文档库 最新最全的文档下载
当前位置:文档库 › 全数字接收机中的载波恢复算法研究

全数字接收机中的载波恢复算法研究

全数字接收机中的载波恢复算法研究
全数字接收机中的载波恢复算法研究

RSA数字签名算法的模拟实现

RSA数字签名算法的模拟实现 摘要 本程序为简易版RSA算法加密解密过程的模拟实现。 程序分为加密和验证两部分。根据课上所学的MD5加密过程,以及RSA算法,本程序采用MD5算法,先对文件内容进行加密,得到文字摘要;再利用RSA算法的私钥,对文字摘要进行加密,得到数字签名。在验证部分,用RSA公钥对数字证书签名解密,得到文字摘要S1,再将需要验证的文档用公用的MD5算法处理,得到文字摘要S2,检验文字摘要S1与S2的一致性,从而断定原文是否被篡改。程序采用树形图对文件进行直观的显示管理。采用文本文档存储数字签名。 关键词:RSA MD5 文字摘要数字签名

Abstract This program is simple version of the RSA algorithm encryption and decryption process simulation. The procedures are divided into two parts, encryption and authentication. Lessons learned based on the MD5 encryption process, as well as RSA algorithm, the procedures used MD5 algorithm, first pairs contents of the file carry on encrypt, to obtain text abstract; re-use RSA algorithm's private key, encryption for text abstract, obtain the digital signature. In the verification part, with the RSA algorithm's public key pairs of digital certificate signature decryption, get text abstract S1, and then using a public MD5 algorithm encryption the document which need to be verify, to obtain text abstract S2, text the consistency of S1 and S2, thereby conclude that original text whether the been tampered with. Program uses the file tree intuitively display management the files. Adopt text document storage digital signatures. Key words:RSA MD5 Text abstract Digital signature

现代数字信号处理及其应用——LMS算法结果及分析

LMS 算法MATLAB 实现结果及其分析 一、LMS :为课本155页例题 图1.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图1.2滤波器权系数迭代更新过程曲线(步长075.0=μ) 图1.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图1.4滤波器权系数迭代更新过程曲线(步长015.0=μ) 分析解释: 在图1.1中,收敛速度最慢的是步长为015.0=μ的曲线,收敛速度最快的是步长075.0=μ的曲线,所以可以看出LMS 算法的收敛速度随着步长参数的减小而相应变慢。图1.2、1.3、1.4分别给出了步长为075.0=μ、025.0=μ、025.0=μ的滤波器权系数迭代更新过程曲线,可以发现其不是平滑的过程,跟最抖下降法不一样,体现了其权向量是一个随机过程向量。

LMS2:为课本155页例题,156页图显示结果 图2.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图2.2滤波器权系数迭代更新过程曲线(步长025.0=μ) 图2.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图2.4最陡下降法权值变化曲线(步长025.0=μ) 分析解释: 图2.1给出了步长为025.0=μ的学习曲线,图2.2给出了滤波器权向量的单次迭代结果。图2.3给出了一 次典型实验中所得到的权向量估计()n w ?=,以及500次独立实验得到的平均权向量()}n w ?E{=的估计,即()∑==T t n w T 1 t )(?1n w ?,其中)(?n w t 是第t 次独立实验中第n 次迭代得到的权向量,T 是独立实验次数。可以发现,多次独立实验得到的平均权向量()}n w ?E{=的估计平滑了随机梯度引入的梯度噪声,使得其结果与使用最陡下降法(图2.4)得到的权向量趋于一致,十分接近理论最优权向量[]T 7853.08361.0w 0-=。 LMS3:为课本172页习题答案

浅议数字图像去噪技术及其应用

浅议数字图像去噪技术及其应用 数字图像去噪技术一直以来都是数字图像处理研究领域的一个热点问题,该技术在当代已经越来越重要,并广泛应用到人们生活的方方面面。笔者在数字图像去噪技术方面也做了一点粗浅的研究,本文就结合笔者的认识和体会谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 标签:数字图像;图像噪声;去噪技术;中值滤波;小波滤波 在数字化发展的今天,信息在人们生活和工作中的作用越来越突出,并逐渐改变着人们的生活和工作方式,其中最主要、最直观的信息就是图像信息。然而,在实际应用中数字图像经常会由于元器件、电阻、电磁干扰等设备因素,温度、光照等外界环节因素以及人为因素的影响产生图像噪声,从而使得图像质量不理想,偏离了原始图片。因此,数字图像去噪就成为一个亟待解决的问题,具有很强的现实意义。下面笔者就谈一谈几种数字图像去噪方法和数字图像去噪技术在现实中的应用。 1 数字图像去噪方法 当前,数字图像去噪的方法有很多,从本质上讲这些方法都是低通滤波的方法。低通滤波既有有利的地方,也有不利的地方,它既能消除图像噪声,又能消除图像中一些有用的高频信息。因而,我们所研究的各种数字图像去噪方法从根本上来说就是权衡去噪和保留高频信息。在数字图像去噪方法中,我们比较常见的有以下几种方法: 1.1 中值滤波算法 中值滤波算法最早是由Turky于1971年提出来的,是一种典型的非线性空间域去噪算法。其算法利用了像素点和噪声点之间的灰度值差别很大这一特性。中值滤波算法的主要原理是:以一个像素为中心取其邻域,然后对邻域中各像素的灰度值进行排序,取中值作为中心像素的灰度值,换句话说就是中心像素点的灰度值被邻域像素点灰度值的中值所替代。这种方法能很好的消灭噪声,但同时也损坏了图像的边缘,造成了部分细节的丢失。因此,部分科学家和学者在此基础上又提出了中心加权中值滤波算法、开关中值滤波算法、极值中值滤波算法等等,这些方法都是针对中值滤波算法的缺陷提出来的,具有很强的实用价值。 1.2 维纳滤波算法 维纳滤波算法是由Wiener提出来的,是一种典型的线性滤波方法。其理论依据是最小均方误差准则,该准则的具体含义是:将含有噪声的信号运用滤波变换后得到的恢复后的估计信号与原信号相比,它们之间有最小的均方差误差。维纳滤波算法既适用于连续平稳随机过程,也适用于离散平稳随机过程。但是,对于非平稳态的随机过程,一般来说,维纳滤波算法不太适用。

理解载波恢复

理解载波恢复 简介 在数字通信系统中,信息可以通过载波基本特性的变化来进行传输。这些特性,如相位、频率、和幅度,在发射端被修改并且必须在接收端被检测到。因此,对于接收端来说,恢复载波的频率、相位、和符号时序是绝对必需的。这一过程就被称作载波恢复并且可以通过各种技术得以实现。在本演示(或文档)中,我们将探讨频率偏移的影响以及载波恢复中存在的通道噪声。 ASCII 码文本的QAM 调制(带噪声) 幅度 瞬时正弦波状态:M(t)<Φ(t) 载波恢复基础知识

In-Class Demos 一个QAM 发送端使用特定的相位和幅度来调制载波信号,而另一方面,如果接收器能够确定原始信号的相位和频率,那它就能准确地检测到这个信号。因此,两者之间的同步是必需的。在理想情况下,发送端和接收端将会完美地同步工作。换句话说,两者将会以同样的方式解释信号的相位和频率。然而,实际的硬件并不是完美的,而且即使利用某种纠错机制,接收端也不可能精确地锁定到与发送端完全相同的相位和频率。为了弥补这些不尽完美的特性,采用锁相环或PLL 来匹配接收端和发送端之间的频率(1)。 利用星座图,我们可以表示出每个符号的 幅度和相位。此外,每个符号覆盖在另一 个符号之上是为了说明与我们所能恢复载 波的相位和幅度之间的一致性。理想情况 下,当接收端的PLL 能够恢复载波,那么 每个符号就会在星座图上清楚地分布。然 而,当载波由于通道噪声或频率误差的原 因而无法恢复时,星座图也能表示来了。 在右边,我们示出了一幅符号出现在正确 幅度处,但其相位正持续变化的星座图。 因为: Frequency = d Θ / dt 频率= d Θ / dt 所以,当星座图的相位持续变化时,我们能够确定频率估计是错误的。 在这个特定的实例中,我们已经通过在系统中引入足够的噪声来仿真频率误差,从而得以干扰PLL ,甚至将噪声去除之后,PLL 仍然可能无法锁定正确的频率。 载波恢复步骤 解决这个载波恢复问题的方法有两个部分,它们可以粗略地分为以下两个部分:频率恢复和符号时序(相位)恢复。第一个部分需要频率估计以便于接收端精确地锁定至发射端频率,第二 个部分,符号时序恢复需要接收端精确地锁定发射端相位。符号时序恢复使得接收端通过精确

数字签名算法原理

实验1-5 数字签名算法 DSS 一.实验目的 通过对数字签名算法DSS的实际操作,理解DSS的基本工作原理。 二.实验原理 以往的文件或书信可以通过亲笔签名来证明其真实性,而通过计算机网络传输的信息则通过数字签名技术实现其真实性的验证。 数字签名目前采用较多的是非对称加密技术,其实现原理简单的说,就是由发送方利用哈希算法对要传送的信息计算得到一个固定位数的消息摘要值,用发送者的私有密钥加密此消息的哈希值所产生的密文即数字签名。然后数字签名和消息一同发给接收方。接收方收到消息和数字签名后,用同样的哈希算法对消息进行计算得出新的哈希值,然后用发送者的公开密钥对数字签名解密,将解密后的结果与新的哈希值相比较,如相等则说明报文确实来自发送方。 下面我们以DSA(Digital Signature Algorithm)为例,介绍数字签名算法。DSA源于ElGamal和Schnorr签名算法,被美国NIST采纳作为DSS(Digital Signature Standard)数字签名标准。DSS数字签名算法的具体实现过程课参见图1-5。 比较 a 签名过程 b 验证过程 图1-5 DSS算法的实现过程 首先介绍DSS算法的主要参数: 1. 全局公开密钥分量  1)素数p, 2511

数字信号处理期末论文

题目:基于DSP的FFT程序设计的研究 作者届别 系别专业 指导老师职称 完成时间2013.06

内容摘要 快速傅里叶变(Fas Fourier Tranformation,FFT)是将一个大点数N的DFT分解为若干小点的D F T的组合。将用运算工作量明显降低,从而大大提高离散傅里叶变换(D F T) 的计算速度。因各个科学技术领域广泛的使用了FFT 技术它大大推动了信号处理技术的进步,现已成为数字信号处理强有力的工具,本论文将比较全面的叙述各种快速傅里叶变换算法原理、特点,并完成了基于MATLAB的实现。 关键词:频谱分析;数字信号处理;MATLAB;DSP281x

引言: 1965年,库利(J.W.Cooley)和图基(J.W.Tukey)在《计算数学》杂志上发表了“机器计算傅立叶级数的一种算法”的文章,这是一篇关于计算DFT的一种快速有效的计算方法的文章。它的思路建立在对DFT运算内在规律的认识之上。这篇文章的发表使DFT的计算量大大减少,并导致了许多计算方法的发现。这些算法统称为快速傅立叶变换(Fast Fourier Transform),简称FFT,1984年,法国的杜哈梅尔(P.Dohamel)和霍尔曼(H.Hollmann)提出的分裂基快速算法,使运算效率进一步提高。FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 随着科学的进步,FFT算法的重要意义已经远远超过傅里叶分析本身的应用。FFT算法之所以快速,其根本原因在于原始变化矩阵的多余行,此特性也适用于傅里叶变换外的其他一些正交变换,例如,快速沃尔什变换、数论变换等等。在FFT的影响下,人们对于广义的快速正交变换进行了深入研究,使各种快速变换在数字信号处理中占据了重要地位。因此说FFT对数字信号处理技术的发展起了重大推动作用。 信号处理中和频谱分析最为密切的理论基础是傅立叶变换(Fouriertransform,FT)。快速傅立叶变换(FFT)和数字滤波是数字信号处理的基本内容。信号时域采样理论实现了信号时域的离散化,而离散傅里叶变换理论实现了频域离散化,因而开辟了数字技术在频域处理信号的新途径,推进了信号的频谱分析技术向更广的领域发展。 1.信号的频谱分析 如果信号频域是离散的,则信号在时域就表现为周期性的时间函数;相反信号在时域上是离散的,则该信号在频域必然表现为周期的频率函数。不难设想,一个离散周期序列,它一定具有既是周期又是离散的频谱。有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。因而有限长序列的离散傅里叶变换的定义为:x(n)和X(k)是一个有限长序列的离散傅里叶变换对。

盲目图像复原算法研究背景意义现状及趋势

盲目图像复原算法研究背景意义现状及趋势 1图像复原算法的研究意义和背景 (1) 2盲目图像复原方法研究现状 (2) 3盲目图像复原方法发展趋势 (3) 1图像复原算法的研究意义和背景 数字图像处理这门学科的形成也是和社会生产力发展的需要分不开的。早期的图像处理是由于通讯方面的要求而发展起来的,这就是本世纪20年代传真技术的发明和发展。其后,由于宇宙探索方面的要求,需要处理大量在宇宙探测器上拍摄下来的不清楚的其他天体(如月球、火星等)以及地球本身的照片,这些需求大大的促进了数字图像处理技术的发展。到现在,图像处理技术的发展,己经远远突破了这两个领域,被广泛地应用到科学研究、工农业生产、军事技术、政府部门、医疗卫生等许多领域。图像复原算法的研究是数字图像处理中非常重要的一个领域,它的研究成果也被广泛地应用到各个研究和生产领域。在图像成像的过程中,图像系统中存在着许多退化源。一些退化因素只影响一幅图像中某些个别像素点的灰度;而另外一些退化因素则可以使一幅图像中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。此外还有数字化器、显示器、时间、彩色,以及化学作用引起的退化。总之,使图像发生退化的原因很多,如果我们把退化模型简化成真实图像与一个卷积算子卷积的结果,那么图像的复原过程就可以看成是一个反卷积的问题。反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。因此,由于采集图像受噪声的影响,最后对于图像的复原结果可能偏离真实图像非常远。由于以上的这些特性,盲图像复原的过程无论是理论分析或是数值计算都有特定的困难。但由于盲图像复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。随着多媒体技术的发展,计算机网络技术的广泛应用和宽带信息网络的建立,信息在人们的工作、学习和生活中发挥越来越重要的作用,其中最直接最主要的信息是图像信息,在各类图像系统中,由于图像的传送和转换,如成像、复制扫描、传输、显示等,总要造成图像的降质,典型的表现为图像模糊、失真、有噪声等,而在众多的应用领域中,又需要清晰的、高质量的图像。因此,改善图像质量,恢复图像具有非常重要的意义。

RSA算法和RSA数字签名算法的实现

RSA算法和RSA数字签名算法的实现

RSA算法和RSA数字签名算法的实现 摘要 RSA算法是一种公钥密码算法.实现RSA算法包括生成RSA密钥, 用RSA加密规则和解密规则处理数据。RSA数字签名算法利用RSA算法实现数字签名。本文详述了RSA算法的基本原理, RSA加密算法的实现以及如何利用RSA实现数字签名. 关键字 RSA算法, 数字签名, 公开密钥, 私人密钥, 加密, 解密 中图分类号 TP301 一、引言 随着网络技术的飞速发展,信息安全性已成为亟待解决的问题。公钥密码体制中,解密和加密密钥不同,解密和加密可分离,通信双方无须事先交换密钥就可建立起保密通信,较好地解决了传统密码体制在网络通信中出现的问题。另外,随着电子商务的发展,网络上资金的电子交换日益频繁,如何防止信息的伪造和欺骗也成为非常重要的问题。数字签名可以起到身份认证、核准数据完整性的作用。目前关于数字签名的研究主要集中基于公钥密码体制的数字签名。 公钥密码体制的特点是:为每个用户产生一对密钥(PK和SK);PK公开,SK保密;从PK推出SK是很困难的;A、B双方通信时,A通过任何途径取得B的公钥,用B的公钥加密信息。加密后的信息可通过任何不安全信道发送。B收到密文信息后,用自己私钥解密恢复出明文。 公钥密码体制已成为确保信息的安全性的关键技术。RSA公钥密码体制到目前为止还是一种认可为安全的体制。本文详述了RSA算法和用RSA算法实现数字签名的理论,以及它们在实际应用中的实现。 二、RSA算法和RSA数字签名算法的理论描述 1 RSA算法 RSA算法的理论基础是一种特殊的可逆模幂运算。 设n是两个不同奇素数p和q的积,即:n=pq, ?(n)=(p-1)(q-1)。 定义密钥空间 k={(n,p,q,d,e)|n=pq,p和q是素数,de≡1 mod ?(n),e 为随机整数}, 对每一个k=(n,p,q,d,e), 定义加密变换为E k(x)=x b mod n,x∈Z n; 解密变换为D k(x)=y a mod n,y∈Z n,Z n为整数集合。 公开n和b,保密p,q和a. 为证明加密变换E k和解密变换 D k满足D k(E k(x))=x,这里不加证明的引用下面两个定理: 定理1(Euler)对任意的a∈Z n *,有a?(n)≡1 mod n,其中 Z n *={x∈Z n |gcd(x,n)=1},?(·)表示Euler函数。 定理2 设p和q是两个不同的素数,n=pq, ?(n)=(p-1)(q-1),对任意的x∈Z n 及任意的非负整数k,有 x k?(n)+1≡x mod n. 现在来证明RSA算法的加密变换和解密变换的正确性。 证明:对于加密变换E k和解密变换D k。因为ab≡1 mod ?(n),所以可设

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势 贵州师范大学物电学院电子信息科学与技术 罗滨志 120802010051 摘要 数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。 从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。 In this paper Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing. From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

信息安全之电子签名技术的实现

滨江学院 课程论文 题目数字签名的发展 院系计算机系 专业软件工程(动画方向)学生姓名陈婷 学号20092358009 指导教师朱节中 职称副教授 二O一二年五月二十日

数字签名的发展 陈婷 南京信息工程大学滨江学院软件工程(动画方向),南京210044 摘要: 数字签名是电子商务安全的一个非常重要的分支。随着电子商务的发展,电子签名的使用越来越多。实现电子签名的技术手段有很多种,但比较成熟的、世界先进国家目前普遍使用的电子签名技术还是基于PKI的数字签名技术。 关键词: 数字签名信息安全电子商务 1引言 1.1 研究背景 在当今信息社会,计算机网络技术得到了突飞猛进的发展。计算机网络日益成为工业、农业和国防等领域的重要信息交换手段,并逐渐渗透到社会的各个领域。在现实生活中,人们常常需要进行身份鉴别、数据完整性认证和抗否认。身份鉴别允许我们确认一个人的身份;数据完整性认证则帮助我们识别消息的真伪、是否完整;抗否认则防止人们否认自己曾经做过的行为。随着无纸化办公的发展,计算机网络的安全越来越受到重视,防止信息被未经授权的泄漏、篡改和破坏等都是亟待解决的问题。在Internet上,数字签名作为一项重要的安全技术,在保证数据的保密性、完整性、可用性、真实性和可控性方面起着极为重要的作用。同时由于信息技术的发展及其在商业、金融、法律等部门的普及, 数字签名技术又面临着新的挑战。 1.2 开发意义 数字签名是实现电子交易安全的核心技术之一,它在实现身份认证、数字完整性、不可抵赖性等功 能方面都有重要应用。尤其是在密钥分配、电子银行、电子证券、电子商务和电子政务等许多领域有重要 的应用价值。 2相关技术介绍 2.1PKI/CA 技术的介绍 PKI 就是公开密钥基础设施。它是利用公开密钥技术所构建的,解决网络安全问题的,普遍适用的一种基础设施。公开密钥技术也就是利用非对称算法的技术。说PKI 是基础设施,就意味着它对信息网络的重要。PKI 通过延伸到用户本地的接口,为各种应用提供安全的服务,如认证、身份识别、数字签名、

快速数字图像修复技术

快速数字图像修复技术

用高斯内核卷积图像(即计算相邻像素的加权平均数),相当于各向同性扩散(线性热传导方程)。我们的算法使用加权平均的内核,只考虑相邻像素的贡献(即内核中心为零)。图2显示了伪码算法和两个扩散内核。本文中所有重建图像是通过该算法获得,或者是该算法经过轻微的变化获得,将在3.1节解释。 3.1保留边缘 当Ω跨越高对比度边缘的边界时(图3(前左)),该算法最简单版本,会带来附加效果(明显的模糊)。在实践中,只有在Ω和高对比度边缘的相交处,需要各向异性扩散,这些区域通常只占整个区域内很小比例。 创建指定待修复区域的遮盖是修复过程中最耗时的步骤,需用户干预。由于我们的算法可以在短短几秒钟内修复图像,它可用于遮盖互动创建。我们利用这个互动通过扩散障碍进行边界重联,这是Ω内扩散过程的边界。这完成一个边界重建和各向异性扩散类似的的结果,但没有相关的开销。在实践中,扩散屏障是两个像素宽的线段。当扩散过程中达到一个障碍,达到像素进行颜色设定,进程终止。图3进行了说明,图3中(左后方)明显的交叉线代表修复区域。简单扩散修复算法在Ω和高对比度边缘之间的相交处产生模糊点(参见图3中的小圆圈(前左))。通过适当增加扩散屏障(整个遮盖线段图3(右后)),用户停止遮盖两边混合信息的扩散过程。由此产生的直线如图3(前右)所示。 4结果 我们已经在C + +中实施了图2描述的算法,并尝试了两种不同的扩散内核。在这两种情况下的结果相似。文中所有的图片都使用128 MB的内存运行Windows98450兆赫奔腾III 电脑和使用图2所示的最左边内核生成。在图5,8,9和10所示的结果是使用无扩散障碍最简单的版本的算法得到。对于图1,使用了遮盖,两个扩散障碍(图4)。三个女孩的例子,使用了四个扩散障碍,以及有遮盖穿过高对比度边缘的区域(图6(右))。在所有情况下,都用100扩散迭代。 所有修复和线装饰删除系统需要手动遮盖。鉴于有一套功能的绘图系统,创建一个遮盖所需的时间,只依赖于可用的功能,也不受所使用修复算法的影响。对于交互式应用程序,在同一系统中拥有屏蔽功能和修复算法是可取的,以避免在不同的环境之间切换。在我们目前的原型中,我们已经实现了一个简单的绘图系统以及导入和导出JPEG文件的功能。 恢复林肯的画像和三个女孩的图片(图4和6(右),分别)使用的遮盖,是我们的绘画系统创建的。在新奥尔良的例子(图5)所使用的遮盖,通过使用Photoshop中选择颜色

DSP数字信号处理

数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 简介 简单地说,数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。另外DSP也是digital signal processor的简称,即数字信号处理器,它是集成专用计算机的一种芯片,只有一枚硬币那么大。有时人们也将DSP看作是一门应用技术,称为DSP 技术与应用。 《数字信号处理》这门课介绍的是:将事物的运动变化转变为一串数字,并用计算的方法从中提取有用的信息,以满足我们实际应用的需求。 本定义来自《数字信号处理》杨毅明著,由机械工业出版社2012年发行。 特征和分类 信号(signal)是信息的物理体现形式,或是传递信息的函数,而信息则是信号的具体内容。 模拟信号(analog signal):指时间连续、幅度连续的信号。 数字信号(digital signal):时间和幅度上都是离散(量化)的信号。 数字信号可用一序列的数表示,而每个数又可表示为二制码的形式,适合计算机处理。 一维(1-D)信号: 一个自变量的函数。 二维(2-D)信号: 两个自变量的函数。 多维(M-D)信号: 多个自变量的函数。 系统:处理信号的物理设备。或者说,凡是能将信号加以变换以达到人们要求的各种设备。模拟系统与数字系统。 信号处理的内容:滤波、变换、检测、谱分析、估计、压缩、识别等一系列的加工处理。 多数科学和工程中遇到的是模拟信号。以前都是研究模拟信号处理的理论和实现。 模拟信号处理缺点:难以做到高精度,受环境影响较大,可靠性差,且不灵活等。数字系统的优点:体积小、功耗低、精度高、可靠性高、灵活性大、易于大规模集成、可进行二维与多维处理 随着大规模集成电路以及数字计算机的飞速发展,加之从60年代末以来数字信号处理理论和技术的成熟和完善,用数字方法来处理信号,即数字信号处理,已逐渐取代模拟信号处理。 随着信息时代、数字世界的到来,数字信号处理已成为一门极其重要的学科和技术领域。 数字信号处理器 DSP芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法;

一种实用的中频数字接收机设计

一种实用的中频数字接收机设计 一种实用的中频数字接收机设计 ???摘要:针对后三代移动通信系统研究所需硬件平台的要求,提出了一种灵活性强的可扩展中频接收机设计方案。这种方案可以在较高的中频频率上实现信号的数字化接收,且适用于多种输入信号。该方案以自顶向下的思路,吸取其它方案的优点,完成了基于软件无线电思想的数字化接收机设计。该系统结构简单,成本低,有良好的实用性和通用性。???关键词:带通带通采样?采样速率采样速率?数字下变频 ? ???近年来,移动通信的发展十分迅速。应对更高速率业务的要求,我国对于后三代移动通信系统(B3G)的研究也逐渐兴起,但是目前多局限于对仿真数据进行理论研究和模拟阶段,有必要建立一个硬件实验平台,以便寻找研究成果的应用方法。此硬件平台应具有适合于软件无线电的体系,在硬件结构上与无线通信的通用功能模块相一致:不仅可以接收现存通信标准规定的信号,还可以处理由用户自定义的信号,为未来研究提供可靠的实测数据。该平台还应具有高度的灵活性、开放性以支持多种通信体制和不同的QoS(Quality of Service)要求。???从软件无线电的观点来看,受宽带天线、高速A/D转换器及数字信号处理器等发展水平的限制,实现一个理想的软件无线电平台[1]的条件目前还不具备。因此,本文根据系统提出的中频频率为70MHz、信号带宽为10MHz的设计要求,在分析比较了几个方案优缺点的基础上,着重研究了在现有器件情况下最大限度

地实现中频数字化这一关键问题,最终设计了一种可用于所述实验平台的中频数字化接收机。在使用该方案的实际系统上,可以对新一代蜂窝移动通信系统中的关键技术进行研究和实验评估。1初步设计方案???站在系统灵活性的角度,本文暂不考虑使用模拟解调器的中频接收方案,而采用数字化的处理,先提出两种方案。1.1单路带通采样方案???根据系统的中频频率和带宽两项参数指标,若进行低通采样,由Nyquist定理知,采样速率至少要150Msps才能保证频谱不会发生混迭。但以目前芯片的制作水平来看,采样速率大于150Msps且分辨率在10bit以上的ADC成本会很高;此外,后级接口电路必须使用超高速逻辑电路,基带数字信号处理的压力很大,还增加了整个电路板的布线、制版工艺难度,从而带来许多问题。观察系统的中频接收信号:最高截止频率为75MHz,但信号带宽只有10MHz;若低通采样此信号,则默认信号分布在0~75MHz整个频带范围内,对此频带不再加以利用,因而频谱利用率较低。可以运用带通采样机制,按远低于2倍信号最高截止频率的采样速率进行欠采样,将中频信号频谱无混迭地搬移至基带[1]。此方案的示意图。 ? ???例如,当发送端的基带信号基带信号是实信号时,选择接收机的采样速率fs=35Msps,频谱周期性复制到:fI±kfs(k为整数),采样前后信号频谱的变化。 ? ? ???从图中可以看到,带通采样利用ADC作为近似理想的混频器对信号进

第四章载波恢复技术的算法解析

第四章 载波恢复技术及其相关算法 4.1 载波恢复的基本原理 在数字传输系统中,接收端解调部分通常采用相干解调(同步解调)的方法,因为相干解调无论在误码率、检测门限还是在输出信噪比等方面较非相干解调都具有明显优势。相干解调要求在接收端必须产生一个与载波同频同相的相干载波。从接收信号中产生相干载波就称为载波恢复。 相干解调的优越性是以接收端拥有准确相位的参考载波为前提的,如果频率有误差,解调就不能正常工作,如果相位有误差,解调的性能就会下降。因为星座点数多的QAM(如64QAM,256QAM)对载波相位抖动非常敏感,所以对DVB-C 系统的QAM 调制方式来说,在接收端取得精确频率和相位的相关载波尤为重要。 在数字传输系统中,由于收发端的本振时钟不精确相等或者信道特性的快速变化使得信号偏离中心频谱,都会导致下变频后的基带信号中心频率偏离零点,从而产生一个变化的频偏,同时,信号的相位在传输中也会受到影响,引起信号的相位抖动。为了消除因此产生的载波频偏Δf 和相偏Δθ,在数字传输系统接收端的QAM 解调器中需要通过载波恢复(Carrier recovery)环路来计算出信号中载波频偏与相偏,并将载波频偏与相偏的值反馈回混频器来消除载波频偏与相偏。 本文论述采用特殊的锁相环来获得相干载波的方法,其基本思想是:对于经过了下变频、滤波器、定时恢复和均衡之后的信号,应用盲载波恢复,通过利用锁相环,提取出频偏并且跟踪相偏。 4.2 载波恢复的具体方法 以下介绍从抑制载波的己调信号中恢复相干载波的常用的方法:四次方环法、同相正交环法、逆调制环法、判决反馈环法。 4.2.1 四次方环 四次方环[6]的基本方法是将接收信号进行四次方运算,然后用选频回路选出4c f 分量,再进行四分频,取得频率为c f 的相干载波。具体的四次方环载波恢复框图如图4-1所示。 图4-1中接收到的射频信号与本地振荡器混频,在中频处理阶段进行滤波和自动增益控制后,升为四次幂,送入锁相环。锁相环的作用是提取出载波的4倍频分量,并滤除其它随机分量。因此它可以输出所需频率。然后载波频率乘以四,如图中×4方框所示。这一步可以通过求输入信号的四次幂实现。将接收信号通过一个四方律器件得到接收信号的四次幂,同时相位角也变成原来的四倍。然后将四方律器件输出的四倍载频除以四就可以恢复出载波了。

FM全数字接收机成信雷达队_论坛版.

全国研究生电子设计大赛 全数字FM接收机 学校:成都信息工程学院

目录 1.绪论 (1) 2.系统总体与指标设计 (1) 2.1系统总体简介 (1) 2.2A/D转换器的选择 (2) 2.3数控振荡器(NCO)指标 (2) 2.4高速抽取滤波器指标 (3) 2.5邻频抑制FIR低通滤波器指标 (3) 2.6数字FM解调方法 (4) 2.7低速抽取滤波器指标 (5) 2.8音频输出 (6) 3.系统硬件的实现 (6) 3.1射频前端 (8) 3.2电源 (9) 3.3A/D转换器电路 (9) 3.4FPGA最小系统电路 (10) 3.5音频输出电路 (12) 3.6功率放大电路 (12) 4.设计总结 (16) 附件 (18)

1.绪论 软件无线电是上世纪末新兴的一门学科,它突破了传统的无线电台以硬件为核心的功能单一、可扩展性差的设计局限性,强调以可编程的硬件作为通用平台,尽量地用可升级、可重配置的软件来实现各种无线电功能的设计新思路。软件无线电是多频段无线电,它具有宽带的天线、射频前端、模-数/数-模变换,能够支持多个空中接口和协议,在理想的状态下,所有方面(包括物理空中接口)都可以通过软件来定义。软件无线电不仅能应用在通信领域,也可以应用在无线电工程的其他相关领域,如:雷达、电子战、导航、广播电视、测控等领域。 针对频带为88~108MHz,最大频率偏差为75KHz的FM信号,本设计实现了一种宽带中频带通直接采样的FM全数字接收系统。在具体设计方面,首先,通过MATLAB进行系统的仿真;然后,利用FPGA平台实现FM信号的解调以及音频输出;最后,通过丁类音频功率放大器输出声音。主要技术包括:数字混频、CIC抽取滤波及补偿、FIR低通滤波、FM数字解调和音频功率放大等。 2.系统总体与指标设计 2.1系统总体简介 图2-1 系统框图

实验三 DSA数字签名算法

实验三DSA数字签名算法 姓名: 学号: 学院:信息工程学院 指导老师:郑明辉

1.DSA算法原理 数字签名是数据在公开行信道中传输的安全保障,能够实现数据的公开、公正、不可抵赖等特点的方法,只能公开的密钥、密码签名算法。国际供认的公开密钥签字算法主要有RSA算法、ElGAMAL算法或者其变形的签名算法。 DSA(Digite Signature Arithmotic )是Schnore和ElGamal算法的变型。 美国国家标准技术研究所(NIST)1994年5月19日公布了数字签名标准的(DSS),标准采用的算法便是DSA,密钥长度为512~1024位。密钥长度愈长,签名速度愈慢,制约运算速度的只要因素是大数的模指数运算。 2.DSA签名中的参数 参数描述:Digital Signature Algorithm (DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(DigitalSignature Standard)。算法中应用了下述参数: p:L bits长的素数。L是64的倍数,范围是512到1024; q:p - 1的160bits的素因子; g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1; x:x < q,x为私钥; y:y = g^x mod p ,( p, q, g, y )为公钥; H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。 p, q, g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及验证协议如下: 1. P产生随机数k,k < q; 2. P计算r = ( g^k mod p ) mod q s = ( k^(-1) (H(m) + xr)) mod q 签名结果是( m, r, s )。 3. 验证时计算w = s^(-1)mod q u1 = ( H( m ) * w ) mod q u2 = ( r * w ) mod q v = (( g^u1 * y^u2 ) mod p ) mod q 若v = r,则认为签名有效。 DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。 DSA的一个重要特点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们是否是随机产生的,还是作了手脚。RSA算法却做不到。 3.源码描述

DSA数字签名算法

DSA数字签名算法 1 引言 为了确保数据传输的安全性,不得不采取一系列的安全技术,如加密技术、数字签名、身份认证、密钥管理、防火墙、安全协议等。其中数字签名就是实现网上交易安全的核心技术之一,它可以保证信息传输的保密性、数据交换的完整性、发送信息的不可否认性、交易者身份的确定性等。DSA(Digital Signature Algorithm,数字签名算法,用作数字签名标准的一部分),它是另一种公开密钥算法,它不能用作加密,只用作数字签名。DSA使用公开密钥,为接受者验证数据的完整性和数据发送者的身份。它也可用于由第三方去确定签名和所签数据的真实性。DSA算法的安全性基于解离散对数的困难性,这类签字标准具有较大的兼容性和适用性,成为网络安全体系的基本构件之一。 2. 数字签名 2.1 数字签名的概念 数字签名在ISO7498—2标准中定义为:“附加在数据单元上的一些数据,或是对数据单元所作的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。 数字签名是通过一个单向函数对要传送的信息进行处理得到的用以认证信息来源并核实信息在传送过程中是否发生变化的一个字母数字串。数字签名提供了对信息来源的确定并能检测信息是否被篡改。 数字签名要实现的功能是我们平常的手写签名要实现功能的扩展。平常在书面文件上签名的主要作用有两点,一是因为对自己的签名本人难以否认,从而确定了文件已被自己签署这一事实;二是因为自己的签名不易被别人模仿,从而确定了文件是真的这一事实。采用数字签名,也能完成这些功能: (1)确认信息是由签名者发送的; (2)确认信息自签名后到收到为止,未被修改过; 签名者无法否认信息是由自己发送的。 数字签名和手签的区别是:手签是模拟的,易伪造,而数字签名是基于数学原理的,更难伪造。

一种基于身份认证的数字签名算法研究

龙源期刊网 https://www.wendangku.net/doc/0512953667.html, 一种基于身份认证的数字签名算法研究 作者:陈卫军牛红惠 来源:《商场现代化》2009年第06期 [摘要] 针对电子商务领域的安全问题,利用基于身份的密码体制,提出了一种高效的数字签名算法。这种算法可以解决代理签名的问题,而且具有签名长度短、系统开销小、安全程度高等特点。 [关键词] 数字签名代理签名可公开验证 一、引言 随着网络技术的发展,全球经济一体化进程的加快,电子商务在世界范围内日渐得到普及和应用。但与此同时,交易的风险性和不确定性也大大增加,安全问题已经成为电子商务发展的瓶颈。近几年来,由于数字签名技术的广泛运用,电子商务系的统安全性得到了较好的保证。 然而,在现代商务活动中,我们常常会遇到一些需要把某些权力转交给特定的代理人,人代理人代为行使这些权利。比如,又一个单位的董事长需要出国考察,在考察期间,为了不耽误公司的正常工作,董事长可以委托一个特定的人员代为行使董事长的权力。为此,基于身份的密码体制就成为解决问题的关键。基于身份的密码学是由Shamir于1984年提出的。其主要观点是,系统中不需要证书,可以使用用户的标识如姓名、IP地址、电子邮件地址等作为公钥。用户的私钥通过一个被称作私钥生成器PKG(Private key generator)的可信任第三方进行计算得到。基于身份的密码系统的主要好处是可以减少证书存储和管理开销。 1996年Mambo、Usuda和Okamoto中给出了解决上述事例的方法,首先提出了代理签名的概念,并提出了一个简单的代理签名方案。代理签名是指原始签名者可以将其签名权力授权给代理签名者,然后代理签名者就可以代表原始签名者进行签名,当验证者验证一个代理签名时,需要同时验证签名和原始签名者的授权协议。然而,代理签名者代理原始签名者行使代理权时,其签名可以被任何第三方进行验证。在某些情况下,并不希望任何人都能验证代理签名,而只有指定的验证人才能验证代理签名。这在实际中是需要的,如电子商务中的电子投标,电子投票等。 文献介绍了其他的几种代理签名方案,但是这些方案在安全性方面都不同的有缺陷。1996年,Jakobsson等介绍了一个新的原语——指定验证者签名,指定验证者签名是指一个原始签名者可以使指定验证者相信他的申明是正确的,实现了只有指定验证者才能验证原始签名者的签名的特性,原因是指定验证者可以生成与原始签名者不可区分的签名,该签名虽然外人不能

相关文档