ∈12, 二. 式子求解型 例2.函数y x x = -≤23 10()的反函数是( ) A. y x x = +≥-()()113 B. y x x =-+≥-()()113 C. y x x = +≥()()103 D. y x x =-+≥()()103 三.求定义域值域型 例3.若f x -1 ()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。 四.性质判断型 例4. 函数y e e x x =--2 的反函数是( ) A. 奇函数,在(0,+∞)上是减函数; B. 偶函数,在(0,+∞)上是减函数

正切 余切图像的性质 反三角函数

正切、余切函数图象和性质反三角函数 [知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图 象上三点及两条重要的辅导线——渐近线,来作正切函

数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: 上单减 ,奇函数 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的. 3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数.

相关文档
相关文档 最新文档