文档库 最新最全的文档下载
当前位置:文档库 › 数学分析_竞赛辅导讲义

数学分析_竞赛辅导讲义

数学分析_竞赛辅导讲义
数学分析_竞赛辅导讲义

高等数学(数学分析)竞赛辅导讲稿

一、 函数

函数,主要考察考生对函数的概念及性质的理解和掌握。包括函数的连续性。闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、根的存在定理),并会应用这些性质。

问题1 试证不存在1 上的连续函数f ,使得f 在无理数集上是一一映射,在有理数集上不是一一映射。

证 若不然,则存在,a b ∈ ,使得()()f a f b L

=

=且a b <。设()f x 在

[,]a b 上的最大值和最小值分别为M

和m 。若f 在[,]a b 上取常值,则f 在

无理数集上不是一一映射。于是M

L

>或m L <。不妨设()L M f c <=,

a c b

<<,则由()f 可数、开区间(,)L M 不可数知(,)()L M f -≠? 。

任取某个(,)()h L M f ∈- ,分别在[],a c 和[],c b 上应用介值性定理

必有s 和t 使得a s c t b <<<<且()()f s f t h =

=。因(,)()h LM f ∈- ,故s 和

t 都是无理数,这与f

在无理数集上是一一映射矛盾。

问题2 若一族开区间{|}I αα∈Γ覆盖了闭区间[0,1],则必存在一个正数0δ>,使得[0,1]中的任意两点12,x x 满足12x x δ-<时,

12,x x 必属于某个开区间{}I I βα∈。

证 不妨设每个开区间都是有限区间。

(1) 作函数:[0,1]f → ,sup{(,)|}C x d x I αα∈Γ 。 (2) f 连续,且()0f x >。而闭区间上的连续函数一定有最小

值,令1m in{()|[0,1]}2

f x x δ=

∈。

(连续性的证明: ,[0,1]x y ?∈,(,)inf{(,)|}C

C

d x I d x a a I αα=∈≤

inf{(,)(,)|}(,)C d x y d y a a I d x y α+∈=+inf{(,)|}C

d y a a I α∈= (,)(,)C

d x y d y I α+,取上确界得

sup{(,)|}(,)sup{(,)|}C

C

d x I d x y d y I αααα∈Γ≤+∈Γ

即()()(,)f x f y d x y -≤,同理()()(,)f y f x d x y -≤,于是

()()(,)f x f y d x y -≤,故0,ε?>取δε=,当x y δ-<时,

()()f x f y ε-<,所以()f x 是[0,1]上的连续函数。

) (3)[0,1]x ?∈,0()f x δ<<,因此存在I α,使得(,)C d x I αδ>,从而(,)x x I αδδ-+?。

(4)而满足12x x δ-<的点12,x x 必在某个(,)x x δδ-+中(事实上取12

2

x x x -=

即可),从而命题得证。

练习1 设)(x f 在[0,1]上可导,且1)1(,0)0(==f f 。证明:对任意正数a 、b ,必存在(0,1)内的两个不同的数ξ与η,使

()

()

a b a b f f ξη+

=+''。

证 设01a b <≤<,令C 0=

a a b

+,则0< C 0<1。因

(0)0,(1)1f f ==且()f x 在[0, 1]上连续,由介值性定理存在(0,1)c ∈,

使得()f c = C 0。现在在[0,c]上利用拉格朗日中值定理,存在(0,)c ξ∈,有

0()(0)()0

()c f c f a f c c a b c

ξ-'=

=

=

--+。

同理在[c,1]上利用拉格朗日中值定理存在(,1)c η∈,有

01(1)()()11()(1)

c f f c b f c

c

a b c η--'=

=

=

--+-。

于是

()()(1)()

()

a b a b c a b c a b f f ξη+

=+++-=+''。

命题得证。 二、 极限

数列和函数极限的计算,以及有关问题的讨论,无穷阶的比较,实数完备性理论及其应用。

问题3 设.,2,1,),0(11 =+=

>=

+n a c a c c a n n 求lim n n a →∞

证 首先证明}{n a 是递增数列.

112a c c c a c a =>

+

=

+=

,假设k

k a a >+1成立,则

112+++=+>+=k k k k a a c a c a , 因此}{n a 是递增数列.

再证明}{n a 是有界数列. c a c n +<≤1.

c

a n ≥

显然成立. c c

c c a +=++<=

1212

1成立.

设c a k +<1成立,则

c

c

c c c a c a k k +=++<

++<

+=

+12112

1,

因此,c a c n +<≤1成立.

根据单调有界定理知知}{n a 收敛,设n n a a ∞

→=l i m ,在n

n a c a +=+2

1两边取极限,得a c a +=2

,解得2

141++=

c a 或

2

141+-

=

c a ,但由于c

a a n =

≥1, 因此0>a , 从而

2

141lim ++=

→c a n n .

练习2 设112,2,1,2,n n a a a n +=== ,求lim n n a →∞

证 显然0>n a 首先证明,2

2

21<=

a , 若假设2

纳法可得2

又由 02)2(21>+-=

-=

-+n

n n n n n n n a a a a a a a a , 即}

{n a 是递增数

列且有上界, 根据单调有界定理知}{n a 收敛,设n n a a ∞

→=lim , 在n n a a 22

1=+两边取极限,得a

a 22

=,解得0=a 或2=a ,但由于

2

1=

≥a a n , 因此2

a , 从而2lim =∞

→n n a . 练习3 设1111ln 23

n S n n

=+

+

++- ,求证:lim n n S →∞

存在。

[分析] 两个事实:1)1

(1)n n

+ 单调递增e →;

2)11

(1)n n

++ 单调递减e →。

有不等式

111ln(1)1n n n

<+

<

+ 。

证 111ln

1n n n S S n

n ++-=-

+=1

1ln(1)01n

n +-

>+,故{n S }单

调下降,且11

1

ln(1)ln(1)ln(1)ln 12

n S n n

>++++++- =

231

ln

ln 12n n n +?-= 1ln(1)0n +>。 ∴ lim n n S →∞

存在。

注 1111ln (1)2

3

n C o n

+

+

++

=++ ,其中C 是欧拉常数。

三、 积分中值定理

函数可导性的研究,微分中值定理及其应用,利用导数研究函数的性质(单调性,凹凸性等)以及导数的应用(极值、最大值和最小值等)。

问题4 设0P >是常数,求证2

1lim

01n p n

n dx x

+→∞

=+?

解 由积分第一中值定理知(,)n n p ξ?∈+,有

2

2

1111n p n

dx P x

ξ

+=

?++?

故原式2

1lim

01P ξξ

→∞

=?=+。

练习4 sin lim n p n

n x dx x

+→∞

?

解 由积分第一中值定理知(,)n n p ξ?∈+,有

sin sin n p n

x dx p x

ξ

ξ

+=

??

故原式=sin lim

p ξξ

ξ

→∞

?=0。

四、 积分

不定积分和定积分的计算,定积分的性质以及变上,下限的积分,定积分的应用和广义积分。

问题5 求积分22

sin 1cos x x dx x

π

+?。

222

2

2

sin sin sin 1cos 1cos 1cos x x x x x x dx dx dx x

x

x

π

π

π

π

=

+

+++??? (1)

22

2

sin ()sin 1cos 1cos x x t t dx dt x

t

π

π

π

π+=-++??

代入(1)得

原式 =2

2

sin cos arctan cos |

1cos 1cos t

dt d t t t

t

π

π

π

ππ

π-=

=++??

=2

2

π

-

练习5 证明:22

sin()0x dx π>?

分析:令2

x u =。

练习6 证明 20042

2003

1|sin |2003

t dt <

?

分析:令2

x u =,再利用积分第二中值定理。

定理: 设()f x 在[,]a b 上Riemann 可积,则

(,)[,]()a b a b αβαβ??≤<≤,0(,)x αβ?∈使()f x 在0

x x =处连续。

证明:作分划010:n x x x x n

βα

αβ-?=<=+

<<= 。因()f x 在[,]a b 上Riemann 可积,取102

βα

ε-=

>,存在14n ≥,

使

1

(1)

(1)

1

1

()

2

n i

i

i M m n βα

βα

=---<

(其中1,1,(1)(1)

[]

[]

{()},inf

{()}i i i i i i

x x x x x x M sup f x m f x --∈∈==,以下类似定

义。)

所以

1

(1)

(1)

111

()22

n i

i

i n M m n =-<

≤-∑,因此至少有三个i ,使

(1)

(1)

1i

i

M m -<。取110,i n <<使1

1

(1)

(1)

1i

i

M m -<。作区间

1

1

111[,][,

]i

i x x αβ-=,则()f x 在11[,]αβ上Riemann 可积。取

11

22

02

βαε-=

>,存在24n ≥,使

1

(2)

(2)

11

11

2

1

()

4

n i

i i M m n βαβα=---<

于是

2

(2)

(2)

221

2()4

2

n i

i

i n n M m =--<

∑,因此至少有三个i ,使

(2)

(2)

12

i

i

M m -<

取220,i n <<使2

2

(2)

(2)

12

i i

M m -<

。如此继续可以得到一个闭区间

11[,][,][,]n n αβαβαβ???

使得(1)4

n n n

βα

βα--≤

;(2)()f x 在[,]n n αβ上的上下确界满足

()

()

1n n i

i

M m n

-<

。由闭区间套定理知01

[,]{}n n n x αβ∞

== 。下证()

f x 在0x x =处连续。

事实上,010,[]1,n εε

?>?=+有

1n ε<。而由上述构造过程知,

0,δ?>有0

00(,)[,]n n x x δδαβ-+?,

此时

00()

()

00

1()()n n i

i

f x f x M m n ε-≤-<

<

故()f x 在0x x =处连续。

问题6 设函数()f x 在[,]a b 上Riemann 可积,且()0b

a f x dx

试证明:存在闭区间[,][,]a b αβ?,使得当[,]x αβ∈时,()0f x <。

[分析] 只需在[,]a b 区间上找一个连续点0x ,使得0()0f x <。利用

定积分的定义,分点取连续点(上述定理保证存在连续点)即可。

练习7 若()f x 可积,则

2

()0()b

a f x dx f x =??在连续点处恒等于

0。

证 必要性 若0,()x f x ?在0x 连续,但0()0f x ≠

,则

0(,)

(,)x a b αβ?∈?有(,),()0x f x αβ?∈>,于是

2

2

()()0b

a

f x dx f x dx β

α

>??,矛盾。

充分性

2

2

1

()lim

()

0n

b

i a

n i b a f x dx f n

ξ→∞

=-==∑?(i ξ取连续点)

。 五、 其它

问题7 从已知A B C ?的内部的点P 向三边作三条垂线,求使此三条垂线长的乘积为最大的点P 的位置。

解:设P 到,,AB AC BC 的距离分别为,,x y z 。则

2cx by az S ++=,

其中S 为A B C ?的面积。

3

3

1112(

)(

)3

3

cx by az

S xyz cx by az abc

abc

abc

++=

??≤

=

等号当且紧当cx by az ==时成立,且可达到。

练习8 证明:锐角三角形内一点到三顶点联线成等角时,该点到三顶点距离之和为最小。

练习9 求使得下列不等式对所有的自然数n 都成立的最大的数

α和最小的数β:11(1)

(1)

n n e n n

α

β

+++

≤≤+

。(111,ln 2

2

αβ=

-=

问题10 设有函数列

f x x 1275()=+,f x x f x 221152

()()=+,……,f x x f x n n ()()=+-21

152,……,求方程2004()2f x x =的一切实数解。

解 (1)首先验证5x =是方程的解。 (2)当5x >时,用归纳法证明()2n f x x <。 (3)当5x <时,用归纳法证明()2n f x x >。 问题11 设1()()f x f x =

,1()(())n n f x f f x -=,x ∈ ,若存在0n ,使得

0()n f x x

=,则f 是1 到1()f 的一一映射。

证 只需证f 是单射。假设f 不是单射,则12x x ?≠使得12()()f x f x =。

因此1n ?,2

n +

使得1

11()n f

x x =,222()n f x x =。于是121112()()

n n f x f x ++=,从

而112

21212()()

n n n n n n f

x f x +?+?=。所以

1121121111()(())()

n n n n n n n f x f f x f x +??==,212

2122222()(())()n n n n n n n f

x f f x f x +??==。

于是121

122()()n n x

f x f x x ===,这与12

x x ≠矛盾。故f 是1 到1()f 的映射。

初二数学培优竞赛题

―――――-―――――――――――――――装――――――订――――――线――――――――――――――――――――――― 班级 姓名 学号 座位号 考场纪律:正常( ) 不正常( ) 初二数学培优竞赛题 1.已知△ABC,∠BAF=Rt ∠,∠D=75°,AB=AD,延长BA 作CE ⊥BA 交AB 于点E, ∠BAG=∠CAF (16分) (1)画出与△ABC 面积相等的三角形(要求与图中的任意一条边重合)(4分) (2)当∠D=80°时其余条件不变△ABC 还与你画的三角形面积相等吗?为什么? 那么如果∠BAF=80°呢?(任选一个你画的三角形证明)(6分) (3)根据(2)(3)题你得出的结论说明在什么条件下才能使你画的三角形于与△ABC 的面积相同(6分) 2.已知直线y=x+3交x 于A ,y 于B ,直线y=-x+2,交x 于C ,y 于D,P 为AB 的中点,过点P,(4,0)两点画直线,交直线y=-x+2于Q (14分) (1)求A,B,C,D,P,Q 的坐标(3分) (2)求直线P,(4,0)的函数表达式(2分) (3)求∠BPQ 的度数(5分) (4)若直线AB 上有点K ,连结KQ ,当△PKQ 为等腰三角形时,求QK 的长以及△PKQ 的面积(4分) 3.已知函数y = -2*x + 3与函数y=ax+b 的夹角为30°(11分) (1)求a,b 的值(1分) (2)设函数y = -2*x + 3在第四象限交的第三个格点为P ,交y 于A 函数y=ax+b 交x 于B ,求ΔABP 的面积和周长(4分) (3)如果直线l 平行于直线y=ax+b ,并与x 轴交于点C,且点C 与点B 对称,求ΔCAP 的

初中数学竞赛辅导讲义及习题解答 第21讲 从三角形的内切圆谈起

第二十一讲 从三角形的内切圆谈起 和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质: 1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等; 2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法. 当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形: 注:设Rt △ABC 的各边长分别为a 、b 、c (斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式: (1)2 c b a r -+=; (2)c b a ab r ++= . 请读者给出证 【例题求解】 【例1】 如图,在Rt △ABC 中,∠C=90°°,BC=5,⊙O 与Rt △ABC 的三边AB 、

BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可. 【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DP·P C为定值; ④FA为∠NPD的平分线,其中一定成立的是( ) A.①②③ B.②③④ C.①③④ D.①④ 思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键. 【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D 三点的圆交AB于F,求证:F为△CDE的内心.

初中数学竞赛辅导资料

初中数学竞赛专题选讲 识图 一、内容提要 1.几何学是研究物体形状、大小、位置的学科。 2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。 3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、体,要靠正确的想像 点:只表示位置,没有大小,不可再分。 线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。 识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。 二、例题 例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形? E 解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD, ∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。 乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O) △AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。

丁图中共有等边三角形48个: 边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15 顶点在下▼的个数有 1+2+3+4=10 边长2个单位:顶点在上▲的个数有 1+2+3+4=10 顶点在下▼的个数有 1+2=3 边长3个单位:顶点在上▲的个数有 1+2+3=6 边长4个单位:顶点在上▲的个数有 1+2=3 边长5个单位:顶点在上▲的个数有 1 以上要注意数一数的规律 例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同 一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不 出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。 (1989年全国初中数学联赛题) 解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线 有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个 点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点 连线共5×6再除以2(因重复计算)。 要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线, 共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5, A 3A 6 A 3 1 2 例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速 前进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相 等;又过8分钟,甲、乙再次离点O 相等。求甲和乙的速度比。 解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2 乙2 为再前进8分钟的位置。再设甲,乙的速度分别为每分钟x,y 米,根据题意得 ? ??-=-=500101025002y x y x 甲 O 甲1 甲2 解得12x=8y 乙1 ∴x ∶y=2∶3

初中九年级数学竞赛培优讲义全套专题10 最优化_答案[精品]

专题10 最优化 例1. 4 提示:原式=1 12 - 62 -+)(x . 例2. B 提示:由-1≤y ≤1有0≤≤1,则=22 +16+3y 2 =142 +4+3是开口向上,对称轴为7 1 -=x 的抛物线. 例3. 分三种情况讨论:①0≤a +?)(,∴f (a )=2a ,即2a =2132-2+a ,则?? ? ??=--=413 172b a 综上,(a ,b )=(1,3)或(17-2-, 4 13 ) 例4. (1) 121≤≤x ,y 2 = 21+216143-2+-)( x .当=4 3时,y 2 取得最大值1,a =1; 当21= x 或=1时,y 2取得最小值21,b =22.故a 2+b 2=2 3. (2) 如图,AB =8,设AC =,则BC =8- ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2. 10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x 当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有 22 4 ===DA EB CA BC , 从而=AC = 3831=AB .故原式取最小值时,=3 8. (3)如图, 原式= [] 22222 2 2)24()13()32()01(032--0y x y x -+-+-+-+-+)()(

初中数学竞赛辅导讲义及习题解答第14讲图第14讲图表信息问题51

第十四讲图表信息问题 21世纪是一个信息化的社会,从纷繁的信息中,捕捉搜集、处理、加工所需的信息,是新世纪对一个合格公民提出的基本要求. 图表信息问题是近年中考涌现的新问题,即运用图象、表格及一定的文字说明提供问题情境的一类试题. 图象信息题是把需要解决的问题借助图象的特征表现出来,解题时要通过对图象的解读、分析和判断,确定图象对应的函数解析式中字母系数符号特征和隐含的数量关系,然后运用数形结合、待定系数法等方法解决问题. 表格信息题是运用二维表格提供数据关系信息,解题中需通过对表中的数据信息的分析、比较、判断和归纳,弄清表中各数据所表示的含义及它们之间的内在联系,然后运用所学的方程(组)、不等式(组)及函数知识等解决问题. 【例题求解】 【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题: (1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车 早小时到达6地; (2)快车追上慢车需小时,慢车、快车的速度分别为千米/时; (3)A、B两地间的路程是. 思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程. 注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取. 【例2】已知二次函数c + =2的图象如图,并设M=b y+ ax bx + + - + 2, +2 - - + a a- a c b b b c a 则( ) A.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0 思路点拨由抛物线的位置判定a、b、c的符号,并由1 x,推出相应y值的正负性. = ±

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲) 目录 本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容 本次培训具体计划如下以供参考 第一讲实数一 第二讲实数二 第三讲平面直角坐标系函数 第四讲一次函数一 第五讲一次函数二 第六讲全等三角形 第七讲直角三角形与勾股定理 第八讲株洲市初二数学竞赛模拟卷未装订在内另发 第九讲竞赛中整数性质的运用 第十讲不定方程与应用 第十一讲因式分解的方法

第十二讲因式分解的应用 第十三讲考试未装订在内另发 第十四讲试卷讲评 第1讲实数一 知识梳理 一非负数正数和零统称为非负数 1几种常见的非负数 1实数的绝对值是非负数即a≥0 在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则 绝对值的性质 ①绝对值最小的实数是0 ②若a与b互为相反数则a=ba=ba=b ③对任意实数a则a≥a a≥-a ④a·b=ab b≠0 ⑤a-b≤a±b≤a+b 2实数的偶次幂是非负数 如果a为任意实数则≥0n为自然数当n=1≥0 3算术平方根是非负数即≥0其中a≥0 算术平方根的性质 a≥0 = 2非负数的性质 1有限个非负数的和积商除数不为零是非负数

2若干个非负数的和等于零则每个加数都为零 3若非负数不大于零则此非负数必为零 3对于形如的式子被开方数必须为非负数 4推广到的化简 5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方 例题精讲 ◆专题一利用非负数的性质解题 例1已知实数xyz满足求x+y+z的平方根 巩固 1已知则的值为______________ 2若 的值 拓展 设abc是实数若求abc的值 ◆专题二对于的应用 例2已知xy是实数且 例3 已知适合关系式求的值 巩固 1已知b=且的算术平方根是的立方根是试求的平方根和立方根 2已知则

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

七年级数学培优竞赛教案

奥数培训之趣味数学 生活中的数学: 1、诗仙李白豪放豁达,有斗酒诗百篇的美名,为唐代“饮中八仙”之一, 民间流传李白买酒歌谣,是一道有趣的数学问题:李白街上走,提壶去买酒。遇店加一倍,见花喝一抖,三遇店和花,喝完壶中酒。试问:酒壶中原有多少酒? 解:设酒壶中原有酒x 斗,“三遇店和花”意思是李白三遇店,同时也三见花。 第一次见店又见花后,酒有:12-x ; 第二次见店又见花后,酒有:1-122)( -x ; 第三次见店又见花后,喝完壶中酒,所以 依题意,得 ()[]0111222=---x 解方程,得 87= x 答:酒壶中原有酒8 7斗。 2、有甲乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍。”乙回答说:“最好还是把你的羊给我一只,我们的羊数就一样了”,求两个牧童各有多少只羊。 解:设甲有x 只羊,乙有y 只羊。依题意,得 ()? ??+=--=+11121y x y x 解方程组,得? ??==57y x 所以甲牧童有羊7只,乙牧童有5只。 3、一片牧场上的草长得一样快,已知60头牛24天可将草吃完,而30头牛60天可将草吃完.那么,若在120天里将草吃完,则需要( )头牛 A 、16 B 、18 C 、20 D 、22 分析:设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c ,根据60头牛24天可将草吃完,而30头牛60天可将草吃完,列方程组,用其中一个未知数表示另一个未知数即可求解。

解:设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c 。 根据题意,得 ???==???+=?+=?b c b a a c b a c b 120010606030242460解得, 则若在120天里将草吃完,则需要牛的头数是20120120=+b a c 。故选C 。 4、杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A .一样多. B .多了. C .少了. D .多少都可能. 解:设杯中原有水量为a ,依题意可得, 第二天杯中水量为a ×(1-10%)=0.9a ; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a ; 第三天杯中水量与第一天杯中水量之比为199.01.19.01.19.0<=?=??a a 。 所以第三天杯中水量比第一天杯中水量少了,选C . 5、 甲杯中盛有2m 毫升红墨水,乙杯中盛有m 毫升蓝墨水,从甲杯倒出a 毫升到乙杯里(0<a <m ),搅匀后,又从乙杯倒出a 毫升到甲杯里,则这时( )。 A .甲杯中混入的蓝墨水比乙杯中混入的红墨水少. B .甲杯中混入的蓝墨水比乙杯中混入的红墨水多. C .甲杯中混入的蓝墨水和乙杯中混入的红墨水相同. D .甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定. 解:从甲杯倒出a 毫升红墨水到乙杯中以后: 乙杯中含红墨水的比例是a m a +, 乙杯中含蓝墨水的比例是 a m m +, 再从乙杯倒出a 毫升混合墨水到甲杯中以后: 乙杯中含有的红墨水的数量是毫升a m ma a m a a a +=+?- ①

初中数学竞赛辅导讲义及习题解答 第15讲 统计的思想方法

第十五讲 统计的思想方法 20世纪90年代,美国麻省理工学院教授尼葛洛庞帝写过一本畅销全球的《数字化生存》一书.事实上,我们的生活、工作离不开数据,要做到心中有数、用数据说话是信息社会对人的基本要求. 统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学. 随机抽样与统计推断是统计中最重要的思想方法,也是认识客观世界的事物和现象的方法之一.即用样本的某种特征去估计总体的相应特征,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律. 【例题求解】 【例1】 现有A ,B 两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如图所示. (1)由观察所得, 班的标准差较大; (2)若两班合计共有60人及格,问参加者最少获 分才可以及格. 思路点拨 对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案. 注: 平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的: (1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”; (2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势. 【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、3332y x +的平均数为( ) A .2a+3b B .b a +3 2 C .6a+9b D .2a+b 思路点拨 运用平均数计算公式并结合已知条件导出新数据的平均数.

初中八年级数学竞赛培优讲义全套专题25 配方法-精编

专题 25 配方法 阅读与思考 把一个式子或一个式子的部分写成完全平方式或者几个完全平方式的和的形式,这种方法叫配方法,配方法是代数变形的重要手段,是研究相等关系,讨论不等关系的常用技巧. 配方法的作用在于改变式子的原有结构,是变形求解的一种手段;配方法的实质在于揭示式子的非负性,是挖掘隐含条件的有力工具. 配方法解题的关键在于“配方”,恰当的“拆”与“添”是配方常用的技巧,常见的等式有: 1、222 2()a ab b a b ±+=± 2、2 a b ±= 3、2222 222()a b c ab bc ca a b c +++++=++ 4、2 2 2 2221 [()()()]2 a b c ab bc ac a b b c a c ++---= -+-+- 配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键在于: (1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如2 a = 能 联想起配方法. (2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 例题与求解 【例1】 已知实数x ,y ,z 满足2 5,z 9x y xy y +==+- ,那么23x y z ++=_____ (“祖冲之杯”邀请赛试题) 解题思路:对题设条件实施变形,设法确定x , y 的值. 【例2】 若实数a ,b , c 满足222 9a b c ++= ,则代数式2 2 2 ()()()a b b c c a -+-+- 的 最大值是 ( ) A 、27 B 、18 C 、15 D 、12 (全国初中数学联赛试题) 解题思路:运用乘法公式 ,将原式变形为含常数项及完全平方式的形式.

初中数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学

第八讲由常量数学到变量数学 数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期. 函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法. 在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题. 【例题求解】 【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. 思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程. 注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有: (1)利用几何计算求; (2)通过解析式求; (3)解由解析式联立的方程组求. 【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后, 继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的 函数关系,大致是下列图象中的() 思路点拨向烧杯注水需要时间,并且水槽中水面上升高0 h. 注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.

初中七年级数学竞赛培优讲义全套专题16 不等式

专题16 不等式(组) 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的最大 值和最小值. (江苏省竞赛试题) 解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.

七年级数学竞赛培优(含解析)专题24 相交线与平行线

专题24 相交线与平行线 阅读与思考 在同一平面内,两条不同直线有两种位置关系:相交或平行. 当两条直线相交或两条直线分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,善于从相交线中识别出以上不同名称的角是解相关问题的基础,把握对顶角有公共顶点,而同位角、内错角、同旁内角没有公共顶点且有一条边在截线上,这是识图的关键. 两直线平行的判定方法和重要性质是我们研究平行线问题的主要依据. 1.平行线的判定 (1)同位角相等、内错角相等,或同旁内角互补,两直线平行; (2)平行于同一直线的两条直线平行; (3)在同一平面内,垂直于同一直线的两条直线平行. 2.平行线的性质 (1)过直线外一点,有且只有一条直线和这条直线平行; (2)两直线平行,同位角相等、内错角相等、同旁内角互补; (3)如果一条直线和两条平行线中的一条垂直,那么它和另一条也垂直. 熟悉以下基本图形: 例题与求解 【例1】 (1) 如图①,AB ∥DE ,∠ABC =0 80,∠CDE =0 140,则∠BCD =__________. (安徽省中考试题) (2) 如图②,已知直线AB ∥CD ,∠C =0 115,∠A =0 25,则∠E =___________. (浙江省杭州市中考试题)

图② A 解题思路:作平行线,运用内错角、同旁内角的特征进行求解. 【例2】如图,平行直线AB ,CD 与相交直线EF ,GH 相交,图中的同旁内角共有( ). A .4对 B .8对 C .12对 D .16对 (“希望杯”邀请赛试题) 解题思路:每一个“三线八角”基本图形都有两对同旁内角,从对原图进行分解入手. C D B 例2题图 例3题图 【例3】 如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC //ED ,CE 是∠ACB 的平分线,求证:∠EDF =∠BDF . (天津市竞赛试题) 解题思路:综合运用垂直定义、角平分线、平行线的判定与性质,由于图形复杂,因此,证明前注意分解图形. 【例4】 如图,已知AB ∥CD ,∠EAF = 41∠EAB ,∠FCF =41∠ECD .求证:∠AFC =4 3 ∠AEC . (湖北省武汉市竞赛试题) D E C A B 图1

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

12.初中数学竞赛辅导资料(12).pdf

初中数学竞赛辅导资料(12) 用交集解题 甲内容提要 1. 某种对象的全体组成一个集合。组成集合的各个对象叫这个集合的元素。例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个。 2. 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集 例如6的正约数集合A ={1,2,3,6},10的正约数集合B ={1,2,5,10},6与10的公约数集合C ={1,2},集合C 是集合A 和集合B 的交集。 3. 几个集合的交集可用图形形象地表示, 右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集。 不等式组的解集是不等式组中各个不等式解集的交集。 例如不等式组? ? ?)2(2)1(62ΛΛx x 解的集合就是 不等式(1)的解集x>3和不等式(2)的解集x >2的交集,x>3. 4.一类问题,它的答案要同时符合几个条件,一般可用交集来解答。把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。 有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案。(如例2) 乙例题 例1.一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值。 解:除以3余2的自然数集合A ={2,5,8,11,14,17,20,23,26,……} 除以5余3的自然数集B ={3,8,13,18,23,28,……} 除以7余2自然数集合C ={2,9,16,23,30,……} 集合A 、B 、C 的公共元素的最小值23就是所求的自然数。 例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这 两个数。

全国通用初中数学竞赛培优辅导讲义(28—33)讲

全国初中数学竟赛辅导讲义修订(2) 三角形的边角性质 内容提要 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线 段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其 他两边和。用式子表示如下: a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-??? ????????>+>+>+?< 推广到任意多边形:任意一边都小于其他各边的和 2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个 内角和。 推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180 六边形内角和=4×180 n 边形内角和=(n -2) 180 3. 边与角的关系 ① 在一个三角形中,等边对等角,等角对等边; 大边对大角,大角对大边。 ② 在直角三角形中, △ABC 中∠C=Rt ∠2 22c b a =+?(勾股定理及逆定理) △ABC 中?? ??=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中?? ??=∠∠=∠ 45A Rt C a :b :c=1:1:2 例题 例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。 (1988年泉州市初二数 学双基赛题) 解:根据三角形任意两边和大于第三边,得不等式组 ?????+>-+-->-++->++-141312131214121413a a a a a a a a a 解得?? ???<->>51135.1a a ∴1.5

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中九年级数学竞赛培优讲义全套专题10 最优化

专题10 最优化 阅读与思考 数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有: 1.配方法 由非负数性质得()02 ≥±b a . 2.不等分析法 通过解不等式(组),在约束条件下求最值. 3.运用函数性质 对二次函数()02 ≠++=a c bx ax y ,若自变量为任意实数值,则取值情况为: (1)当0>a ,a b x 2-=时,a b ac y 442-=最小值 ; (2)当0

【例3】()2 13 22+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ). 解题思路:本题通过讨论a ,b 与对称轴0=x 的关系得出结论. 【例4】(1)已知2 11- + -=x x y 的最大值为a ,最小值b ,求2 2b a +的值. (“《数学周报》杯”竞赛试题) (2)求使()168422 +-+ +x x 取得最小值的实数x 的值. (全国初中数学联赛试题) (3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值. (“我爱数学”初中生夏令营数学竞赛试题) 解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等. 【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低? (河南省竞赛试题) 解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费( ) ay m y n a S 222+--=,通过有理化,将式子整理 为关于y 的方程.

(合集)八年级数学培优和竞赛讲义附练习及答案通用

超级资源:(合集)八年级数学培优和竞赛讲义附练习及答 案(15套) 1、用提公因式法把多项式进行因式分解 【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式. 提公因式法是因式分解的最基本也是最常用的方法. 它的理论依据就是乘法分配律. 多项式的公因式的确定方法是: (1)当多项式有相同字母时,取相同字母的最低次幂. (2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式. 下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】 1. 把下列各式因式分解 (1)-+--+++a x abx acx ax m m m m 2 2 13 (2)a a b a b a ab b a ()()()-+---3 2 2 22 分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号. 解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 2 2 1323() (2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,() ()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式

变换. 解:a a b a b a ab b a ()()()-+---3 2 2 22 ) 243)((] 2)(2))[(() (2)(2)(222 223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-= 2. 利用提公因式法简化计算过程 例:计算1368 987 521136898745613689872681368987123? +?+?+? 分析:算式中每一项都含有987 1368 ,可以把它看成公因式提取出来,再算出结果. 解:原式)521456268123(1368987 +++?= =?=987 1368 1368987 3. 在多项式恒等变形中的应用 例:不解方程组23 532 x y x y +=-=-?? ?,求代数式()()()22332x y x y x x y +-++的值. 分析:不要求解方程组,我们可以把2x y +和53x y -看成整体,它们的值分别是3和-2,观察代数式,发现每一项都含有2x y +,利用提公因式法把代数式恒等变形,化为含有2x y +和53x y -的式子,即可求出结果. 解:()()()()()()()223322233253x y x y x x y x y x y x x y x y +-++=+-+=+- 把2x y +和53x y -分别为3和-2带入上式,求得代数式的值是-6. 4. 在代数证明题中的应用 例:证明:对于任意自然数n ,3 2322 2n n n n ++-+-一定是10的倍数. 分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可. 3 23233222 222n n n n n n n n ++++-+-=+-- =+-+=?-?33122110352 22n n n n ()() Θ对任意自然数n ,103?n 和52?n 都是10的倍数. ∴-+-++3 2322 2n n n n 一定是10的倍数 5、中考点拨:

相关文档
相关文档 最新文档