文档库 最新最全的文档下载
当前位置:文档库 › 人体胆结石红外光谱的比较分析

人体胆结石红外光谱的比较分析

人体胆结石红外光谱的比较分析
人体胆结石红外光谱的比较分析

第21卷,第3期 光谱学与光谱分析Vol 121,No 13,pp3142316

2001年6月 Spectroscopy and Spectral Analysis

J une ,2001 

人体胆结石红外光谱的比较分析3

曾繁清 海 汇 金利凡

武汉大学分析测试中心,430072 武昌

摘 要 用红外光谱法测量了系列胆结石成分的红外光谱。比较标准化合物样品的红外光谱,分析人体胆结

石的成分。按胆结石的红外光谱特征进行分类,获得胆固醇、胆红素钙、硬脂酸钙、碳酸钙、羟基碳酸磷灰石和混合物等六种类型的光谱图。提出相应地将胆结石分为六种类型;如果根据是否含钙,则分为胆固醇和钙盐型两种类型。

主题词 胆结石, 红外光谱, 化合物, 类型

 2000209205收,2000212218接受;3本课题得到湖北省高教改革项目、武汉大学实验室建设基金资助

流行病学调查指出,胆石症在我国的发病率比较高,在急

诊外科中仅次于阑尾炎[1]。对胆石病的防治一直是普外科的重要研究课题之一。对胆结石的形貌、结构、成分、含量等进行分析,是认识胆结石形成及破碎机理的重要途径,也是治疗胆结石症、防止胆石症复发的重要参考依据。红外光谱分析法,是检验胆结石成分和含量的重要的仪器分析技术。根据主要成分的光谱特征,可以确定胆结石的类型;测量结石不同部位的光谱,可以确定结石成分的分布特性;运用光谱差减技术,可以确定外磁场对结石的作用[2,3];探索防治胆结石医疗机制;鉴别真假胆结石;可发现胆结石的新的成分和新的胆结石类型[4]。然而,有关胆结石主要成分的红外光谱图尚缺乏全面系统的报道。

在广泛收集、测量胆结石的红外光谱的基础上,根据光谱特征进行综合分析,得到六种类型的光谱图:胆固醇、胆红素钙、硬脂酸钙、碳酸钙、羟基碳酸磷灰石和混合物光谱。在混合物光谱中,收集到二组份和多组份的典型红外光谱图有12种。

1 样品和测量

111 样品

外科手术胆结石,磁疗手术胆结石,磁疗破碎排出胆结

石。样品涉及十一个省、市、自治区,具有一定的广泛性。112 标准试剂

标准胆固醇,高纯胆红素,高纯碳酸钙;分析纯硬脂酸钙,合成胆红素钙及血清白蛋白,羟基碳酸磷灰石。113 仪器

日本岛津IR 2440型红外分光光度计,美国Nicolet FT 2IR 170SX 型傅里叶变换红外光谱仪。114 测量方法

取被测试样约2mg ,用K Br

混合研磨压片制样,透射光

谱法测量。对双组份、三组份的光谱,运用红外光谱计算机差减技术辅助分析,所得样品的光谱均与标准(参考)样品的红外光谱进行比较验证。

Fig 11 (a)infrared spectrum (IRS)of stand ard cholesterol

(b)IRS of cholesterol in gallstone

2 结果与讨论

211 胆结石中胆固醇的红外光谱(IRS)

胆结石中胆固醇的红外光谱如图1(b )所示。胆结石中胆固醇的特征吸收主要为1466、1377和1050cm -1。由于3400、2930和2870cm -1峰特别强,也可作为判断胆固醇存在的依据之一。

胆结石中胆固醇的红外光谱与标准胆固醇的红外光谱(图1(a ))基本一致。在1540、1660cm -1出现较弱的吸收峰,分析认为是蛋白质类物质的酰胺Ⅰ带、Ⅱ带的吸收[2]。

胆固醇型胆结石,外观多为规整的多面体,表面细腻光

滑,几乎完全是由胆固醇形成的结晶体,其中包含有少量的蛋白质类物质,因此,据图1(b )可以判断胆结石是否为胆固醇型结石。212 胆结石中胆红素的红外光谱

由标准胆红素和分析纯碳酸钙反应生成的胆红素钙的红外光谱如图2(a )。图中1689、1663、1570、1440、1408、

1252和702cm -1

可作为胆红素钙的特征吸收峰。3420cm -1处的尖锐的峰形也是胆红素钙存在的标志之一。 色素型胆结石多为球形或椭球形。一般呈棕褐色,其有机、无机成分相当复杂[5]。其中最主要的成分是胆红素钙。典型的红外光谱如图2(b )。由图可见,胆红素钙的主要特征吸收峰十分明显

Fig 12 (a)IRS of calcium bilirubin

(b)IRS of calcium bilirubin

in gallstone

Fig 13 (a)IRS of calcium stearate

(b)IRS of calcium stearate in gallstone

213 胆结石中硬脂酸钙的红外光谱

硬脂酸钙型胆结石是近期发现的一种新型胆结石,IR 光

谱如图3(b )所示。主要吸收峰1581、1546、1478、1440、

1425、1110和722cm -1

与分析纯硬脂酸钙的IR 光谱完全符合(见图3(a ))。它的发现,对于研究胆结石的成分和形成机理有直接的帮助。在对胆结石光谱分析中进一步发现,几乎所有的胆结石中均含有硬脂酸钙,只是含量多少的差别。由此得到启示,在胆结石的形成过程中,硬脂酸这种两亲分子在

不同结石成分之间可能起着特殊的桥梁作用[4]

Fig 14 (a)IRS of stand ard hydroxyl 2carbonate

phosphatic rock

(b)IRS of hydroxyl 2carbonate phosphatic

rock in gallstone

Fig 15 (a)IRS of nature pearl (b)IRS of calcite 214 胆结石中羟基碳酸磷灰石的IRS

在混合型结石中,羟基碳酸磷灰石占有很大的比例。纯

的羟基碳酸磷灰石和胆结石中的羟基碳酸磷灰石的典型的红外光谱如图4(a ),(b )所示。1040、608、568cm -1是羟基碳酸磷灰石的IR 光谱的主要特征吸收峰。1090cm -1处的肩峰和608与568cm -1构成的双锋,是区别于其它物质光谱的显著特征。对于胆结石中的羟基碳酸磷灰石,由于夹杂有较多的有机物,因而在3000cm -1附近出现明显的CH 吸收峰(图4(b ))。

215 胆结石中碳酸钙的IRS

自然界中CaCO 3存在形式主要有三种结构:方解石、霰石和球霰石[6]。人体胆结石中的CaCO 3,一般呈方解石结构,其IR 光谱如图5(b )所示。由图可见,1422、885、720cm -1为方解石型CaCO 3的特征吸收峰。天然珍珠为CaCO 3霰石结构。天然珍珠与方解石两者的IR 光谱差别十分明显。珍珠的IR 光谱在702和1085cm -1处增加两个结构特征峰。同时,主要特征吸收峰1422cm -1向短波方向移到1470cm -1;

5

13第3期 光谱学与光谱分析

885cm-1向长波方向移至868cm-1,如图5(a)所示。有关人体胆囊中取出珍珠结石的最新研究结果表明,人体珍珠形胆结石与天然珍珠只是在外观形态、大小及光泽方面相似,而两者的主要生化成分完全不同。天然珍珠的主要成分为霰石结构CaCO3[7]。人体珍珠形胆结石的主要成分为胆固醇,应归属于胆固醇型胆结石[7]。

216 胆结石中混合物的IR光谱

以上介绍了五种胆结石中单组份的IRS。这里所谓单组分,其实是指某种成分占绝大多数的情况。相应地,胆结石中混合物的红外光谱是指显示出两种或两种以上的物质出现较强的特征吸收。下面列举两组份或三组份混合物的IR光谱的几种情况。

21611 胆固醇与其它结石成分的混合物

胆固醇在所有的胆结石中都会存在。因此,它和胆结石的其它成分的混合物光谱多种多样。胆固醇可以同色素类物质、蛋白质类物质、CaCO3、硬脂酸钙及羟基碳酸磷灰石等混合。

21612 胆红素钙与其它结石成分的混合物

胆色素及其盐类是形成胆结石的基本物质之一。胆红素盐类物质除了能和胆固醇组合外,还能同硬脂酸钙、羟基碳酸磷灰石及碳酸钙组合形成混合物。而且几乎所有色素类胆结石中均含有硬脂酸钙盐。

21613 羟基碳酸磷灰石与其他结石成分的混合

羟基碳酸磷灰石除了与胆固醇、胆红素盐混合外,与蛋白质类物质、硬脂酸钙也能混合成多组份的混合物。

有关混合物的红外光谱将另文报道。

3 结 语

在胆结石的测量、分析中,如果要分离、纯化样品,是一个相当繁琐的过程,要花费大量的经费和时间。如果依据标准试样IRS的主要特征吸收峰来确定试样的成分,有比较高的准确性,是一种快捷的分析途径。

在对人体胆结石的成分和IR光谱特性认识的基础上,对其它生物体的结石的形成机理研究也有一定的参考意义。通常所说的牛黄、猴宝、珍珠、耳石等也属生物结石,其形态、成分、光谱虽然与人体胆结石各有某些相同之处,但均有其自身的特点。

如果根据光谱特征对结石进行分类,则相应地可分为胆固醇、胆红素钙、硬脂酸钙、碳酸钙、羟基碳酸磷灰石和混合物六种类型的胆结石。如果根据结石中是否含钙进行分类,则仅需分为胆固醇和钙盐型两种类型。

参考文献

 1 Zhenyu WAN G(王贞瑜).Journal of N at ure(自然杂志),1988,11(8):625

 2 Fanqing ZEN G,Husheng ZHAN G,Xingding HUAN G et al.Chi nese Science B ulleti n(科学通报),1990,35:66

 3 Fangqing ZEN G,Xingding HUAN G,Husheng ZHAN G et al.S pect roscopy and S pect ral A nalysis(光谱学与光谱分析),1989,9(5):60

 4 Fangqing ZEN G(曾繁清).Journal of W uhan U niversity(N at ural Science Edition)(武汉大学学报(自然科学版)),1993,1:125

 5 Shunying WAN G(王顺颖).Chi nese Journal of S urgery(中华外科杂志),1985,23(9):522

 6 彭文世,刘高魁.矿物红外光谱图集,北京:科学出版社,1982,272

 7 Hui HAI,Fangqing ZEN G,Hua TON G et al(海 汇,曾繁清,童 华等).Journal of Inst rumental A nalysis(分析测试学报),2000,19(4):66 Analysis on Infrared Spectrum of H um an Body G allstone with Comparative Method

Fanqing ZEN G,Hui HAI and Lifan J IN

Center of A nalysis and Testing,W uhan U niversity,430072 W uhan

Abstract The infrared spectra(IRS)are measured for chemical composition of series gallstones.The infrared spectra(IRS)of the gallstone are compared with IRS of standard compound sample.The typical IRS are divided into6genera in component analysis of gall2 stone according to the principal characteristic peak:cholesterol,calcium bilirubin,calcium stearate,calcium carbonate,hydroxyl carbonate phosphatic rock and mixture.The gallstones are correlatively divided into6genera of gallstones or2genera—cholesterol and calcium salt gallstones according to whether containing calcium salt.

K eyw ords G allstone, Infrared spectrum, Compound, G enus

(Received Sep.5,2000;accepted Dec.18,2000) 613 光谱学与光谱分析 第21卷

红外线测温仪原理及应用

红外线测温仪原理及应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和 热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理

人体感应开关红外感应延时开关(控制器)

人体感应开关红外感应延时开关(控制器) 人体是一特定波长红外线的发射体,由红外传感器检测到这种红外线的变化并予以放大选频处理后,可以推动适当的负载,此乃人体红外自动开关。这一检测技术较之超声、哑声、微波方式更为灵敏与准确。它要求PIR热释电人体红外传感器的信号放大处理电路有很高的灵敏度并要能准确 鉴别生物体与非生物体的运动,使误动作率降到最低。且体积小,自耗电微少。采用热释电红外传感器及专用单片集成电路构成的这种开关能成为人到灯亮、人走灯灭。它安装方便,可直接替换86型面板式开关,无需改动市电线路。为了方便业余爱好者们制作或维修,现介绍工作原理调试要点及电路,原理图如下。PIR(HWTT)热释电红外传感器的输出信号幅度较小(小于1mV),频率低(约0.1~0.8Hz),检测距离短,为此在PIR前加用一块半球面菲涅尔透镜,使范围扩展成90度圆锥型距离大于5米的检测面。集成电路内部含有二级运放、比较器、延时定时器、过零检测、控制电路、系统时钟等电路。PIR传感器检测到人体移动引起的红外热能之变化并将它转换为电压量,通过二级选频放大比较输入到控制电路中,由控制电路输出过零脉冲触发双向可控硅导通。采用交流过零触发能消除可控硅导通时浪涌电流,延长灯具的使用寿命。同时控制电路启动了延时

定时器,直至PIR传感器在接收到信号后,触发可控硅的信号延时到设定的时间后关断可控硅,做到自动关闭。改变R5阻值或C4容量可控制延时定时器的时间。IC电路的9脚为光控输入端,由光敏电阻串联R8接地,白天亮阻小9脚为低电平,封锁控制电路输出,待天暗时亮阻增大9脚转为高电平,并解除控制电路,因此能自动做到天暗时自动开关进入工作。调整R8电阻可适应不同的感光度。要将其改为日夜均能工作时,只需将光敏电阻或R8拆下即可。探测灵敏度的调整也十分方便,增大R9电阻阻值提高放大器的增益,它能使检测距离加远,反之则可缩短检测距离,一般可在2~8米之间调整。该电路只要选择元件无误及接焊无错均可一次成功。 1. 成品板带有光敏电阻 2. 红外人体感应带继电器控制的控制板本控制板可以直接接220V电源(供电),带有两对触点输出(一常开一常闭),负载可以达600W,可接任何负载如:卫生间的换气扇,节能灯,日光灯,电机,报警设备等.R9调节延时时间.阻值越大延时越长......(蓝色的端子为220V进线,绿色中间为公共端,两边为常开和常闭触点,板上分别标有220V~和NO(常开)NC(常闭)的字样,方便连接......3.带外壳的86型标准电源盒人体感应开关,可以直接替换现有的走廊开关控制电灯,达到人来灯亮人走后延时30S-2分钟熄灭,带有光控功能,白天或较亮时灯开关不工作,达到节能目的,感应距离5米左右,可以带电灯负

基于单片机的人体红外感应系统论文

基于单片机的人体红外感应系统 (湖南师范大学物理与信息科学学院) 摘要:本设计是以AT89C52单片机作为控制核心,译码器、锁存器、人体红外传感器、LED(发光二极管)共阴数码管、时钟电路、GSM模块相结合的的监控报警系统。是对人体红外感应模块应用的一个极好例子,具有硬件电路简单、软件功能完善、控制系统可靠等特点。 0引言 MCS-51单片机以其典型的结构和完善的总线专用寄存器的集中管理,众多的逻辑位操作功能及面向控制的丰富的指令系统,堪称为一代“名机”,在工业测控、通信系统和家用电器控制领域中得到了广泛的应用,提高了生产效率,也提高了各种电器的性能,给人们的生活 和工作带来了很大的便利。 迄今为止,单片机系统和模块主要用于工业控制、科学研究和教学实验等领域,实现各类系统在线信号采集和监控功能。 本文尝试将MCS-51单片机应用在监控系统中。本装置可以检测某一区域内人员的有无,例如应用在对保安人员在岗与否的监测,当保安人员擅离职守时,该装置可以检测到,并记录离开时间,当达到预设时间时该装置可以给上级管理人员发送短信,告知人员离职情况,使管理人员能够对工作人员进行更好的监督管理 1系统总体设计 根据本设计需实现的功能,考虑到硬件电路的复杂性、性价比和软

件实现的难易程度等情况。控制器由传感器模块、控制功能模块、显示功能模块和GSM短信发送模块组成。传感器模块由人体红外感应器构成,控制功能模块由单片机构成,显示功能模块由74LS138译码器、74HC573锁存器和七段数码管构成。 该系统的工作原理如下:系统启动后,检测P3.0口是否为高电平,为高电平说明检测到范围内有人员存在,数码管不显示,当检测到 P3.0为低电平的时,系统进入计时状态,数码管显示时间,该时间即为检测不到人员存在的时间,当到达预设时间(如30分钟)时,单片机控制GSM模块发送短信到指定手机号码,继续计时,再过一个预设时间再发送一次短信,直到检测到P3.0口为高电平或者收到指定短信内容(如A)停止计时同时关数码管。 2系统硬件结构框图 硬件设计采用单片机最小系统,有传感器模块,计时模块,显示模块,GSM模块,控制模块等组成。(如图一) 图一

人体红外感应模块中文资料全

功能特点: 1.全自动感应:当有人进入其感应范围则输入高电平,人离开感应范围则自动延时关闭高电平。输出低电平。 2.光敏控制(可选):模块预留有位置,可设置光敏控制,白天或光线强时不感应。光敏控制为可选功能,出厂时未安装光敏电阻。如果需要,请另行购买光敏电阻自己安装。 3.两种触发方式:L不可重复,H可重复。可跳线选择,默认为H。 A.不可重复触发方式:即感应输出高电平后,延时时间一结束,输出将自动从高电平变为低电平。 B.可重复触发方式:即感应输出高电平后,在延时时间段内,如果有人体在其感应范围内活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。

4.具有感应封锁时间(默认设置:3-4秒):感应模块在每一次感应输出后(高电平变为低电平),可以紧跟着设置一个封锁时间,在此时间段内感应器不接收任何感应信号。此功能可以实现(感应输出时间和封锁时间)两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。 5.工作电压范围宽:默认工作电压DC5V至20V 6.微功耗:静态电流65微安,特别适合干电池供电的电器产品。 7.输出高电平信号:可方便与各类电路实现对接。 使用说明: 1感应模块通电后有一分钟左右的初始化时间,在此时间模块会间隔地输出0-3次,一分钟后进入待机状态。 2. 应尽量避免灯光等干扰源近距离直射模块表面的透镜,以免引进干扰信号产生误动作;使用环境尽量避 免流动的风,风也会对感应器造成干扰。 3. 感应模块采用双元探头,探头的窗口为长方形,双元(A元B元)位于较长方向的两端,当人体从左到右 或从右到左走过时,红外光谱到达双元的时间、距离有差值,差值越大,感应越灵敏,当人体从正面走向探 头或从上到下或从下到上方向走过时,双元检测不到红外光谱距离的变化,无差值,因此感应不灵敏或不工作;所以安装感应器时应使探头双元的方向与人体活动最多的方向尽量相平行,保证人体经过时先后被 探头双元所感应。为了增加感应角度范围,本模块采用圆形透镜,也使得探头四面都感应,但左右两侧仍 然比上下两个方向感应范围大、灵敏度强,安装时仍须尽量按以上要求。

红外线测温仪器的种类和工作原理

1、红外测温仪器的种类 红外测温仪器主要有3种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60年代我国研制成功第一台红外测温仪,八十年代初期以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,如西光IRT-1200D型、HCW -Ⅲ型、HCW-Ⅴ型;YHCW-9400型;WHD4015型(双瞄准,目标D 40mm,可达15 m)、WFHX330型(光学瞄准,目标D 50 mm,可达30 m)。美国生产的PM-20、30、40、50、HAS-201测温仪;瑞典AGA公司TPT20、30、40、50等也有较广泛的应用。DL-500 E可以应用于110~500 kV变电设备上,图像清晰,温度准确。红外热像仪,主要有日本TVS-2000、TVS-100,美国PM-250,瑞典AGA-THV510、550、570。国产红外热像仪在昆明研制成功,实现了国产化。 2、红外测温仪工作原理 了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。 影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。

人体红外感应模块 BISS0001

人体红外感应模块电路主要由人体红外传感器、菲涅尔透镜、专用芯片BISS0001组成。当有人出现在它的探测区,传感器便能探测到信号并把信号传给单片机,单片机再根据实际情况是否该开启器件设备或让房间的电器设备处于一种可开启状态。另外,关于走廊及洗手问用灯情况,当晚上有人经过时,人体红外感应到人便开启走廊用灯或者洗手间用灯。热释人体红外模块电路如图2所示。 图2 热释人体红外电路图 上图中,R3为光敏电阻,用来检测环境照度。当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。图中R6可以调节放大器增益的大小,原厂图纸选10K,实际使用时可以用3K,可以提高电路增益改善电路性能。输出延迟时间Tx由外部的R9和C7的大小调整,触发封锁时间Ti由外部的R10和C6的大小调整,R9/R10可以用470欧姆,C6/C7可以选0.1U。 3.1.1 BISS0001芯片介绍(小四号黑体) BISS0001是一款传感信号处理集成电路。静态电流极小,配以热释电红外传感器和少量外围元器件即可构成被动式的热释电红外传感器。广泛用于安防、自控等领域能。 特点:CMOS工艺 数模混合 具有独立的高输入阻抗运算放大器

内部的双向鉴幅器可有效抑制干扰 内设延迟时间定时器和封锁时间定时器 采用16脚DIP封装 3.1.1.1管脚图 表3-1 管脚说明引脚名称I/O功能说明 1 A I 可重复触发和不可重复触发选择端。当A为“1”时,允许重复触发;反之,不可重复触发 2 VO O 控制信号输出端。由VS的上跳前沿触发,使V o输出从低电平跳变到高电平时视为有效触发。在输出延迟时间Tx之外和无VS的上跳变时,V o保持低电平状态。 3 RR1 -- 输出延迟时间Tx的调节端 4 RC1 -- 输出延迟时间Tx的调节端 5 RC2 -- 触发封锁时间Ti的调节端 6 RR2 -- 触发封锁时间Ti的调节端 7 VSS -- 工作电源负端 8 VRF I 参考电压及复位输入端。通常接VDD,当接“0”时可使定时器复位 9 VC I 触发禁止端。当VcVR时允许触发(VR≈0.2VDD) 10 IB -- 运算放大器偏置电流设置端 11 VDD -- 工作电源正端 12 2OUT O 第二级运算放大器的输出端 13 2IN- I 第二级运算放大器的反相输入端 14 1IN+ I 第一级运算放大器的同相输入端 15 1IN- I 第一级运算放大器的反相输入端 16 1OUT O 第一级运算放大器的输出端 工作原理

人体热释电红外线传感器的原理和应用

人体热释电红外线传感器的原理和应用 热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。热释电红外传感器不受白天黑夜的影响,可昼夜不停地用于监测,广泛地用于防盗报警。本文就热释电人体红外线传感器的基 本原理及应用作以大致介绍: 一、热释电人体红外线传感器的基本结构和原理 热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线 的新型高灵敏度红外探测元件。热释电传感器实物图如图所示。它能以非接触形式检测 出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将输出的电压信号加以 放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。目前市场上常见 的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公 司的LHi954、LHi958,美国Hamastsu公司的P2288,日本Nippon Ceramic公司的 SCA02-1、RS02D等。虽然它们的型号不一样,但其结构、外型和特性参数大致相同, 大部分可以彼此互换使用。 热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图下图所示。对不同的传感器来说,探测元的制造材料有所不同。如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。传感器中两个电容是极性相反串联的。 当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性 相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流, 传感器无输出。 当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光 能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵 消,传感器仍然没有信号输出。 当人体在传感器的检测区域内移动时,照射到两个电容上的红外线能量 不相等,光电流在回路中不能相互抵消,传感器有信号输出。综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。 滤光窗是由一块薄玻璃片镀上多层滤光层薄膜而成的,能够有效地滤除7.0~14um波长以外的红外线。人体的正常体温为36~37.5℃,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)=9.67~9.64um,中心波长为9.65um,正好落在滤光窗的响应波长的中心。所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。 热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。由于探测元输出的是电荷信号,不能直接使用,因而需要将其转换为电压形式。场效应管输入阻抗高达104MΩ,接成共漏极形式来完成阻抗变换。使用时D端接电源正极,G端接电源负极,S端为信号输出。 对于移动速度非常缓慢的物体,如阳光,两个电容上的红外线光能能量仍然可以看作是相等的,在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感,因而无输出。 被动式红外报警器主要由光学系统、热释电红外传感器、信号滤波和放大、信号处理和报警电路等几部分组成,其结构框图如图2所示。图中,菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而加强其能量幅度。热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。

红外线测温仪用法整理

1 红外测温仪的工作原理及特点 1.1 黑体辐射与红外测温原理 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1,其它的物质反射系数小于1,称为灰体。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 由于黑体的光谱辐射功率Pb(λΤ)与绝对温度Τ 之间满足普朗克定理: ()1exp 2 51-=-T c c T P b λλλ (1) 其中,Pb(λΤ)—黑体的辐射出射度; λ—波长; T —绝对温度; c1、c2—辐射常数。

式(1)说明在绝对温度Τ 下,波长λ处单位面积上黑体的辐射功率为Pb(λΤ)。根据这个 图1 黑体辐射的光谱分析 从图1中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并满足维恩位移定理T *λm = 2897.8 μm *K ,峰值处的波长λm 与绝对温度Τ 成反比,虚线为λm 处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 根据斯特藩—玻耳兹曼定理黑体的辐出度 Pb(Τ)与温度Τ 的四次方成正比, 即: ()4 T T P b σ= (2) 式中,Pb(T)—温度为T 时,单位时间从黑体单位面积上辐射出的总辐射能,称为总辐射

《红外感应开关的设计》专业课程设计分析

2017届课程设计 《红外感应开关的设计》课程设计说明书 学生姓名 学号 所属学院信息工程学院 专业计算机科学与技术 班级 指导教师 教师职称 塔里木大学教务处制

目录 摘要 (3) 1.绪论 (4) 2. 红外感应开关电路原理 (5) 2.1红外感应开关电路图 (5) 2.2元件图表 (6) 2.3注意事项: (6) 3.1红外光波谱 (7) 3.2 红外收发系统 (7) 4.红外控制和传统开关控制的比较 (8) 4.1传统开关的缺陷 (8) 4.2红外线感应开关的优势 (8) 4.3方案设计 (8) 5.设计调试 (9) 5.1 调试前不加电源的检查 (9) 5.2 静态检测与调试 (9) 5.3 动态检测与调试 (9) 6.CD4093单片机 (10) 7. PCB板实体图 (11) 8.总结 (12) 9.致谢 (13) 10.参考文献 (14)

摘要 本文介绍了红外线感应开关的原理,采用红外探头将接收到的微弱信号加以放大,然后驱动继电器,制成红外感应开关。本开关能探测来自环境中物体的红外辐射,探测环境中存在感应到的物体,开关会自动开启。该设计可作为企业、宾馆、商场及住宅的走廊、楼梯、电梯间、卫生间、库房等处的自动开关,起到自动化的作用,既新颖方便,又节约用电,在某些场所还能起到威慑盗窃活动的防范作用。 科技使人们的生活更美好。进入21世纪以来,科学技术不断地飞速发展,电子类技术更是不断地改变着人们的生活。从常见的手机到翱翔在太空的宇宙卫星,各种电子类产品是现代人们必不可少的工具,渗透在人们的日常生活中。 本设计结构简单,本身不发任何类型的辐射,器件功耗很小,价格低廉,隐蔽性好,应用范围广,所以可以通过扩展而达到实际的应用。本课程设计主要通过红外线感应开关的制作,深入浅出地学习其设计,工作原理以及其工作环境、效率等,为日后进一步学习和以后工作学习奠定基础。 关键词:红外线感应开关自动化

红外人体报警器

题目:人体红外线报警器学号: 姓名: 班级: 专业: 课程教师:

摘要 该报警器能探测人体发出的红外线,由红外线传感器、信号放大电路、电压比较器、延时电路和音响报警电路等组成。当人进入报警器的监视区域内,即可发出报警声,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。概述了红外辐射的知识、热释电红外传感器的结构和工作原理。利用热释电红外传感器设计了一种被动式红外报警电路,分析了该电路的功能和工作原理。热释电红外传感器具有很多的优点,在防盗、警戒等装置中应用较广。 关键词:红外线热释电效应菲涅尔透镜

目录 摘要···········································目录···········································第一章:绪论···········································1.1 设计概述···········································1.2 设计背景···········································1.3 设计要求···········································1.4 设计意义···········································第二章:方案设计与研究···········································2.1 设计过程···········································2.2 方案选定···········································第三章:红外线传感器的概述···········································3.1 红外线传感器···········································3.2 红外线传感器的特点···········································3.3 主要特性···········································第四章:LM358芯片···········································4.1 LM358概述···········································4.2 芯片特点···········································4.3 电气特性···········································4.4 典型电路···········································第五章:LM393芯片···········································5.1 LM393概述···········································5.2 芯片特点···········································5.3 电气特性···········································5.4 典型电路···········································第六章:电路设计···········································6.1 红外线传感器···········································6.2 信号放大电路···········································6.3 电压比较器···········································6.4 音响报警电路···········································6.5 延时电路···········································6.6 12V电源电路···········································6.7 红外线感应报警电路···········································第七章:PCB布线仿真图···········································第八章:元器件清单·································· 第九章:实验遇到的困难································ 第十章:实验心得···································

人体热释电红外传感器PIR原理

1.人体热释电红外传感器PIR原理详解 在电子防盗、人体探测器领域中,被动式探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。 被动式热释电红外探头的工作原理及特性: 人体都有恒定的体温,一般在37度,所以会发出特定波长10μm 左右的红外线,被动式红外探头就是靠探测人体发射的10μm左右的红外线而进行工作的。人体发射的10μm 左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。 (1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10μm 左右的红外辐射必须非常敏感。 (2)为了仅仅对红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。 (3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 (4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 (5)滤光片根据性能要求不同,具有不同的焦距(感应距离),从

而产生不同的监控视场,视场越多,控制越严密。 被动式热释电红外探头的优缺点: 优点: 本身不发任何类型的辐射,器件功耗很小,隐蔽性好。价格低廉。 缺点: ◆容易受各种热源、光源干扰 ◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。 ◆易受射频辐射的干扰。 ◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。 抗干扰性能: 1.防小动物干扰 探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。 2.抗电磁干扰 探测器的抗电磁波干扰性能符合GB10408中4.6.1要求,一般手机电磁干扰不会引起误报。 3.抗灯光干扰 探测器在正常灵敏度的范围内,受3米外H4卤素灯透过玻璃照射,不产生报警。 的安装要求: 红外线热释电人体传感器只能安装在室内,其误报率与安装的位置和方式有极大的关系,正确的安装应满足下列条件: 1.红外线热释电传感器应离地面 2.0-2.2米。 2.红外线热释电传感器远离空调, 冰箱,火炉等空气温度变化敏感的地方。 3.红外线热释电传感器探测范围内不得隔屏、家具、大型盆景或其他隔离物。 4.红外线热释电传感器不要直对窗口,否则窗外的热气流扰动和人员走动会引起误报,有条件的最好把窗帘拉上。红外线热释电传感器也不要安装在有强气流活动的地方。 红外线热释电传感器对人体的敏感程度还和人的运动方向关系很大。对于径向移动反应最不敏感, 而对于横切方向(即与半径垂直的方向)移动则最为敏感. 在现场选择合适的安装位置是避免红外探头误报、求得最佳检测灵敏度极为重要的一环。

人体感应开关原理

采用热释电红外探头并对探头接收到的微弱信号加以放大,人 然后驱动继电器,可以制成热释电人体感应开关。人体感应开关电路 它可应用于电灯的节能自动开关、自动门、安全防护、防盗等设备中。 [电路工作原理] 该电路采用LN074B作探头。当探头接收到人体释放的热释红外信号后,由控头内部转换成一个频率约 0.3~3Hz微弱的低频信号,经VT 1、IC2两级放大器放大后输入电压比较器IC3。两级电压放大采用直流放大器,总增益约70~75分贝。 IC3等组成电压比较器,其中RP为参考电压调节电位器,用来调节电路灵敏度,也就是探测范围。平时,参考电压(IC3的 (2)脚电压)高于IC2的输入电压(IC3的 (3)脚电压),IC3输出低电平。当有人进入探测范围时,探头输出探测电压,经VT1和IC2放大后使信号输出电压高于参考电压,这时IC3的 (6)脚输出高电平,三极管VT2导通,继电器J1能电吸合,接通开关。 电路xxVT 3、C 7、R 8、~R10组成开机延时电路。当开机时,开机人的感应会使IC3输出高电平,造成误触发。开机延时电路在开机的瞬间,由电容C7的充电作用而使VT3导通,这样就使IC3输出的高电平经VT3通地,VAT2可以保持截状态,防止了开机误触发。开机延时时间由C7与R8的时间常数决定,约20秒。 [元件选用]热释红外探头选用LN074B型。I

C2、IC3选用高输入阻抗的运算放大器CA3140。该电路采用结型场效应管作差分输入级,输入阻抗高达 1.5*10 (12)xx,输入失调电流仅 0.5pA,频带宽达 4.5MHz,转换速率为9V/us,是一种性能十分优良的运算放大器,很适合于作微弱信号的放大级。 探头安装在高度距离地面为2米左右。外壳设计时应使透镜对地面呈13度左右的俯角,这样就可以形成一个监视区。由于探测器控制角只有86度左右,所以在安装时应选择最优良角度,使死区尽量减小。 [电路调试] 电路调试主要是调节电位器RB,选择合适的参考电压,以达到最佳灵敏度。

人体红外感应开关电路原理

红外热释电处理芯片BISS0001 BISS0001是一款具有较高性能的传感信号处理集成电路,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。 特点 *CMOS工艺 *数模混合 *具有独立的高输入阻抗运算放大器 *内部的双向鉴幅器可有效抑制干扰 *内设延迟时间定时器和封锁时间定时器 *采用16脚DIP封装 管脚图

管脚说明

工作原理 BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。 以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。不可重复触发工作方式下的波形 首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V时,可有效抑制±1V的噪声干扰,提高系统的可靠性。 COP3是一个条件比较器。当输入电压Vc

触发信号Vs向下级传递;而当Vc>VR时,COP3输出为高电平,进入延时周期。当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。 以下图所示的可重复触发工作方式下的波形,来说明其工作过程。可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发Vo为有效状态。在Vc=“1”、A=“1”时,Vs可重复触发Vo为有效状态,并可促使Vo在Tx周期内一直保持有效状态。在Tx时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。

HC-SR501 普通型 人体红外感应模块

? ?6543653654365(⊙o⊙) (363636536363564365465346536536535356436563563656) ?HC-SR501 普通型人体红外感应模块热释电红外传感器提 供电子资料 技术参数: 1.工作电压:DC5V至20V 2.静态功耗:65微安 3.电平输出:高3.3V,低0V 4.延时时间:可调(0.3秒~18秒) 5.封锁时间:0.2秒 6.触发方式:L不可重复,H可重复,默认值为H 7.感应范围:小于120度锥角,7米以内 8.工作温度:-15~+70度 9.PCB外形尺寸:32*24mm,螺丝孔距28mm,螺丝孔径2mm,感应透镜尺寸:(直径):23mm(默认)

功能特点: 1.全自动感应:当有人进as入其感应范围则输入高电平,人离开感应范围则自动延时关闭高电平。输出低电平。 2.光敏控制(可选):模块预留有位置,可设置光敏控制,白天或光线强时不感应。光敏控制为可选功能,出厂时未安装光敏电阻。如果需要,请另行购买光敏电阻自己安装。 光敏电阻请拍这里: 3.两种触发方式:L不可重复,H可重复。可跳线选择,默认为H。 A.不可重复触发方式:即c感应输出高电平后,延时时间一结束,输出将自动从高电平变为低电平。 B.可重复触发方式:即感应输出高电平后,在延时时间段内,如果有人体在其感应范围内活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一 次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。 4.具有感应封锁时间(默认设置:0.2秒):感应模块在每一次感应输出后(高电平变为低电平),可以紧跟着设置一个封锁时间,在此时间段内感应器不接收任何感应信号。此功能可以实现(感应输出时间和封锁时间)两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。 5.工作电压范围宽:默认工作电压DC5V至20V

红外线测温仪的使用方法

引用红外线测温仪的使用方法 lao wu tong 的红外线测温仪的使用方法 红外线测温仪的理论原理和应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些 介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于 0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光

谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温 度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个 关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。被测物体和反馈源的辐射线经调制器调制后输入到红外检测器。两信号的差值经反放大器放大并控制反馈源的温度,使反馈源的光谱辐射亮度和物体的光谱辐射亮度一样。显示器指出被测物体的亮度温度 三,红外线测温仪的性能指标及作用

人体感应模块(方案)

人体红外感应测距——判断电脑休眠待机 一.项目概况 1.客户:联想 2.应用途径:装在电脑或一体机显示器模块上,用于判断是否有用户在电脑前,来控 制电脑进行休眠或者待机的操作。 3.基本原理:人体红外感应模块不断判断是否有人靠近电脑。有人靠近电脑后,红外 测距模块判断电脑前的人是否在向电脑靠近。如果进入一定的范围(比如人与电脑的 距离在80cm内),则通知电脑自动从休眠状态唤醒。如果人离开电脑到一定的距离,且出了人体感应范围(可设置为1—2米),且超过一定的时间。则判断用户离开电 脑,通知电脑进行休眠操作。 二.工作环境 1.工作环境:室温 2.工作电压:5V 三.产品及功能实现概述 1.产品框架 由图中我们可以看出此模块所用到的主要器件为: 1.红外发射头 2.红外接收头 3.热释电人体红外感应头 4.菲涅尔透镜 5.运算放大器 6.MCU 7.电阻电容若干

2.模块功能概述 (1)人体感应模块 感应范围:可以通过菲涅尔透镜配合人体红外感应探头调节。5—6米的距离内都可以实现;感应角度可以为60°—80°的锥形区域。 运算放大器:将人体红外感应模块感应到的电信号进行放大 (2)红外测距模块 红外发射头:发射经MCU编码的红外线 红外接收头:接收经MCU编码的红外线 抗干扰性:由于红外发射和接收的光信号都是通过特定编码的光信号,所以不会受其它红外射线的干扰。 红外发射的距离和范围:通过调节供给红外发射管的电流来调节红外发射管的发射距离。1—2米的距离内都可以实现;感应角度可以为60°—80°的锥形区域。 (3)MCU 1.产生用于红外发射头发射的的特殊编码驱动电信号。 2.接收由红外接收头收到的经编码的电信号。 3.结合红外人体感应模块返回的信号与红外接收头返回的信号来判断电脑面前 是否有用户。 4.发送特定的休眠、待机信号给EC。 (4)POWER POWER可以从主板上提取一个5V的电压 (5)与EC通讯的线路 这部分可通过座子、线材与主板连接,并最终加到EC芯片上。 3.工作模式 下面我们从上电开始分析各种不同情况下的工作判断模式 (1)开机后模块何时开始工作(有三种选择) 工作流程图如下: (2)模块正常工作后 用户用电脑有两种模式:1.在电脑前包公(离电脑比较近)2.用电脑看碟之类的休 闲活动(离电脑相对远一些);所以我们定义一个检测有 效距离D1。 功耗问题:如果红外测距与红外人体感应模块一直不停地工作,会导致此模块功

人体红外感应模块

HC-SR501 人体红外感应模块热释电红外传感器探头

功能特点: 1.全自动感应:当有人进入其感应范围则输入高电平,人离开感应范围则自动延时关闭高电平。输出低电平。 2.光敏控制(可选):模块预留有位置,可设置光敏控制,白天或光线强时不感应。光敏控制为可选功能,出厂时未安装光敏电阻。如果需要,请另行购买光敏电阻自己安装。 3.两种触发方式:L不可重复,H可重复。可跳线选择,默认为H。 A.不可重复触发方式:即感应输出高电平后,延时时间一结束,输出将自动从高电平变为低电平。 B.可重复触发方式:即感应输出高电平后,在延时时间段内,如果有人体在其感应范围内活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。 4.具有感应封锁时间(默认设置:3-4秒):感应模块在每一次感应输出后(高电平变为低电平),可以紧跟着设置一个封锁时间,在此时间段内感应器不接收任何感应信号。此功能可以实现(感应输出时间和封锁时间)两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。 5.工作电压范围宽:默认工作电压DC5V至20V 6.微功耗:静态电流65微安,特别适合干电池供电的电器产品。 7.输出高电平信号:可方便与各类电路实现对接。 使用说明: 1感应模块通电后有一分钟左右的初始化时间,在此时间模块会间隔地输出0-3次,一分钟后进入待机状态。 2. 应尽量避免灯光等干扰源近距离直射模块表面的透镜,以免引进干扰信号产生误动作;使用环境尽量避免流动的风,风也会对感应器造成干扰。 3. 感应模块采用双元探头,探头的窗口为长方形,双元(A元B元)位于较长方向的两端,当人体从左到右或从右到左走过时,红外光谱到达双元的时间、距离有差值,差值越大,感应越灵敏,当人体从正面走向探头或从上到下或从下到上方向走过时,双元检测不到红外光谱距离的变化,无差值,因此感应不灵敏或不工作;所以安装感应器时应使探头双元的方向与人体活动最多的方向尽量相平行,保证人体经过时先后被探头双元所感应。为了增加感应角度范围,本模块采用圆形透镜,也使得探头四面都感应,但左右两侧仍然比上下两个方向感应范围大、灵敏度强,安装时仍须尽量按以上要求。

相关文档
相关文档 最新文档