一、选择题:
1.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别为1x ,2x ,???,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A .1x ,2x ,???,n x 的平均数
B .1x ,2x ,???,n x 的标准差
C .1x ,2x ,???,n x 的最大值
D .1x ,2x ,???,n x 的中位数
2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月份
D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,7
4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )
A.1
4
B.
8
π
C.
1
2
D.
4
π
5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()
A.
4
5
B.
3
5
C.
2
5
D.
1
5
6.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()
A.
1
10
B.
1
5
C.
3
10
D.
2
5
二、解答题:
7.(新课标1)为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得
16
1
1
9.97
16i
i
x x
=
==
∑,1616
222
11
11
()(16)0.212
1616
i i
i i
s x x x x
==
=-=-≈
∑∑,
16
2
1
(8.5)18.439
i
i
=
-≈
∑,16
1
()(8.5) 2.78
i
i
x x i
=
--=-
∑,其中i x为抽取的第i个零件的尺寸,1,2,,16
i=???.
(1)求(,)
i
x i(1,2,,16)
i=???的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25
r<,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x
s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ii )在(3,3
)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =???的相关系数1
2
2
1
1
()()
()()
n
i
i
i n n
i
i
i i x x y y r x x y y ===--=
--∑∑∑,
0.0080.09≈.
8.(新课标2)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:
(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较
2
2
()()()()()
n ad bc K a b c d a c b d -=++++
9.(新课标3)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C ?)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率。 (1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.
10.(北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
11.(山东)某旅游爱好者计划从3个亚洲国家1A ,2A ,3A 和3个欧洲国家1B ,2B ,3B 中选择2个国家去旅游。
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中个任选1个,求这2个国家包括1A 但不包括1B 的概率。
答案:BAA ;BCD 7.
8.(1)0.62;(2)根据箱产量的频率分布直方图得列联表
()2
22006266343815.705
10010096104
K ??-?=
≈???
由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.
(3)箱产量的频率分布直方图平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.
9.(1)5
3;(2)
362574
0.890
+++=
10.(Ⅰ)0.4;(Ⅱ)5人;(Ⅲ)3
2
.
11.(1)15;(2)2
9