文档库 最新最全的文档下载
当前位置:文档库 › ApplicationonTIme应用举例

ApplicationonTIme应用举例

ApplicationonTIme应用举例
ApplicationonTIme应用举例

Application.Ontime

安排宏在指定的时间和间隔运行(OnTime方法)

可以使用Application对象的OnTime方法在指定的时间或者在有规律的时间间隔运行某过程。OnTime方法的语法如下:

Application.OnTime(EarliestTime,Procedure,LastestTime,Schedule)

参数EarliestTime指明希望何时运行由参数Procedure指定的过程,可选的参数LastestTime 和Schedule指明过程运行的最迟时间,以及是否安排运行一个新过程或者删除已经存在的过程。当开始调用某过程而Excel正忙时,则需要使用参数LastestTime指定希望调用该过程的时间区间。如果使用Application对象的Wait方法暂停某宏,所有的Excel行为,包括手工交互操作,都将被挂起。OnTime方法的优势在于,当等待运行安排的宏时,允许返回正常的Excel交互操作,包括运行其他的宏。

下面的示例指定每隔5分钟运行一次名为YourProc的过程:

Application.OnTime EarliestTime:=Now + TimeValue("00:05:00"), Procedure:="YourProc"下面的示例在每天中午运行过程YourProc:

Application.OnTime EarliestTime:=TimeValue("12:00:00"), Procedure:="YourProc"

下面的示例安排每隔5分钟调用一次AutoSave过程。如果关闭该工作簿,则调用CleanUp 过程来执行可能希望的清理以及删除任何额外的调用。

Private Sub Workbook_Open() Application.OnTime Now + TimeValue("00:05:00"), "AutoSave"End Sub Private Sub Workbook_BeforeClose(Cancel As Boolean) On Error Resume Next Application.OnTime Now + TimeValue("00:05:00"), "CleanUp", , FalseEnd Sub

注意,Workbook_Open事件和Workbook_BeforeClose事件包含在工作簿代码模块中,而AutoSave过程和CleanUp过程则存在于标准代码模块中。

当使用OnTime方法安排在将来的某个时间运行宏时,必须确保Excel一直在内存中运行直至到达安排的时间。但不需要一直打开包含OnTime宏的工作簿。如果需要,Excel将打开该工作簿。

通过上述简介,我们已经了解了OnTime方法的基本用法。下面再详细介绍OnTime方法。有时,我们可能需要设计Excel工作簿定期并自动地运行一个过程。例如,可能希望每隔几分钟从数据源中更新数据,此时执行Excel应用程序的OnTime方法指令Excel在给定的时间去运行某过程。通过编写代码使程序自已调用OnTime方法,能使VBA代码定期自动执行。

OnTime方法要求指定日期和时间以及要运行的过程作为参数,重要的是要记住具体地告诉Excel什么时候运行这个过程而不是从当前时间开始的偏差。为了取消一个未执行的OnTime 过程,必须经过该过程计划要运行的确切的时间,不能够告诉Excel取消下一个计划执行的过程。因此,建议将安排过程开始运行的时间存放在一个公共的(或全局)变量中,该变量作用于所有的代码。然后,能够使用所存储时间的变量去安排运行或取消事件。下面的示例代码在公共的常量中存储了所运行过程的名称和重复执行的时间间隔,当然这不是必需的。Public RunWhen As DoublePublic Const cRunIntervalSeconds = 120 ' two minutesPublic Const cRunWhat = "The_Sub"

为开始这个过程,使用一个名为StartTimer的子程序。代码如下:

Sub StartTimer() RunWhen = Now + TimeSerial(0, 0, cRunIntervalSeconds) Application.OnTime earliesttime:=RunWhen, procedure:=cRunWhat, _

schedule:=TrueEnd Sub

将比当前时间多两分钟的日期和时间存放在RunWhen变量中,然后调用OnTime方法指令Excel何时运行cRunWhat过程。

“The_Sub”是一个字符串变量,Excel将在合适的时间运行该过程。下面是该过程代码示例:Sub The_Sub() ' '这里放置代码' StartTimerEnd Sub

注意,The_Sub过程的最后一行调用了StartTimer过程,再次重复运行这个过程。并且当下次使用OnTime调用The_Sub过程时,将再次调用StartTimer来重复执行它自已。这就是如何执行周期循环的方法。

有时,当关闭工作簿时或者满足某个条件时需要停止定时执行的过程。由于OnTime方法是Application对象的一部分,简单地关闭已创建事件的工作簿不会取消对OnTime的调用。一旦Excel自身保持运行,它将执行OnTime过程,并且在必要时会自动打开该工作簿。

为了停止OnTime过程,必须对OnTime方法指定确切的时间,这就是我们将时间作为公共的变量存放在RunWhen中的原因。否则,没办法知道过程计划执行的确切时间。(所计划的时间像OnTime方法中的一把“钥匙”,如果没有它,就没有通往事件的入口)

下面是一个名为StopTimer的子过程,它将停止要执行的OnTime过程。

Sub StopTimer() On Error Resume Next Application.OnTime earliesttime:=RunWhen, _ procedure:=cRunWhat, schedule:=FalseEnd Sub

这个过程使用了和StartTimer过程相同的OnTime语法,将schedule参数设置为False告诉Excel取消该过程的执行。可能希望在Auto_Close宏或Workbook_BeforeClose事件中包括一个对该过程的调用。在StopTimer过程中,使用On Error Resume Next语句忽略当你企图删除一个不存在的过程时可能产生的任何错误。

下面的示例演示当在单元格B1中输入一个值后,如果A1单元格中不为空,那么将在10秒后自动清除单元格A1和B1中的内容。示例代码如下:

在标准模块中输入如下代码:

Sub DeleteContents() Worksheets("Sheet1").Range("A1:B1").ClearContentsEnd SubSub MyEntry() Range("B1").Value = "Goodbye"End Sub

在工作表sheet1代码模块中输入如下代码:

Private Sub Worksheet_Change(ByVal Target As Range) If Target.Address <> "$B$1" Then Exit Sub If IsEmpty(Target) Or IsEmpty(Target.Offset(0, -1)) Then Exit Sub Application.OnTime Now + TimeSerial(0, 0, 10), "DeleteContents"End Sub

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

利用Eviews软件进行最小二乘法回归实例

例题中国居民人均消费支出与人均GDP(1978-2000),数据(例题1-2),预测,2001年人均GDP为4033.1元,求点预测、区间预测。(李子奈,p50)解答: 一、打开Eviews软件,点击主界面File按钮,从下拉菜单中选择Workfile。 在弹出的对话框中,先在工作文件结构类型栏(Workfile structure type)选择固定频率标注日期(Dated – regular frequency),然后在日期标注说明栏中(Date specification)将频率(Frequency)选为年度(Annual),再依次填入起止日期,如果希望给文件命名(可选项),可以在命名栏(Names - optional)的WF项填入自己选择的名称,然后点击确定。 此时建立好的工作文件如下图所示:

在主界面点击快捷方式(Quick)按钮,从下拉菜单中选空白数据组(Empty Group)选项。 此时空白数据组出现,可以在其中通过键盘输入数据或者将数据粘贴过来。 在Excel文件(例题1-2)中选定要粘贴的数据,然后在主界面中点击编辑(Edit)按钮,从下拉菜单中选择粘贴(Paste),数据将被导入Eviews软件。

将右侧的滚动条拖至最上方,可以在最上方的单元格中给变量命名。 二、估计参数 在主界面中点击快捷方式(Quick)按钮,从下拉菜单中选择估计方程(Estimate Equation) 在弹出的对话框中设定回归方程的形式。

在方程表示式栏中(Equation specification ),按照被解释变量(Consp )、常数项(c )、解释变量(Gdpp )的顺序填入变量名,在估计设置(Estimation settings )栏中选择估计方法(Method )为最小二乘法(LS – Least Squares ),样本(Sample )栏中选择全部样本(本例中即为1978-2000),然后点击确定,即可得到回归结果。 以上得到的回归结果可以表示为: 201.1190.3862(13.51)(53.47)Consp GDPP =+? 如果你试图关闭回归方程页面(或Eviews 主程序),这时将会弹出一个对话框,询问是否删除未命名的回归方程,如下图所示

最小二乘法及其应用

最小二乘法及其应用 最小二乘法是一个比较古老的方法,早在十八世纪,就由高斯首先创立并成功地应用于天文观测和大地的测量工作中。此后,近三百年来,它已被广泛应用于科学实验与工程技术中。随着现代电子计算机的普及与发展,这个古老的方法更加显示出其强大的生命力。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可以用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合曲线的基本原理是:成对等精度地测得一组数据x,只(i=l,2,…,n),试找出一条最佳的拟合曲线,使得这条拟合曲线上的各点的值与测量值的差的平方和在所有拟合曲线中最小。所谓“拟合”,即不要求所作的曲线完全通过所有的数据点,只要求所得的曲线能反映数据的基本趋势。曲线拟合的几何解释是:求一条曲线,使数据点均在离此曲线的上方或下方不远处。 用最小二乘法拟合的曲线较为精确,接近于实际曲线。因而,最小二乘法拟合曲线在实际生活和科学研究中有着重要的意义,并渗透到各个领域,在物理、气象、化学、医学等方面有着广泛的应用。例如,在物理方面,我们通常通过实验测得数据,然后根据这些实验数据拟合曲线,从而总结出某种现象的规律或者变化趋势,进而采取相应的措施避免或加强其变化程度。这对于指导我们了解物理现象,并深刻理解物理知识是非常有帮助的。又如,在气象方面,在温室效应的研究中,科学家们通过对1860年到1980年的11个地球平均温度增加值的分析,利用最小二乘法进行曲线拟合,通过精确计算,建立了地球平均温度增加值与时间之间的函数关系。从而得出在2080年左右,地球的平均温度会比1980年上升约6℃,从而会引起诸如冰川后退、海平面上升等一系列严重的环境问题。到时极地冰盖就会融化,从而引起大量的洪水泛滥和大片的陆地被淹没,这一认识对进行环境质量评价和提出保护地球的措施具有重要的理论意义。

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

最小二乘法实际应用

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 最小二乘法实际应用 最小二乘法实际应用最小二乘法实际应用一、分析问题: 利用最小二乘法找出实际测试数据的拟合曲线。 设定测量一天内不同时间车流量的曲线。 以下是假定不同时间段车流量数据表,按照数据找出任意次曲 线拟合方程和它的图像。 二、 Matlab 程序代码: x=[1:1:24]; y=[2, 3, 1, 1, 5, 12, 13, 15, 14, 9, 10, 11, 12, 13, 14, 12, 11, 10, 9, 12, 10, 11, 5, 4] ; x1=polyfit(x, y, 3) ; %三次多项式拟合% x2=polyfit(x, y, 9) ; %九次多项式 拟合% x3=polyfit(x, y, 15) ; %十五次多项式拟合% y1= polyval(x1, x) ; y2= polyval(x2, x) ; y3= polyval(x3, x) ; z1= sum((y-y1) . ) ; %三次多项式误差平方和% z2= sum((y-y2) . ) ; %九次次多项式误差平方和% z3= sum((y-y3) . ) ; %十五 次多项式误差平方和% plot(x, y, ‘ *’ ) ; %用*画出 x, y 图像% hold on; plot(x, y1, ‘ r’ ) ; %用红色线画出 x, y1 图像% hold on; plot(x, y2, ‘ g’ ) ; %用绿色线画出 x, y2 图像% hold on; plot(x, y3, ‘ b:x’ ) ; %用蓝色 x 线画 出 x, y3 图像% 三、结果: 不同次数多项式拟和误差平方和为: 1 / 6

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

高中数学《数学归纳法及应用举例》说课稿

《数学归纳法及应用举例》第一课说课方案 一、说教材 (一)教材分析 本课是数学归纳法的第一节课。前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了 由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法它是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为 一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法─数学归纳法。 数学归纳法安排在数列之后极限之前,是促进学生从有限思维发展到无限思维的一个重要环节。并且,本 节内容是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。 (二)教学目标 学生通过数列等相关知识的学习。已基本掌握了不完全归纳法,已经有一定的观察、归纳、猜想能力。通过近几年教学方法的改革和素质教育的实施,学生已基本习惯于对已给问题的主动探究,但主动提出问 题和置疑的习惯还未形成。能主动提出问题和敢于置疑是学生具有独立人格和创新能力的重要标志。如何 让学生主动置疑和提出问题?本课也想在这方面作一些尝试。 根据教学内容特点和教学大纲、根据学生以上实际、根据学生终身发展需要而制订以下教学目标。 1.知识目标 (1)了解由有限多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)理解和记住用数学归纳法证明数学命题的两个步骤。 (4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。 2.能力目标 (1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。 (2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。 3.情感目标 (1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。 (2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。 (3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。 (三)教学重难点 根据教学大纲要求、本节课内容特点和学生现有知识水平,确定如下教学重难点: 1.重点 (1)初步理解数学归纳法的原理。 (2)明确用数学归纳法证明命题的两个步骤。 (3)初步会用数学归纳法证明简单的与正整数数学恒等式。 2.难点 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。 (2)假设的利用,即如何利用假设证明当n=k+1时结论正确。 二、说教法 本课采用交往式的教学方法。交往教学法的特点是:在教师的组织启发下,师生之间、学生之间共同 探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动 性、平等性、开放性、合作性。这种教学方法的优点是学生心态开放,主体性和主动性凸现,独立的个性 得到张扬,因而创造性得到解放。 三、说学法 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习。本课学生的 学习主要采用下面的模式进行: 观察情景提出问题分析问题猜想与置疑(结论或解决问题的途径) 论证应用。 探究学习法的好处是学生主动参与知识的发生、发展过程。学生在探究问题过程中学习,在探究问题 的过程中激发学生的好奇心和创新精神;在探究过程中学习科学研究的方法;在探究过程中形成坚韧不拔

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

最小二乘法应用实例

数值计算方法 实际应用(论文) 题目最小二乘法原理实际生活应用 学院信息工程学院 专业软件工程 姓名张同 班级 13级2班 学号1402130235

摘要 最小二乘法(又称最小平方法)是一种数学优化技术,是利用最小化误差的平方和寻找数据的最佳函数匹配的一种计算方法[1],目前在测量学、城市道路规划、物理学、地质勘探学、概率论、统计学等领域有着广泛的应用。本文对最小二乘法进行了深入细致的研究,利用Visual C++编制程序实现最小二乘法的界面化设计,通过实验数据的输入,实现线性和二次拟合曲线的输出,并利用设计的程序实现了一些实际问题的求解和处理。 关键词:最小二乘法曲线拟合Visual C++

最小二乘法在实际生活中的应用 一.实际问题描述: 早在19世纪后期,英国生物学家Galton 在研究父母身高与子女身高关系时,观察了1078个家庭中父亲、母亲身高的平均值x 和其中一个成年儿子身高y,建立了x 与y 之间的线性关系。 二.提出问题: 通过父母平均身高推算出成年儿子身高 三.分析问题: 平时我们在实验过程中会遇到两量y x ,如果存在b ax y +=的线性关系时,其中b a ,为线性函数的参数。当实验数据存在这种线性关系时,通常我们运用作图法对其参数进行处理运算、进而求出实验结果。但是作图法很难得到好的结果,而运用最小二乘法可以得到比较好的线性拟合 [19] 。对其两种方法比较可以最小二乘法的数据处理方法是比较理想的办法。 四.实验原理: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合:对给定数据点{(Xi ,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ ,使误差的平方和E ^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi ,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。 五.解决方案: 运用数值计算方法中的最小二乘法处理数据,计算出a 与b ,得到y=a+bx 关系式。 1.根据实验数据列以下表格: 表1 实验数据收集 父母平均身高x (cm ) 155 160 165 170 175 180 成年儿子身高y (cm ) 158 164 168 175 178 188 2.主要程序代码: #include #include

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

最小二乘法原理及其简单应用_邹乐强

科技信息 SCIENCE &TECHNOLOGY INFORMATION 2010年第23期y (%) 1.000.90.90.810.60.560.35x (%) 3.6 3.7 3.8 3.9 4.0 4.1 4.2 最小二乘法原理及其简单应用 邹乐强 (河南工程技术学校河南 焦作 454000) 【摘要】最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识,并在参数估计、系统辨识以及预测、预报等众多领域中得到极为广泛的应用。然而,最小二乘法因其抽象、难懂常常被大家所忽视。本文就最小二乘法的引入,原理的证明,简单的应用进行归纳和总结,使读者对最小二乘法有更为清晰、系统、全面地认识。 【关键词】最小二乘法;回归模型;参数估计;系统辨识最小二乘法作为一种传统的参数估计方法,早已经被大家所了解。然而大多同学对最小二乘法的认识都比较模糊,仅仅把最小二乘法理解为简单的线性参数估计。事实上,最小二乘法在参数估计、系统辨识以及预测、预报等众多领域都有着广泛的应用。本文就最小二乘法的引入、最小二乘法原理的简单证明、最小二乘法在线性参数估计、欧氏空间、多项式拟合以及经济领域的模型参数估计等应用方面进行具体的阐释。本文的一些理论建立在学习过高等代数、数值分析及了解简单的经济计量学的基础上。本文的理论简明易懂,仅对现实中常见的问题用最小二乘法理论结合阐释。 1问题的引入 例 已知某种材料在生产过程中的废品率y 与某种化学成分x 有关。下列表中记载了某工厂生产中y 与相应的x 的几次数值: 我们想找出y 对x 的一个近似公式。 解把表中数值划出图来看,发现它的变化趋势近于一条直线。因此我们决定选取x 的一次式ax+b 来表达。当然最好能选到适当的a ,b 使下面的等式 3.6a+b -1.00=03.7a+b -0.9=03.8a+b -0.9=03.9a+b -0.81=0 4.0a+b -0.60=04.1a+b -0.56=04.2a+b -0.35=0 都成立。实际上是不可能的,任何a ,b 代入上面各式都会发生误差。于是想找a ,b 使上面各式的误差的平方和最小,即找到a ,b 使 (3.6a+b -1.00)2+(3.7a+b -0.9)2+(3.8a+b -0.9)2+(3.9a+b -0.81)2+(4.0a+b -0.60)2+(4.1a+b -0.56)2+(4.2a+b -0.35)2 最小。这里讨论的是误差的平方即二乘方,故称为最小二乘法。现在转向为一般的最小二乘法问题: 实系数线性方程组 a 11x 1+a 12x 2+…+a 1n x n - b 1=0 a 21x 1+a 22x 2+…+a 2n x n - b 2=0………… a m 1x 1 +a m 2x 2+…+a mn x n -b m = 1.1 可能无解。即任何一组实数x 1,x 2,……,x s 都可能使 m i =1 Σ(a i 1x 1+a i 2x 2+…+a in x n -b i )2 (*) 不等于零。 我们设法找到实数组x 0 1,x 0 2,…,x 0 s 使最小,这样的x 0 1,x 0 2,…,x 0 s 称为方程组的最小二乘解。这样问题就叫最小二乘法问题。 [1] 2 最小二乘法原理的证明 2.1 最小二乘法原理的初等证明 定理:X =(x 1,x 2,……x n )T 是矛盾方程组(1.1)的最小二乘解的充要条件是X 是方程组 (m i =1Σa 2 i 1)x 1+ m i =1Σa i 1a i 211x 2+…+ m i =j Σa i 1a in 11x n =m i =1 Σa i 1b i m i =1Σa i 2a i 1 1 1x 1+ m i =1Σa 2 i 2 11x 2+…+m i =1Σa i 2a in 11x n = m i =1Σa i 2b i m i =1 Σa in a i 11 1x 1+m i =1Σa in a i 211x 2+…+ m i =1 Σa 2 in 11x n = m i =1 Σa in b i 2.2 的解[2] 证明:设Y = m i =1Σ b i -n k =1 Σa ik x k 11 2 2.3 把Y 整理为关于x j (1≦j ≦n)的二次函数得 Y = m i =1 Σa 2ij 1 1x 2 j +2m i =1 Σ(a j (a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a 1n x n b j ))x j +m i =1 Σ(a i 1x 1+…+a i ,j -1x j -1+a i ,j +1x j +1+…+a in x n -b j )2 j=1,2,3,……,n 必要性:设X =(x 1,x 2,……,x n )T 是方程组⑴的最小二乘解,由定义1知⑴式中Y 有最小值,且X 是最小值点。由二次函数的性质得知二次函数 m i =1 Σa 2ij 〉0(j=1,2,……,n ),故a ij 不全部为零(与A 列满秩的假设一 致),且X 满足: X = m i =1 Σ[a ij (a i 1x 1 +…+a i ,j -1x i,j -1 +a i ,j +1x i,j +1+…+a in x n -b n )] m i =1 Σa ij (j=1,2,……,n) 2.4 化简得: m i =1 Σa ij a i 111x 1+m i =1Σa ij a i 211x 2+…+ m i =1Σa ij a i,j-111x j -1+ m i =1 Σa 2 ij 11x j + m i =1Σa ij a i,j+111x j +1+…+m i =1Σa ij a in 1 1x n =m i =1 Σa ij b i (j=1,2,…n) 这就是方程组⑵。不难看出方程组⑵的系数矩阵为A T A (A T 表示A 的转置矩阵),由A 列满秩知|A T A |≠0,故⑵有唯一解。必要性得证。 充分性:设X 是方程组(2)2.2的解,由x j (j =1,2,...,n )满足方程组2.2,也就是满足⑷式,再由于A 列满秩,a ij (i =1,2,...,m )不全为零,故⑶中二次项系数 m i =1 Σa 2 ij >0,因此,⑷中式Y 有最小值且最小值点为X =(x 1 , x 2,...,x n ),所以X 是方程组⑴的最小二乘解。 2.2利用欧氏空间证明最小二乘法下面我们利用欧氏空间的概念来表达最小二乘法,并给出最小二乘解所满足的代数条件。令 A = a 11a 12…a 1n a 21a 22 …a 2n … ……… a m 1 a m 2… a mn ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠B = b 1b 2… b m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ X = x 1x 2… x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ Y =n j =1Σa 1j x 1n j =1Σa 2j x 2n j =1 Σa mj x m ≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠ ≠ ≠≠≠≠ ≠ ≠≠≠≠≠ ≠≠ ≠ =AX 2.5 ○职校论坛○ 282

相关文档
相关文档 最新文档