文档库 最新最全的文档下载
当前位置:文档库 › 数学实验报告2 圆周率的计算 mathematica

数学实验报告2 圆周率的计算 mathematica

数学实验报告2 圆周率的计算 mathematica
数学实验报告2 圆周率的计算 mathematica

数学实验报告

实验序号:2 日期:2016年月日

关于圆周率的计算

关于圆周率的计算 祖冲之在数学方面的突出贡献是关于圆周率的计算,确定了相当精确的圆周率值。中国古代最初采用的圆周率是“周三径一”,也就是说,π=3。这个数值与当时文化发达的其他国家所用的圆周率相同。但这个数值非常粗疏,用它计算会造成很大的误差。随着生产和科学的发展,π=3 就越来越不能满足精确计算的要求。因此,中外数学家都开始探索圆周率的算法和推求比较精确的圆周率值。在中国,据公元一世纪初制造的新莽嘉量斛(亦称律嘉量斛,王莽铜斛,是一种圆柱形标准量器,现存)推算,它所取的圆周率是3.1547 。二世纪初,东汉天文学家张衡在《灵宪》中取用π=≈3.1466,又在球体积计算中取用π≈3.1622。三国时东吴天文学家王蕃在浑仪论说中取用π≈3.1556。以上这些圆周率近似值,比起古率“周三径一”,精确度有所提高,其中π= 10还是世界上最早的记录。但这些数值大多是经验结果,并没有可靠的理论依据。 在这方面最先取得突破性进展的是魏晋之际的数学家刘徽,他在《九章算术注》中创立了“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法。他所得到的圆周率值π=3.14 与π==3.1416,都很精确,在当时世界上是很先进的,至今仍在经常使用。继刘徽之后,祖冲之则将圆周率推算到更加精确的程度。据《隋书·律历志》记载,祖冲之确定了π的不足近似值 3.1415926 和过剩近似值 3.1415927,π的真值在这两个近似值之间,即 3.1415926<π<3.1415927 精确到小数 7 位。这是当时世界上最先进的数学成果,直到约一千年后,才为 15 世纪中亚数学家阿尔·卡西(Al—? kash1)和16世纪法国数学家韦达(F.Vièta,1540—1603)所超过。 关于他得到这两个数值的方法,史无明载,一般认为是基于刘徽割圆术。通过现代计算验证,如果按照割圆术计算,要得到小数 7 位准确的圆周率值,必须求出圆内接正12288 边形的边长和 24576边形的面积,这样,就要对9位数进行上百次加减乘除和开方运算,还要选择适当的有效数字,保证准确的误差范围。对于用算筹计算的古代数学家来说,这绝不是一件轻而易举的事情,只有掌握纯熟的理论和技巧,并具备踏踏实实和一丝不苟的研究精神,才能取得这样的杰出成就。祖冲之的这项记录在中国也保持了一千多年。 中国古代数学家和天文学家还往往用分数表示常量的近似值。为此,祖冲之确定了π的两个分数形式的近似值:约率π=22/7≈3.14 ,密率π=355/113 ≈3.1415929。这两个数值都是π的渐近分数。刘宋天文学家何承天及古希腊阿基米德等都已用到过。密率355/113 是π的分母小于10000的最佳近似分数,则为祖冲之首创。关于密率355/113是如何得到的,今人有“调日法”术,连分数法,解同余式或不定方程,割圆术等种种推测,迄今尚无定论。在欧洲,π= 355/113 是16世纪由德国数学家奥托(V.Otto,1550(?)—1605)和荷兰工程师安托尼兹(A.Anthonisz,1527—1607)分别得到,后通称“安托尼兹率”,但这已是祖冲之以后一千多年的事情了。自从我国古代灿烂的科学文化逐渐得到世界公认以来,一些学者就建议把π= 355 称为“祖率”,以纪念祖冲之的杰出贡献。 关于球的体积公式及其证明: 祖冲之的另一项重要数学成就是关于球的体积公式及其证明。各种几何体的体积计算是古代几何学中的基本内容。《九章算术》商功章已经正确地解决了

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

常用数学公式

常用数学公式大全 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5三角形s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

mathematica数学实验报告

高等数学实验报告 实验一 一、实验题目 1:作出各种标准二次曲面的图形 ParametricPlot3D Sin u Sin v,Sin u Cos v,Cos u ,u,0,Pi ,v,0,2Pi,P Graphics3D ParametricPlot3D u Sin v,u Cos v,u^2,u,0,2,v,0,2Pi,PlotPoints30

Graphics3D ParametricPlot3D u,v,u^2v^2,u,2,2,v,2,2,PlotPoints30 Graphics3D ParametricPlot3D Sec u Sin v,Sec u Cos v,Tan u,u,Pi4,Pi4,v,0,2

Graphics3D t1ParametricPlot3D u^21Sin v,u^21Cos v,u,u,1,5,v,0,2Pi t2ParametricPlot3D u^21Sin v,u^21Cos v,u,u,5,1,v,0,2 show t1,t2 Graphics3D

Graphics3D show Graphics3D,Graphics3D ParametricPlot3D u Cos v,u Sin v,u,u,6,6,v,0,2Pi,PlotPoints60 Graphics3D 2:作出曲面所围的图形 t1ParametricPlot3D Sin u Sin v,Sin u Cos v,Cos u, u,Pi2,pi2,v,0,2Pi,PlotPoints60 t2ParametricPlot3D0.5Cos u12,0.5Sin u, u,0,2Pi,v,0,2Pi,PlotPoints60 t3Plot3D0,PlotPoints60 show t1,t2,t3

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

mathematica 数学实验报告材料 实验一

数学实验报告 实 验 一 数学与统计学院 信息与计算科学(1)班 郝玉霞 201171020107

数学实验一 一、实验名:微积分基础 二、实验目的:学习使用Mathematica的一些基本功能来验证或观察得出微积分学的几个基本理论。 三、实验环境:学校机房,工具:计算机,软件:Mathematica。 四、实验的基本理论和方法:利用Mathematica作图来验证高中数学知识与大学数学容。 五、实验的容和步骤及结果 容一、验证定积分 dt t s x ?= 1 1 与自然对数 x b ln= 是相等的。 步骤1、作积分 dt t s x ?= 1 1 的图象; 语句:S[x_]:=NIntegrate[1/t,{t,1,x}] Plot[S[x],{x,0.1,10}] 实验结果如下: 图1 dt t s x ?= 1 1 的图象 步骤2、作自然对数 x b ln= 的图象 语句:Plot[Log[x],{x,0.1,10}] 实验结果如下: 2 1

图2 x b ln= 的图象 步骤3、在同一坐标系下作以上两函数的图象 语句:Plot[{Log[x],S[x]},{x,0.1,10}] 实验结果如下: 2 1 图3 dt t s x ?= 1 1 和 x b ln= 的图象 容二、观察级数与无穷乘积的一些基本规律。 (1)在同一坐标系里作出函数和它的Taylor展开式的前几项构成的多项式函数,,的图象,观察这些多项式函数的图象向的图像逼近的情况。 语句1: s[x_,n_]:=Sum[(-1)^(k-1)x^(2k-1)/((2k-1)!),{k,1,n}] Plot[{Sin[x],s[x,2]},{x,-2Pi,2Pi},PlotStyle->{RGB[0,0,1]}] 实验结果如下: 642 4 2 图4和它的二阶Taylor展开式的图象

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

MATHEMATICA实验报告

【MATHEMATICA实验报告】 【实验目的】 1.掌握Mathematica软件的启动和退出,以及Mathematica帮助系统。 2.熟悉Mathemaic的计算其功能以及常用的数字函数。 3.掌握变量的定义,变量的操作。 4.掌握函数的定义以及运算。 【实验内容】 1.求下列积分 (1) (4sin()3cos())/(sin()2cos()) x x x x dx ++ ? 输入: y=(4 Sin[x]+3 Cos[x])/(Sin[x]+2Cos[x]); Integrate[y,x] 输出: 2 x-Log[2 Cos[x]+Sin[x]] (2) /2 (cos())^5sin(2) x x dx π ? 输入: y=Cos[x]^5 Sin[2 x] Integrate[y,{x,0,Pi/2}] 输出: Cos x5Sin2x 2 7 (3)1 /(^21)^(3/2) dx x x -+ ? 输入: y=1/(x^2-x+1)^(3/2); Integrate[y,{x,0,1}] 输出: 4 3 2.求积分 1 (1/2)*^(^2/2) e x dx π -∞ - ? 输入:y=E^(-x^2/2)/Sqrt[2*Pi]; NIntegrate[y,{x,Infinity,1}] 输出: -0.158655

3.求y=e^(x^2)在x=0的9阶泰勒公式。 输入: Series[Exp[x^2],{x,0,9}] 输出: 1x 2x 4 2x 66x 824O x 10 4.作出以下参数方程所描述的图形。 (1) 4cos {3sin x t y t ==,(0≤t ≤2π) 输入: ParametricPlot[{4 Cos[t],3 Sin[t]},{t,0,2Pi}] 输出: -4-2 24-3-2 -1 1 2 3 (2)3(cos )^3 {3(sin )^3x t y t -= 输入: ParametricPlot[{3 Cos[t]^3,3 Sin[t]^3},{t,0,2 Pi}] 输出: -3-2-1 123-3-2 -1 12 3

数学实验报告

《数学实验》报告 题目:根据数值积分计算方法计 算山东省面积 学生姓名: 学号: 专业班级:机械工程17-1班

2019年4月15日

一、问题背景与提出 图1是从百度地图中截取的山东省地图,试根据前面数值积分计 算方法,计算山东省面积。 图 1 二、实验目的 1、 学会运用matlab 解决一些简单的数学应用问题。 2、 学会运用matlab 建立数学模型。 3、 学会运用一些常见的数值积分计算方法结算实际问题,并 了解其实际意义,建立积分模型。 三、实验原理与数学模型 将积分区间 [a , b] n 等分,每个区间宽度均为h = (b - a) / n , h 称 为积分步长。记 a = x 0 < x 1 < … < x k … < x n = b , 在小区间上用小矩形面积近似小曲边梯形的面积,若分别取左端点和右端点的函数值为小矩形的高,则分别得到两个曲边梯形的面积的近似公式: Ln = h ∑f (x k )n=1k=0 , h = b?a ?

R n =?∑f (x k )n k=1 , h = b?a ? 如果将二者求平均值,则每个小区间上的小矩形变为小梯形,整 个区间上的值变为: Tn =?∑f (X k )n=1 k=1+?2[f (x 0)+f (x n )] 将山东省边界上的点反映在坐标化,运用梯形公式积分计算得山 东省的面积。 四、实验内容(要点) 1、将山东省的地图区域在matlab 中画出 。 2、在坐标系上运用积分方法将所求区域的面积求出。 3、通过比例尺将山东省的实际面积求出。 五、实验过程记录(含基本步骤、主要程序清单及异常情况记录等) 1、 在百度地图中标识出山东省的区域范围,标明对应的比例: 图 2 2、 取出所截取图片中山东的边界的坐标,即将边界坐标化: (1) 运用imread 函数和imshow 函数导入山东省的区域 图片。

数学应用软件实验报告(mathematica实验程序)1

徐州工程学院数理学院数学应用软件实验报告 课程(实验序号)数学应用软件实验 1 实验地点、日期数学建模机房2011 年 2 月23 日主要仪器设备计算机 使用的软件名称Mathematica 实验类型演示性实验 验证性实验 综合性实验√设计性实验 研究性实验 班级:姓名:孙娅学号:20090402223 一、实验题目名称:函数】变量和表达式 二、实验目的: 理解变量和算式、内核与前端处理器构成的人机对话系统,了解计算的精度问题个Mathematica使用中的几个问题。熟练掌握数的表示和计算、常用数学函数,会绘制简单函数的图形。通过上机初步了解数学应用软件,Mathematica的各种界面。 三、实验内容: 练习题1 1.计算下列各式的数值: (1) Log[2,10] Log[10]/Log[2] (2) Sqrt[Pi^2+1] 1 2 (3) Log[10,3264] Log[3264]/Log[10] (4) E^E ??/2 (5) Cos[135^0] Cos[1] (6) Sin[Pi^2/2] Sin[π2/2] (7) ArcSin[1/2] π/6 (8) 200! 7886578673647905035523632139321850622951359776871732632947425332443594499634033429203042 8401198462390417721213891963883025764279024263710506192662495282993111346285727076331723 7396988943922445621451664240254033291864131227428294853277524242407573903240321257405579

最佳分数值逼近(mathematica数学实验报告)

姓名 ### 学院 ###### 班级 ######### 学号 ######### 实验题目 最佳分数值逼近 评分 实验目的: 1、用“连分数展开”的方法计算圆周率π的近似值; 2、通过实验来体会“连分数展开”的方法与其他方法的区别,比较各种方法的优劣; 3、尝试用“连分数展开”的方法对其他的数进行展开。 实验环境: 学校机房,Mathematica4.0软件 实验基本理论和方法: 1、Mathematica 中常用的展开数与多项式的函数的使用; 2、计算圆周率π“连分数展开”方法,并且利用特定的函数来展开其他数。 实验内容和步骤: (一)多项式的展开与化简 多项式是表达式的一种特殊的形式,所以多项式的运算与表达式的运算基本一样,表达式中的各种输出形式也可用于多项式的输出。Mathematica 提供一组按不同形式表示代数式的函数。如: 1、 对12 x 1-进行分解,使用的函数为Factor : 2、 展开多项式 7 x+2()与5 x+y+7(),使用的函数为Expand:

3、 化简(1)^4(2)^(3)x x x +++与(1)^3(2)^4(3)^(1)x x x x +++-,使用的函数为 Pimplify: 4、 连个多项式相除,总能写成一个多项式和一个有理式相加, Mathematic 中提供两个 函数PolynomialQuotient 和PolynomialRemainder 分别返回商式和余式:

(二)π的连分数展开 π的求解方法之前我们已经有许多种,但都比较繁琐而且误差较大,如何找到误差较小的π的近似值求解方法,我们在所得整数3的基础上进行分析,有了整数3,则 π=3+1x ,其中10.141592653579...x =是3的误差,101x <<。只要能找到1x 的最佳分数逼近值,再加3就得到π的最佳分数近似值。从而我们使用一种方法“连分数展开“,其原理是: 为了寻找与1x 接近的分数,先找与11 1 7.062513305931...A x = =接近的整数,显然 是7.于是111223377 A π=+ ≈+=,这是祖冲之的效率。 在此基础上,我们可以再用上述方法,要找到比 22 7 误差更小的分数近似值,只需要找到比整数7更接近1A 的分数来作为1A 的近似值。由于127A x =+,其中 200.062513305931...1x <=<。先找22 1 15.996594406685...A x = =的最佳整数近似值,显然是16.于是1211113771616A A =+ ≈+=,从而1 2 111355 3331 1113 7716 A A π=+=+≈+ = + +,这就得到祖冲之的密度。 如果还要进一步提高精确度,就应当在考虑2A 的整数近似值16的误差 32160.003405593314...x A =-=,取33 1 293.6345910144...A x = =的整数近似值294,则可

数学计算方法实验报告

数学计算方法实验报告 习题二 2.估计用二分法求方程f(x)=x3+4x2-10=0在区间[1,2]内根的近似值,为使方程不超过10时所需的二分次数。f(x k) 程序过程: function two (tolerance) a=1;b=2;counter=0; while (abs(b-a)>tolerance) c=(a+b)/2; fa=a^3+4*a^2-10;

fb=b^3+4*b^2-10; fc=c^3+4*c^2-10; if ((fa==0|fb==0)) disp(counter); elseif (fa*fc<0) b=c;counter=counter+1; elseif (fb*fc<0) a=c;counter=counter+1; elseif (fb==0) disp(counter); end end solution=(a+b)/2; disp(solution); disp(counter); 实验结果: 6.取x0=1.5,用牛顿迭代法求第三中的方程根.f(x)=x3+4x2-10=0的近似值(精确到||x k+1-x k|≦10-5,并将迭代次数与3题比较。 程序过程: function six (g) a=1.5; fa=a^3+4*a^2-10;

ga=3*a^2+8*a; b=a-fa/ga; k=1; while(abs(b-a)>g) a=b; fa=a^3+4*a^2-10; ga=3*a^2+8*a; b=a-fa/ga; k=k+1; end format long; disp(a); disp(k); 实验结果:程序结果计算结果 8.用弦割法求方程f(x)=x3-3x2-x+9=0在区间[-2,-1]内的一个实根近似值x k,|f(x k)|≦10-5. 程序过程: function eight (t) a=-2; b=-1; fa=a^3-3*a^2-a+9; fb=b^3-3*b^2-b+9; c=b-fb*(b-a)/(fb-fa); k=1; while(abs(c-b)>t) a=b; b=c; fa=a^3-3*a^2-a+9; fb=b^3-3*b^2-b+9; c=b-fb*(b-a)/(fb-fa); k=k+1; end

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

圆周率200位记忆口诀

圆周率的来源和2000位 “圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历 来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法一一“割圆术”。 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证, 从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,

做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072 边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。 以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率”22/7 ,另一个 是“密率” 355/113 ,其中355/113 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。 答应了大宝,教她点东西,才知道自己才疏学浅,不知道教她什么。偶尔看到巧计圆周率,就截图下来和她一起背,呵呵还真的有效,花三

《数学软件》实验报告-符号计算基础与符号微积分

实验报告 课程名称:数学软件姓名: 学院: 专业: 年级: 学号: 指导教师: 职称: 年月日

实验项目列表

附件三: 实验报告(二) 系:专业:年级:姓名学号:实验课程: 实验室号:_ 实验设备号:实验时间: 指导教师签字:成绩: 1. 实验项目名称:符号计算基础与符号微积分 2. 实验目的和要求 1.掌握定义符号对象的方法 2.掌握符号表达式的运算法则以及符号矩阵运算 3.掌握求符号函数极限及其导数的方法 4.掌握求符号函数定积分和不定积分的方法 3. 实验使用的主要仪器设备和软件 方正商祺N260微机;MATLAB7. 0或以上版本 4. 实验的基本理论和方法 (1)符号函数;sym(x);syms a b …… (2)平方根:sqrt(x) (3)分解因式:factor(s) (4)符号表达式化简:simplify(s) (5)逆矩阵:inv(x) (6)下三角矩阵:tril(x) (7)矩阵行列式的值:det(x)

(8)符号函数求极限:limit (f ,x ,a );limit (f ,x ,a ,‘right ’) (9)符号函数求导:diff (f ,v ,n ) (10)符号函数求不定积分:int (f ,v ) (11)符号函数求定积分:int (f ,v ,a ,b ) 5. 实验内容与步骤 (描述实验中应该做什么事情,如何做等,实验过程中记录发生的现象、中间结果、最终得到的结果,并进行分析说明) (包括:题目,写过程、答案) 题目: 1. 已知x=6,y=5,利用符号表达式求 y x x z -++= 31。 提示:定义符号常数)'5(')'6('sym y sym x ==,。 >> x=sym('6'); >> y=sym('5'); >> z=(x+1)/(sqrt(3+x)-sqrt(y)) z = 7/(3-5^(1/2)) 2. 分解因式:44y x - >> syms x y; >> A=x^4-y^4; >> factor(A) ans = (x-y)*(x+y)*(x^2+y^2) 3. 化简表达式 (1)2121sin cos cos sin ββββ- (2) 123842+++x x x (1) >> syms x y; >> f1=sin(x)*cos(y)-cos(x)*sin(y);

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

相关文档
相关文档 最新文档