# 动态模糊神经网络在DTC系统中的应用

Journal of Shenyang Agricultural University，2010－04，41(2)：244-246

（沈阳农业大学信息与电气工程学院，沈阳110866）

Application of Dynamic Fuzzy Neural Network in DTC System

WANG Gui-ying,LIU Yue-tong

(College of Information and Electric Engineering,Shenyang Agricultural University,Shenyang110866,China)

Abstract：Basted on non-linear relationship of element variable in DTC system,this paper presented a self-adapting fuzzy neural control,which could be suitable to direct torque control of asynchronous motor.In the condition of Simulink,two different PI velocity regulators were adopted to emulate and compare the system.The results of emulation showed that the PI velocity regulator of dynamic fuzzy neural control has the characteristics of responding sensitively and small over-regulation value.

Key words：dynamic fuzzy neural network;DTC;Simulink;PI velocity regulator

1动态模糊神经网络控制结构及原理

2仿真结果分析

Figure 2Neural adaptive fuzzy control system block diagram

2.2kW ，J =0.015kg ·m 2，L =0.0683H 。图3和图4分别为采用经典PI 控制器阶跃响应的输出波形和模糊神经网络

PI 自适应控制器阶跃响应的输出波形和定子磁链轨迹。

Figure 1Dynamic fuzzy neural network

Figure 4Stator flux locus diagram

3结论

[1]LASCU C ．A modified direct torque control for induction motor sensorless drive [J]．IEEE Trans on Ind Applications,2000,36(2)：

23-26.

[2]曹承志,王楠．智能技术[M]．北京：清华大学出版社,2004.

[3]张新良．非线性系统神经网络辨识与控制的研究[D]．南京：南京航空航天大学,2004.

[4]乔维德．基于改进PSO-BP 神经网络的短期电力负荷预测研究[J]．继电器,2007,35(17)：17-21.

[5]乔维德．遗传模糊神经网络在交流伺服系统中的应用[J]．江苏电器,2007,27(2)：29-31.

[责任编辑亓国]图3转矩脉动图

Figure 3Torque ripple diagram

Fuzzy neural netank PI controller

a.经典PI 控制器

PI controuer 时间Time/s b.模糊神经网络PI 控制器Fuzzy neural netank PI controller

246··