文档库 最新最全的文档下载
当前位置:文档库 › 诺贝尔物理学奖2005,2012

诺贝尔物理学奖2005,2012

诺贝尔物理学奖2005,2012
诺贝尔物理学奖2005,2012

2005年诺贝尔物理学奖:精密频率测量技术

(2012-10-15 21:33:55)

转载▼

标签:

分类:科学技术

教育

频率一直是电磁波最重要的参数之一,电磁波在根据频率由小到大分为了无线电波,微波,红外线,可见光,紫外线,X射线和г射线。每一个频段的电磁波的研究都对人类科技发展起着至关重要的作用,电磁波的频率所对应的时间也成为了人类计量的最新标准。

人类对电磁波频率的精密测量源自20世纪50年代的微波频率测量,那个时候随着原子能级结构的深入研究,以及不久后微波激射器(Maser)的出现,人们能够获得频率分布很窄的微波辐射。美国物理学家拉姆齐(N. F. Ramsey)在1950年提出分离了振荡场方法,解决了原子钟设计里的关键问题,创制了铯原子钟。1960年他又提出并建造了氢微波激射器,也就是氢原子钟,使计时的不确定度下降到10-12。拉姆齐因此获得了1989年诺贝尔物理学奖。

20世纪60年代激光器横空出世,人类又可以获得频率分布很窄的可见光辐射(单色光),随后美国的霍尔(John L. Hall)和德国的汉施(T. W. Hansch)各自发明了“光梳”技术,从而可以精确测量激光频率。二人也因此获得2005年诺贝尔物理学奖。

两次诺贝尔奖,三位伟大的实验物理学家,电磁波频率精密测量成了实验物理学一个重要的组成部分。它决定着人类能够测量的时间与空间精度,决定着人类科技的发展水平。

一、拉姆齐与微波频率精确测量

拉姆齐的导师拉比(I. I. Rabi,1944年诺贝尔物理学奖)用量子力学的含时薛定谔方程计算二能级与光场相互作用,得到了二能

级原子跃迁的动力学过程,在频谱上显示为拉比振荡。取拉比频率与相互作用时间乘积为π,拉比振荡谱线的峰值便和光场频率精密对应。

原子与微波谐振腔相互作用时,谐振腔的尺度和形状受微波的频率、场分布均匀性的要求限制,而且原子的速度又无法任意控制,这就决定了不可能通过提高微波与原子的作用时间降低谱线宽度。于是拉姆齐受到麦克尔逊干涉仪的启发,发明了了分离振荡场的方法,就是让原子与微波腔作用两次,作用的时间都是t,两次时间间隔为T,然后探测跃迁信号。

原子经过与微波腔两次作用,拉比振荡信号相互干涉,产生拍频信号,即拉姆齐谱线。当T>>t时,谱线中心峰值宽度由T确定,T 越大,峰值宽度越窄,测得的频率精度也就越高。

拉姆齐的分离振荡场测量方法无疑是人类测量技术的一个重要里程碑,这项技术直接导致了原子钟的诞生,给定了人类新的时间标准:一秒钟为铯Cs原子精细能级跃迁频率的倒数。铯原子微波频率标准成为了未来可见光波段频率测量技术的基准。

二、光学频率梳技术与可见光频率测量

可见光频率测量方法最早是从铯Cs 原子精细能级跃迁频率开始(微a波),经过一系列保持相位锁定的微波谐波振荡器和特殊激光器,将被测光学频率与Cs 原子微波频率标准连接起来,从而实现对光学频率的绝对测量。然而这种测量方法由于激光器太多,激光间的相互转化积累误差太大,实用性极低,测量精度非常差。

随着基于锁模飞秒脉冲激光的光频梳技术的出现,光学频率的直接测量成为了现实。光学频率梳技术即在时域内锁模飞秒脉冲激光器输出的一系列等间隔的超短脉冲,脉冲宽度为几到几十飞秒,重复频率为几百MHz到几GHz。在频率域内其光谱是由一系列规则等间隔光

谱线组成的光梳,每个梳齿之间的间隔精确的等于飞秒激光器的重复频率。光梳技术实现了铯原子的微波频标与光学频率的直接连接。一台锁模飞秒脉冲激光器就实现了从近红外到可见光区域的所有光学频率的直接绝对测量。用铯Cs原子的微波频率与临近的光梳齿的频率拍频,从而求得光梳齿的频率基准,利用该基准加上若干个光梳齿间频率间隔,求出与待测光频率相邻的光梳齿的频率,再用两者拍频信号结果反向求出待测光频率,从而测得和Cs原子的微波频率几乎同样精度的激光频率。

霍尔和汉施二人因为在这个领域的开创性贡献二获得了2005年诺贝尔物理学奖。可以肯定的是,人类对电磁波频率精确测量的路还远远没有走完,更高频率(紫外线、X射线等等)电磁波的精确频率将在人类认识微观世界中发挥不可替代的作用,人类的计量标准也将一次次不断被刷新,一次次建立更为“高,精,尖”的科技领域。

2012诺贝尔物理学奖:首次窥见单个活粒子

(2012-10-15 21:26:55)

转载▼

标签:

分类:科学技术

杂谈

2012年10月9日下午5时45分,在瑞典首都斯德哥尔摩的瑞典皇家科学院,2012年诺贝尔物理学奖的获奖者名单揭晓。获奖者为法国科学家沙吉?哈罗什(Serge Haroche)与美国科学家大卫?维兰德(David J. Wineland),获奖理由是“突破性的试验方法使得测量和操纵单个量子系统成为可能”。

我们所看到的宏观世界,来自于亿万个粒子的相互作用,但深入到微观世界,粒子所呈现的却更多是量子特性。而遗憾的是,我们一直以来只能从理论上预测粒子的量子行为,从它们的外在表现来验证理论的正确性,从来没有真实的看到单个粒子的状态。著名的“薛定谔的

猫”理论,就是说的在密闭盒子中的猫,由于量子状态的不确定性,人们永远不知道它是死是活。

能够把单个粒子从外部世界分离出来,就是在实验室中创造出这样一只猫,就可以去人为改变它的状态。在迈向这一目标的道路上,已经有许多科学家获得了诺贝尔奖,比如激光冷却原子原理提出者汉尼希(T.Hanesch),中性原子磁阱囚禁的开拓者普里查德(D.Prichard),实现激光冷却原子的朱棣文。

而在今年获得了诺贝尔奖的两人则最终实现了单个粒子操纵和测量。诺贝尔奖委员会在颁奖公告中说,哈罗什和维兰德开启了一个量子物理新时代的大门,科学家由此可以在不对单个量子产生破坏的情况下对其进行测量和操作。他们两人创造的操作脆弱量子系统的天才实验方法,为将来创造超快的量子计算机迈出了第一步。他们的方法还让制造超级精密的时钟成为可能,其精确程度将比现在的铯原子钟高出上百倍。

从理论到现实

身处大西洋两岸的这两位科学家,虽然他们针对的是不同的对象、使用的是不同的方法,但他们实现的是同一个梦想。中科院高能所研究员孙昌璞告诉财新记者,他们当时的目的是想了解单个粒子的状态,因为我们宏观看到的是大量粒子组成的,统计平均后,单个粒子的特性没有了,如果能做到,靠现有的商用设备是做不到的,必须寻找新的方法,制造新的设备。

其中,哈罗什带领他的团队利用微米量级的高反射光学微腔实现了单个原子辐射光子的操作,维兰德的团队利用可结合激光冷却技术,在离子阱中实现的单个离子的囚禁。

孙昌璞说,他们实现了两种不同类型的单个量子的测量和操控。其中维兰德的边带冷却技术,已经被广泛应用,不仅可以利用到冷却离子,还可以实现中型原子、纳米振子的冷却。“冷却的目的让粒子接近基态,要研究单个粒子的量子状态,需要看到能级分立结构的存在,接近基态的时候,才能体现量子的状态。从这个角度上看,维兰德更值得得奖。”

山西大学量子光学与光量子器件国家重点实验室张天才教授告诉财新记者,虽然许多人都在努力实现单个粒子的囚禁,哈罗什和维兰德他们最先做,也做的最成功,而且到现在还在做,他们在这一过程中发展的测量、操控技术,帮助了后来的很多人。诺贝尔奖是选择最有代表性的来颁奖。

他说,现在大家都在参照他们的方法,研究物质和场相互作用的规律的话,要在单个粒子研究,过去很多模型都是基于理想的,微观世界的量子现象,他们就是开拓性的把原子、粒子从外部环境中分离出来,把以前停留着理论上的抽象的东西真正实现。

目前,离子阱已被广泛应用于科学和技术研究的各个领域。尤其是近几十年来,人们以离子阱为工具,把激光冷却技术应用于离子阱,为制造新材料、观察新现象、获得新的知识,提供了广泛的实验基础。

量子计算机前景

和实现精密的测量、制造更精确的原子钟相比,诺贝尔奖看好这两位科学家的原因,是他们开启了量子计算机时代的大门。

目前,在理论上将比现在的计算机快成千上万倍的量子计算机,是各国科学家竭力攻克的高峰,但这不仅涉及技术问题,也涉及许多基础物理问题。

量子计算机与经典计算机最大的区别,就是它的每个数据用不同的粒子的量子状态表示,而且根据量子力学的原理,粒子的量子状态并不确定,而是不同量子状态的叠加。

对于经典计算机来说,电位的高低决定了数据是0还是1,而对于量子计算机来说,不同量子状态的叠加决定了这个数据是0和1的叠加。

所以量子计算没有一个确定的输出,也没有一个确切的结果。但是由于这种叠加状态,量子计算机可以同时进行很多条路径的计算,然后给出一个大致的结果,而速度上比经典计算机快的多。

量子计算机需要克服的最大障碍,是让宏观世界的我们如果去操作微观世界的粒子。从理论上说,只有尺度到了10的负10次方米以下,粒子才能明显出现量子特性。当然最理想的,是能够操作单个原子。

目前可以作为量子进行研究的对象,包括原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。描述量子状态的方式,可以是粒子自旋的方向,能级的高低。现在从理论上量子计算机有几十种体系,从实验上也有十几种实现方法。

量子计算机还有几大障碍难以跨越,一是如何让粒子长时间保持量子状态,即保持相干性。二是如何让尽量多的粒子实现共同计算,即实现量子纠缠。

正是近年来在量子计算机领域突飞猛进的进展,让诺贝尔奖这次对于哈罗什和维兰德上世纪80-90年代的工作进行表彰,他们开创的技术,不仅是对于应用,由于可以看到单个粒子的量子状态,也对基本问题的研究有莫大的帮助。实际上,也正是维兰德的团队在1995年首先利用离子阱技术实现了量子逻辑操作,开启了量子计算机的大门。

不过,孙昌璞表示,他们当时的技术,还不能实现固态量子计算,因此只能演示量子计算机的原理,不能当作真正的量子计算机,真正的要做固态,要在半导体、超导材料的量子操作上有所突破。

【历届诺贝尔奖得主(五)】1956年物理学奖得主

物理学奖 美国,布拉顿(WalterHouserBrattain1902-1987),研究半导体、发明晶体管 获奖理由:因对半导体的研究和发现了晶体管效应,与肖克利和巴丁分享了1956年度的诺贝尔物理学奖金。 简历 布拉顿(Brattain,WalterHouser)美国物理学家。1902年2月10日生于中国(父母是美国人)厦门。布拉顿的少年时期是在牧场上度过的。他1924年毕业于惠特曼学院(在华盛顿州沃拉沃拉),1929年在明尼苏达大学取得博士学位。同年,他进入贝尔电话实验室,成为一名物理学研究人员。第二次世界大战期间,他在那里从事潜艇磁探测的工作。他同肖克利和巴丁共同获得1956年诺贝尔物理学奖。1967年,他接受惠特曼学院的聘请,担任了自己母校的教授。 美国,巴丁(JohnBardeen1908-1991),研究半导体、发明晶体管 生平 1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。1928年获威斯康星大学理学士学位,1929年获硕士学位。1936年获普林斯顿大学博士学位。1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。1935-1938年任哈佛大学研究员。1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。 科研方向与获奖情况 1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。 晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。 巴丁发明了晶体管.1956年和肖拉克一起获得了诺贝尔物理学奖.1972年巴丁,库柏,施里弗一起获得了诺贝尔物理学奖. 巴丁于1991年1月30日上午8时45分去世 美国,肖克利(WilliamBradfordShockley1910-1989),研究半导体、发明晶体管 发明创造 获奖理由:因对半导体的研究和发现了晶体管效应,与巴丁和布拉顿分享了1956年度

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

1998年诺贝尔物理学奖

·1998年诺贝尔物理学奖——分数量子霍耳效应的发现 1998年诺贝尔物理学奖授予美国加州斯坦福大学的劳克林(Robert https://www.wendangku.net/doc/0512999933.html,ughlin,195O—),美国纽约哥伦比亚大学与新泽西州贝尔实验室的施特默(Horst L.St rmer,1949—)和美国新泽西州普林斯顿大学电气工程系的崔琦(Daniel C.Tsui,1939—),以表彰他们发现了一种具有分数电荷激发状态的新型量子流体,这种状态起因于所谓的分数量子霍耳效应。 量子流体早在研究极低温状态下的液氦和超导体时就已有所了解。在这些领域里,已经有好几位物理学家获得过诺贝尔物理学奖。例如,卡末林-昂内斯由于液氦的研究和超导电性的发现获1913年诺贝尔物理学奖;朗道由于液氦和超流理论获1962年诺贝尔物理学奖;巴丁、库珀和施里弗由于提出超导电性的BCS 理论获1972年诺贝尔物理学奖;卡皮查由于发现氦的超流动性获1978年诺贝尔物理学奖;柏诺兹和缪勒由于发现高温超导获1987年诺贝尔物理学奖;戴维·李、奥谢罗夫和R.C.里查森则因发现氦-3的超流动性获1996年诺贝尔物理学奖。这么多的物理学家受到如此殊荣,说明凝聚态物理学在20世纪有极大的发展,而低温和超导在这一领域内又具有特殊重要的地位。分数量子霍耳效应正是继高温超导之后凝聚态物理学又一项崭新课题。 分数量子霍耳效应是继霍耳效应和量子霍耳效应①的发现之后发现的又一项有重要意义的凝聚态物质中的宏观量子效应。冯·克利青由于在1980年发现了量子霍耳效应而于1985年获得诺贝尔物理学奖。图98-1表示冯·克利青所得霍耳电阻随磁场变化的台阶形曲线。台阶高度等于物理常数h/e2除以整数i。e 与h是自然的基本常数——e是电子的基本电荷,h是普朗克常数。h/e2值大约 为25kΩ。图中给出了i=2,3,4,5,6,8,10的各层平台。下面带峰的曲线表示欧姆电阻,在每个平台处趋于消失。量子数i也可用填充因子f 代替,填 充因子f由电子密度和磁通密度确定,可以定义为电子数N与磁通量子数Nφ(=φ/φ0)之比,即f=N/Nφ,其中φ为通过某一截面的磁通,φ0为磁通量子, φ0=h/e=4.1×10-15Vs.当f是整数时,电子完全填充相应数量的简并能级(朗 道能级),这种情况的量子霍耳效应叫做整数量子霍耳效应,以与分数量子霍耳效应相区别。

1977年诺贝尔物理学奖——电子结构理论

1977年诺贝尔物理学奖——电子结构理论1977年诺贝尔物理学奖授予美国新泽西州缪勒山(Murray Hill)贝尔实验室 的P.W.安德森(Philip W.Anderson,1923—)、英国剑桥大学的莫特(Nevill Mott,1905—1996)和美国哈佛大学的范弗莱克(John Van Vleck,1899—1980),以表彰他们对磁性和无序系统的电子结构所作的基础理论研究。 P.W.安德森1923年12月13日出生于美国依利诺斯州的印第安纳波利斯(Indianapolis)。父亲是依利诺斯大学的植物学教授,在他父母的亲友中有许多物理学家,他们激发了P.W.安德森对物理的爱好。中学毕业后,进入哈佛大学,主修数学。可是不久第二次世界大战爆发。P.W.安德森在此期间应召入伍,被分配去学习电子物理,不久派遣到海军研究实验室建造天线。这项工作使他对西方电器公司和贝尔实验室有所了解。战争结束后,P.W.安德森返回哈佛大学,就下决心向物理学家学习,做一名物理学家。在这些物理学家中,以电子结构理论著称的磁学专家范弗莱克是他最敬佩的物理学家之一。他和范弗莱克曾经一起在军事部门工作过,范弗莱克是哈佛大学的著名教授,正是范弗莱克的指引,P.W.安德森后来决心把自己的研究方向定位在固体的电子结构和现代磁学,在范弗莱克的指导下研究了微波和红外光谱的压力增宽。他为了用分子间相互作用解释这些谱线在高密度下增宽的现象,借助于洛伦兹等人的理论发展了一种更普遍的方法,运用于从微波到红外和可见光的光谱学。他还根据已知的分子作用计算出了初步的定量结果。 后来,P.W.安德森的注意力聚焦于绝缘的磁性材料,诸如铁淦氧体和反磁性的氧化物,也就是要研究是什么因素导致原子磁矩和自旋以及人们观测到的那些特殊排列。他在克拉默斯(H.A.Kramers)的“超交换”这一旧概念的基础上,探讨了相互作用的机制。他对相互作用所作的假设可解释自旋花样和居里-奈尔点。 在这项工作之后,P.W.安德森研究了所谓的近藤(Kondo)效应,这个效应涉及磁杂质对极低能自由电子的畸形散射,并对低温状态的情况给出了初步定性解答。这是重正化技术对固体和统计力学问题最早的应用之一。 50年代初,科学家开始研究不同领域的磁共振谱学中的谱线形状和宽度问题。布隆姆贝根、珀塞尔和庞德(Pound)对核共振、范弗莱克对电子共振提出了许多有用的概念,但从观测到的谱线进一步理解原子运动和相互作用,尚需有定量的数学表述。从这一观点看,铁磁共振是一个空白。P.W.安德森对此提供了一种数学上的方法,来处理“交换变窄”和“运动变窄”等问题,并把这些问题与原子运动和交换联系在一起。他还对相互作用和机制进行了许多研究。在铁磁共振方面,他和苏尔(H.Suhl)等人合作,首先提出了杂质增宽和自旋波激发等概念,使这个领域得以澄清。当解释超导电性的BCS理论在1957年刚刚提出时,基本原理问题还存在。P.W.安德森是最早解释这些问题并将巴丁、库珀和施里弗的方法普遍化中的一位。

历届诺贝尔物理学奖

历届诺贝尔物理学奖 1901年威尔姆·康拉德·伦琴(德国人)发现X 射线 1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响 1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究 1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素 1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究 1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究 1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律 1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律 1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究 1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象 1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析 1916年未颁奖 1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征 1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献 1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象 1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性

1956年诺贝尔物理学奖——晶体管的发明(可编辑修改word版)

1956 年诺贝尔物理学奖——晶体管的发明 1956 年诺贝尔物理学奖授予美国加利福尼亚州景山(MountainView)贝克曼仪器公司半导体实验室的肖克利(William Shockley,1910—1989)、美国伊利诺斯州乌尔班那伊利诺斯大学的巴丁(JohnBardeen,1908—1991)和美国纽约州缪勒海尔(Murray Hill)贝尔电话实验室的布拉坦(Walter Brattain,1902—1987),以表彰他们对半导体的研究和晶体管效应的发现。 晶体管的发明是20 世纪中叶科学技术领域有划时代意义的一件大事。由于晶体管比电子管有体积小、耗电省、寿命长、易固化等优点,它的诞生使电子学发生了根本性的变革,它拨快了自动化和信息化的步伐,从而对人类社会的经济和文化产生了不可估量的影响。 应该指出,晶体管效应的发现是科学家长期探索的结晶,更是基础研究引向应用开发的必然成果。半导体的研究可以追溯到19 世纪,例如,1833 年法拉第曾经观察过某些化合物(例如硫化银)电阻具有负温度系数。这是半导体效应的先声。1874 年,布劳恩(F.Braun)注意到金属和硫化物接触时有整流特性,而1876 年亚当斯(W.G.Adams)等人发现光生电动势。1883 年,弗利兹(C.E.Fritts)制成第一个实用的硒整流器。无线电报出现后,矿石作为检波器被广泛应用,主要成分是硫化铜,后来用上了硅和锗。氧化铜整流器和硒光电池的商品化,要求科学家深入研究有关现象的实质和原理。 1926 年,索末菲用费米-狄拉克统计解释了金属中电子的行为。他的学生布洛赫(F.Bloch)研究晶体点阵对电子运动的影响,提出在周期性势场中电子占据的能级可能形成能带。1931 年A.H.威耳逊(A.H.Wilson)进一步对固体提出量子

1905年诺贝尔物理学奖——阴极射线的研究

1905年诺贝尔物理学奖——阴极射线的研究1905年诺贝尔物理学奖授予德国基尔大学的勒纳德(Philipp Lenard,1862—1947),表彰他在阴极射线方面所作的工作。 1888年,当勒纳德于海德堡大学在昆开(Quincke)的指导下工作时,就在阴极射线方面作了最初的研究。他研究了赫兹关于这种射线与紫外线相似的观点。为此他做了一个实验,观察阴极射线是否能象紫外线一样通过放电管壁的石英窗。他发现阴极射线不能穿过。但在1892年,他在波恩大学担任赫兹的助手时,赫兹让他看了自己的一项新发现:将一块被铝箔包着的含铀玻璃片放入放电管中,当阴极射线轰击这块铝箔时,铝箔下面发出了光。当时赫兹以为可以用一片铝箔将空间隔开,一边是按普通方法产生的阴极射线;而在另一边则是纯粹状态下的阴极射线。这个实验以前从未做过。赫兹太忙了,没有时间做这个实验,就让勒纳德做,就这样,勒纳德作出了“勒纳德窗”的重大发现。 勒纳德用不同厚度的铝箔做了大量实验后,最后在1894年发表了他的重大发现。这个发现就是用来封闭放电管的石英板可用一块铝箔代替,铝箔的厚度恰好可使管内保持真空,但又要薄到恰好能让阴极射线通过。这样,不但能研究阴极射线,而且也能研究阴极射线在放电管外引起的荧光现象。勒纳德从当时的实验得出结论,阴极射线在空气中的传播距离大概是分米的数量级,而在真空中则可以传播数米而无衰减。虽然勒纳德开始时是仿照赫兹的说法,认为阴极射线是在以太中传播的某种波,但由于得知佩兰(J.Perrin)在1895年的研究、J.J.汤姆孙和维恩(W.Wien)在1897年分别所作的研究,他后来放弃了这个观点。上述三位科学家证明了阴极射线的微粒性。J.J.汤姆孙最后作出了阴极射线是由带负电的电子组成的结论,这虽然与勒纳德的主张不合,但勒纳德的铝箔窗实验仍不失为推动J.J.汤姆孙发现电子的重要前提。 人们公认,勒纳德对阴极射线的研究有重要贡献,但他却在这项研究中不断和别的科学家发生冲突。伦琴是用勒纳德设计的放电管发现X射线的。对此,勒纳德有自己的看法,他坚持认为X射线只不过是他研究过的放电管外面的以太波的特殊情形。在勒纳德看来,X射线乃是一种特别“硬”的阴极射线,其速度接近光速。因此勒纳德对X射线发现的优先权提出了要求,他认为X射线的发现应有他的一份功劳。 开始勒纳德对X射线的解释很有市场。但到1897年以后,勒纳德的观点受到了冲击。1896年,勒纳德在英国科学促进会上以特邀代表身分发言时,他宣称,阴极射线和X射线都是以太波,X射线实质上就是在磁场中不被偏转的阴极射线,比普通的阴极射线硬,因此具有一定的穿透力。对此J.J. 汤姆孙指出,勒纳德对阴极射线本质的解释与佩兰的实验结果相矛盾。佩兰的实验证明了,阴极射线带有负电荷,与X射线有本质的不同。但勒纳德认为,佩兰的结论缺乏说服力,因为阴极射线的任何有意义的实验必须在高真空条件下进行。就是在这一争论的背景下,J.J.汤姆孙作出了重要的一些实验,成功地使阴极射线在静电

【历届诺贝尔奖得主(八)】1983年物理学奖

1983年12月10日第八十三届诺贝尔奖颁发。 物理学奖 美国科学家昌德拉塞卡因对恒星结构方面的杰出贡献、美国科学家福勒因与元素有关的核电应方面的重要实验和理论而共同获得诺贝尔物理学奖。 苏布拉马尼扬·钱德拉塞卡是一位印度裔美国籍物理学家和天体物理学家。钱德拉塞卡在1983年因在星体结构和进化的研究而与另一位美国体物理学家威廉·艾尔弗雷德·福勒共同获诺贝尔物理学奖。他也是另一个获诺贝尔奖的物理学家拉曼的亲戚。钱德拉塞卡从1937年开始在芝加哥大学任职,直到1995年去世为止。他在1953年成为美国的公民。钱德拉塞卡兴趣广泛,年轻时曾学习过德语,并读遍自莎士比亚到托马斯·哈代时代的各种文学作品。 人物简介 苏布拉马尼扬·钱德拉塞卡(SubrahmanyanChandrasekhar,1910年10月19日 —1995年8月15日),在恒星内部结构理论、恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学和相对论天体物理学等方面都有重要贡献。1983年因在星体结构和进化的研究而获诺贝尔物理学奖。他是另一个获诺贝尔奖的物理学家拉曼的亲戚。 他一生中写了约四百篇论文和诸多书籍。他兴趣广泛,年青时曾学习德语,读遍自莎士比亚到托马斯·哈代的文学作品。 1937年起钱德拉塞卡在芝加哥大学工作,1953年取得美国国籍。晚年他曾研读牛顿的《自然哲学的数学原理》,并写了《Newton'sPrincipiafortheCommonReader》。此书出版后不久他便逝世了。 他算过白矮星的最高质量,即钱德拉塞卡极限。所谓“钱德拉塞卡极限”是指一颗白矮星能拥有的最大质量,任何超过这一质量的恒星将以中子星或黑洞的形式结束它们的命运。 人物生平 钱德拉塞卡于1910年出生在英属印度旁遮普地区拉合尔(现在的巴基斯坦),在家中排名第3,父亲为印度会计暨审计部门的高阶官员。 钱德拉塞卡的父亲也是一位技术娴熟的卡纳蒂克音乐(Carnaticmusic)演奏者与一些音乐学著作的作者。他的母亲则是一位知识份子,并曾将亨利克·易卜生的剧作《玩偶之家》翻译成泰米尔语。 钱德拉塞卡起初在家中学习,后来则进入清奈的高中就读(1922年至1925年间)。他在1925年至1930年进入了清奈的院长学院(PresidencyCollege),并获得学士学位。钱德拉塞卡在1930年7月获得印度政府的奖学金,于是前往英国剑桥大学深造。他后来进入剑桥三一学院就读,并成为劳夫·哈沃德·福勒(RalphHowardFowler)的学生。在保罗·狄拉克的建议下,钱德拉塞卡花费一年的时间在哥本哈根进行研究,并且认识了尼尔斯·玻尔。 钱德拉塞卡在1933年夏天获得剑桥大学的博士学位,并且在当年十月成为三一学院的研究员(1933年-1937年),他在这段时期认识了天文学家亚瑟·爱丁顿与爱德华·亚瑟·米尔恩(EdwardArthurMilne)。 钱德拉塞卡在1936年与LalithaDoraiswamy结婚。 学术生涯 苏布拉马尼扬·钱德拉塞卡,1930年毕业于印度马德拉斯大学,1933年获得英国剑桥大学三一学院博士学位。 1930~1934年在英国剑桥大学三一学院学习理论物理。

1945年诺贝尔物理学奖

1945年诺贝尔物理学奖 1945年物理学奖得主,是奥地利的沃尔夫冈·泡利(Wolfgang E.Pauli),获奖理由是他提出了泡利不相容原理。 沃尔夫冈·厄恩斯特·泡利(Wolfgang Ernst Pauli,1900—1958),出生于奥地利维也纳。父亲是维也纳大学的生化学家,母亲是一名作家。他小他受到良好的教育,中学阶段就自学了大学物理和数学分析教程,被当作物理和数学神童。中学毕业后,泡利带着父亲的介绍信去慕尼黑找著名的物理学家索茉菲学习理论物理。泡利申请不学大学课程而直接读研究生,并要求参加高年级研究生的讨论班。这让索茉菲惊讶不已,觉得这个年轻人有些不知天高地厚。不久后,索茉菲发现在讨论班上,泡利发言最快,观点鲜明,才肯定了他的才华。当时,德国准备出版一本百科全书,其中有关相对论的章节,请索茉菲代为起草。索茉菲自己没有动笔,却把这个任务交给了泡利。泡利以惊人的速度,很快写出了一份250页的有关相对论的综述文章,再次让索茉菲惊叹不已。这篇文章写就于1921年,即使在今天,这篇文章和外尔(weyl)所著的《空间、时间和物质》,仍然被公认为评述相对论的经典著作。同年,在索茉菲的推荐下,泡利来到哥丁根大学做玻恩的助手。这年秋天,泡利与师弟海森堡一起,随导师索茉菲在哥丁根参加了一个会议。在这次会议上,泡利遇到了著名的理论物理学家玻尔。玻尔很快发现这两个年轻人非同一般,马上邀请他们去哥本哈根理论物理研究所工作。从此,泡利、海森堡与玻尔结下了深厚的友谊。泡利不 1

是一个好的演讲者,或者说他对演讲和讲课不感兴起,讲解时经常自言自语,在黑板上写的字又小又乱。他还有一个癖好,就是在讲课时也在思考自己的课题,因而影响到教学效果。泡利在与人争论学术问题时,往往言词犀利,不留情面,让人有点难以接受。传说有一次在讨论会上,玻尔发言时被泡利突然打断:“住口,别冒傻气!”玻尔了解泡利的脾气,并未生气,而是温和地说:“但是泡利,你听我说完。”泡利立刻回口:“不,我一个字也不想听。”1928年,泡利转到瑞士苏黎世联邦工学院任物理学教授,一直工作到退休。1956年,杨振宁和李政道为解释τ-θ之谜而提出了在弱相互作用中宇称不守恒的理论,泡利曾极力反对,直到该理论被吴健雄证实。1958年,泡利在瑞士苏黎世去世,享年58岁。 1922年,泡利应玻尔之邀到哥本哈根工作,致力于研究不规则的塞曼效应。当时玻尔、索茉菲和兰德都认为,尤其是在碱金属中,价电子所围绕运动的原子核心具有角动量,造成了原子的不规则磁性。泡利持不同意见,他认为,不规则磁性与核心无关,是由电子的属性引起的。根据薛定谔描述量子规律的波动方程,已知的量子数有三个:n、l和m。主量子数n给出电子到达原子核的近似距离,这是极可能发现电子的地点。n值的范围从1到无穷大,对于处于基态的原子,n不超过7。第二量子数l给出电子的角动量值,这个数值一般与电子所占区域的形状有关,对于一给定电子,l值总是低于n值。第三量子数m叫作磁性量子数,它给出电子的角动量在磁场中的定向,其值范围从负l到正l。因此,对于l的第一个值都有m的容许值2l+1。 2

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

近五年诺贝尔物理学奖简介

2008年至2012年诺贝尔物理学奖获得者及其主要贡献简介 获奖年度:2012年 获奖者:沙吉·哈罗彻(Serge Haroche)大卫·温兰德(David J. Wineland) 获奖者简介:沙吉·哈罗彻1944年生于摩洛哥的卡萨布兰卡,现为法 国籍。他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。 大卫·温兰德1944年生于美国密尔沃基,1970年在哈佛大学获得博士学位,现任职于美国国家标准与技术研究所和科罗拉多大学博尔德分校。 获奖原因 瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。 塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。 在不破坏单个量子粒子的前提下实现对其直接观测,两位获奖者以这样的方式为量子物理学实验新纪元开辟了一扇大门。对于单个光子或物质粒子来说,经典物理学定律已不再适用,量子物理学开始“接手”。但从环境中分离出单个粒子并非易事,而且一旦粒子融入外在世界,其神秘的量子性质便会消失。因此,许多通过量子物理学推测出来的现象看似荒诞,也不能被直接观测到,研究人员也只能进行一些猜想实验,试图从原理上证明这些荒诞的现象。 通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。这套新方法允许他们检验、控制并计算粒子。 两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。极端精准的时钟在他们研究的推动下应运而生,有望成为未来新型时间标准的基础,而其精准度超越现代铯时钟百倍以上。

1979年诺贝尔物理学奖——弱电统一理论

1979年诺贝尔物理学奖——弱电统一理论1979年诺贝尔物理学奖授予美国马萨诸塞州坎伯利基哈佛大学莱曼实验室 的格拉肖(Sheldon L.Glashow,1932—)、英国伦敦帝国科技学院的巴基斯坦物理学家萨拉姆(Abdus Salam,1926—1996)和美国马萨诸塞州坎伯利基哈佛大学的温伯格(Steven Weinberg,1933—),以表彰他们在发展基本粒子之间的弱电相互作用理论的贡献,特别是预言了弱中性流①。 有人说,相对论和量子力学是20世纪物理学最重要的成果,而把电磁力和弱力统一在一起的弱电相互作用理论则是20世纪的最高点,这无疑是恰当的评价。 格拉肖1932年12月5日出生于美国纽约。父亲为了躲避沙俄对犹太人的迫害,年轻时从俄国移居到美国,当了一名管钳工。格拉肖有两个哥哥,比他大十几岁。父母和哥哥都很喜欢他,给他创造了较好的条件,让他学习科学。他在家里的地下室有自己的化学实验室,从小就对科学有强烈的兴趣。1947年格拉肖进纽约的布朗克斯理科中学,温伯格是他的同窗好友。从这时起就开始了他们之间的共同追求。格拉肖酷爱读书,并组织了一个科学幻想俱乐部,出版了中学科学幻想杂志。1950年格拉肖和温伯格一起进入康奈尔大学。格拉肖对这里的本科教学不大满意,因为有名的教授都去给研究生开课,于是就在三四年级时选修了经典电磁理论、量子场论之类的研究生课程。他还经常参加学术报告会。和中学时期一样,他喜欢和同学们讨论问题。1954年大学毕业,格拉肖来到哈佛大学,选择了著名物理学家施温格当自己的导师。在施温格的指导下,格拉肖选取了“基本粒子衰变中的矢量介子”作为自己的博士论文题目。1958年获博士学位。后得到一笔美国科学基金会资助来到丹麦的理论物理研究所。在这里做了两年的研究工作,就在这段时期,他发现了关于弱电统一理论的SU(2)×U(1)模型。 这项重要工作实际上在做博士论文时就已有准备,他在论文附录中就提到了弱电统一的思想,而这一思想正是他的导师施温格首先倡导的。 1956年施温格就已开始考虑弱电统一理论。这件事的由来还应追溯到李政道和杨振宁对弱相互作用中宇称不守恒的发现。这一发现促使人们认识到弱相互作用是普适的V-A型理论,并使人们注意到弱相互作用和电磁相互作用之间有某种共同点,从而进一步考虑两者之间的统一性。施温格在1957年发表的论文中提出弱相互作用是由光子和两个矢量玻色子传递的,这三种粒子应该组成三重态。这个理论虽然因为本身的缺陷:是张量型的而不是V-A型的,又没有考虑到弱中性流,因此没有成功。 1958年格拉肖把他的博士论文附录扩展为以“矢量介子相互作用的可重正性”为题的论文,他主张弱电统一理论应以杨振宁和米尔斯(https://www.wendangku.net/doc/0512999933.html,ls)的规范理论为基础。在这篇论文中他还试图证明杨-米尔斯理论是可重正的。 这一年格拉肖到英国就他自己对弱电统一理论的看法作了一次学术报告,听

【历届诺贝尔奖得主】1905年生理学或医学奖

生理学获或医学奖 德国,科赫(RobertKoch1843-1910),对细菌学的发展。 科赫,德国医生和细菌学家,世界病原细菌学的奠基人和开拓者。对医学事业所作出开拓性贡献,也使科赫成为在世界医学领域中令德国人骄傲无比的泰斗巨匠。 基本资料 中文名称:罗伯特·科赫外文名:RobertKoch 生卒:1843年生于德国克劳斯特尔,1910年卒于德国巴登 洲:欧洲 国别:德国 省:哈茨,克劳斯特尔城 教育背景:哥廷根大学 重要贡献:受此证明了一种特定的微生物是特定疾病的病原,阐明了特定细菌会引起特定的疾病。 简介 1905年,伟大的德国医学家、大名鼎鼎的罗伯特·科赫以举世瞩目的开拓性成绩,问心无愧地摘走了诺贝尔生理学及医学奖。科赫的获奖,与另一位德国人伦琴获得首届诺贝尔物理学奖的时间仅相隔4年。 众所周知,传染病是人类健康的大敌。从古至今,鼠疫、伤寒、霍乱、肺结核等许多可怕的病魔夺去了人类无数的生命。人类要战胜这些凶恶的疾病,首先要弄清楚致病的原因。而第一个发现传染病是由病原细菌感染造成的人就是罗伯特·科赫,他堪称是世界病原细菌学的奠基人和开拓者。 罗伯特·科赫1843年12月11日出生于德国哈茨附近的克劳斯特尔城,是一名矿工的儿子,从小热爱生物学。在研究炭疽病的过程中,他第一次向世人证明了一种特定的微生物是特定疾病的病源。他从小就表现出开拓者的远大志向。有一天,科赫的父母在清点他们的13个子女时,发现不见了儿子科赫。后来,焦急万分的母亲终于在一个小池塘边找到了她的儿子。这时,小科赫正蹲在池塘边聚精会神地看着一只漂浮的小纸船。当母亲不解地问他在干什么时,小科赫回答道:“妈妈,我要当一名水手,到大海去远航……” 在科赫7岁那年,克劳斯特尔城的一位牧师因病去世,小科赫向前往哀悼的母亲提出了一连串的问题:“牧师得了什么病?”“难道绝症就治不好吗?”母亲无法回答小科赫的提问。这件事在年幼的科赫心中留下了深刻的印象,并使他立志将来献身于征服病魔的医学事业,治好母亲认为是无法医治的绝症。正是凭着这股开拓志向,科赫在病原细菌学方面作出了非凡的贡献。以下一组有关罗伯特·科赫的统计资料已足以说明一切问题: 罗伯特·科赫纪念邮票 世界上第一次发明了细菌照相法;世界上第一次发现了炭疽 罗伯特·科赫纪念邮票热的病原细 菌——炭疽杆菌; 世界上第一次证明了一种特定的微生物引起一种特定疾病的原因; 世界上第一次分离出伤寒杆菌; 世界上第一次发明了蒸汽杀菌法; 世界上第一次分离出结核病细菌;

2005年诺贝尔物理学奖

2005年诺贝尔物理学奖 2005年物理学奖,由三位物理学家获得,他们是美国的罗伊·格劳伯(Roy J.Glauber)(获得奖金的一半)、约翰·霍尔(ohn L.Hall)和德国的特奥多尔·汉施(Theodor W.Haensch)(分享另一半奖金)。格劳伯对光学相干的量子理论做出了贡献。霍尔和汉施对基于激光的精密光谱学发展作出了贡献。 罗伊·杰伊·格劳伯(Roy Jay Glauber,1925—2018),出生于美国纽约市。12岁时制作了和房间差不多高的望远镜。14岁时“发明”了“分光镜”。16岁进入哈佛大学学习。当时,由于二战影响,大量教授需要参与和战争相关的秘密项目,迫使他在进校之初就修完了所有著名教授讲授的物理学课程。在大学二年级时他被招募到洛斯阿拉莫斯实验室参与曼哈顿计划,年仅18岁,是当时参与的科学家中最年轻的一位。战后返回大学,开始了自己真正的纯粹的学术研究道路。1946年和1949年获得哈佛大学的硕士和博士学位。 约翰·刘易斯·霍尔(Jhon Lewis Hall,1934—),从卡内基技术大学共获得三个学位,分别是理学学士(1956年)、理学硕士(1956年)和哲学博士(1961年)。他在国家标准与技术局完成了博士后研究,1962年—1971年,霍尔一直在此工作。自1967年起霍尔开始在科罗拉多大学任教,是JILA中第三个获得诺贝尔物理学奖的科学家。 特奥多尔·汉施(Theodor W.Haensch,1941—),出生于德国海德堡。在海德堡的卢佩莱希特卡尔大学攻读光学专业。 1

从1970年起,他一直在美国斯坦福大学从事研究与学习。1986年,他返回德国伽钦,被任命为马普量子光学研究所所长。 从20世纪60年代开始,激光技术取得了长足的发展,但是在对光本身特性的描述上则遇到了一些困难。格劳伯认为量子化的电磁场并不能代表光的一切性质,大量光子的集体行为于普通光子有很大的区别,应该更好地发展量子理论来探索光的本质,从而开创了建立量子光学的里程碑式的研究工作。 1963年,格劳伯就通过自己的工作成功地应用量子理论来解释了一些光学现象,他在《物理评论通信》上发表了研究论文,此后又在《物理评论》等杂志上发表了几篇相关论文,创造性的提出了“光子的相干性量子理论”。该理论成功地描述了光量子的运动规律,揭示了光量子的特性,以及大量光量子如何互相影响他们之间的运行方式,产生“干涉”现象等等。格劳伯的这些论文,奠定了量子光学学科的理论基础。 格劳伯科学思想的意义在于第一次创造性地提出了用量子本性解释光的宏观现象,这种思想不但给出了光的一切宏观现象的量子本质,并且对光的量子本性也是一个最好的证明。通过光的相干性量子理论,人类可以研究光子大量的非经典特性,从而开拓更多的研究领域及应用领域。 格劳伯在当时提出的“相干性的量子理论”,不仅能解决一些基础性的问题,而且奠定了量子光学的基础,开创了一门全新的学科。在他获奖的时候,量子光学已经成为物理 2

1983年诺贝尔物理学奖——天体物理学的成就

1983年诺贝尔物理学奖——天体物理学的成就 1983年诺贝尔物理学奖一半授予美国伊利诺斯州芝加哥大学的钱德拉塞卡尔(Subrahmanyan Chandrasekhar,19l0—1995),以表彰他对恒星结构和演变有重要意义的物理过程的理论研究;另一半授予加利福尼亚州帕萨迪那加州理工学院的W.A.福勒(William AlfredFowler,1911—1995),以表彰他对宇宙中化学元素的形成有重要意义的核反应的理论和实验研究。 钱德拉塞卡尔是另一诺贝尔物理学奖获得者拉曼(SirChandrasekhara Venkata Raman)的外甥,1910年10月19日出生于巴基斯坦的拉合尔,1930年毕业于印度马德拉斯大学,后在英国剑桥大学学习和任教。1937年移居美国。 钱德拉塞卡尔的主要贡献是发展了白矮星①理论。 白矮星的特性是大约在1915年由美国天文学家亚当斯(W.S.Adams)发现的。1925年英国物理学家R.H.福勒(R.H.Fowler)用物质简并假说解释了白矮星的巨大密度。物质简并假说称,电子和电离的核在极大的压力下组成高度密集的物质。1926年爱丁顿(A.S.Eddington )建议,氢转变为氦是恒星能量的可能泉源,这就为恒星演化理论奠定了基础。 1930年—1936年,钱德拉塞卡尔在剑桥大学三一学院工作期间,就投入到了白矮星的研究之中。他找到了决定恒星生命的基本参数,通过应用相对论和量子力学,利用简并电子气体的物态方程,为白矮星的演化过程建立了合理的模型,并作出了如下预测: 1.白矮星的质量越大,其半径越小; 2.白矮星的质量不会大于太阳质量的1.44倍(这个值被称为钱德拉塞卡尔极限); 3.质量更大的恒星必须通过某些形式的质量转化,也许要经过大爆炸,才能最后归宿为白矮星。 钱德拉塞卡尔的理论解释了恒星演化的最后过程,因此对宇宙学作出了重大贡献。1939年他在全面研究了恒星结构的基础上出版了《恒星结构研究导论》一书,系统总结了他的白矮星理论。他还在恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学等方面进行了许多工作。 钱德拉塞卡尔1995年8月21日由于心脏病发作而去世,享年84岁。他在晚年时潜心研究牛顿的《自然哲学的数学原理》。1995年3月20日他还在美国物理学会圣何塞年会上做过题为“牛顿…原理?的一些命题”的特邀报告。当时他正在写一本有关牛顿的书。 W.A.福勒1911年8月9日出生于美国宾夕法尼亚州的匹兹堡。由于从事与

历届诺贝尔化学奖得主

历届诺贝尔化学奖得主简介(1901-2009) 自1901年诺贝尔奖首次颁奖起,至2006年为止,全世界有476人获得诺贝尔奖,其中诺贝尔化学奖得主有162人。在这476位诺贝尔奖得主中,有四位曾两次获奖。 其中,波兰裔法国女物理学家、化学家Marie Sklodowska Curie(玛丽?居礼)(即居礼夫人)获得1903年的诺贝尔物理奖与1911年诺贝尔化学奖 美国物理学家John Bardeen(约翰?巴丁)获得1956年与1972年的诺贝尔物理奖。 在所有得奖科学家中,有三对夫妻共同得奖。 法国物理学家Pierre Curie(皮耶?居礼)和Marie Sklodowska Curie (玛丽?居礼)夫妇获得1903年物理奖。 在所有得奖科学家中,包含有5对父子。共同得到1915年物理奖的是William Henry Bragg & William Lawrence Bragg(布拉格父子);分别得到1906年物理奖和1937年物理奖的是Joseph John Thomoson & George Paget Thomson(汤姆逊父子);分别得到1922年物理奖和1975年物理奖的是Niels Bohr & Aage Niles Bohr(波尔父子);分别得到1924年物理奖和1981年物理奖的是Karl Manne Georg Siegbahn & Kai Manne Borje Siegbahn(赛格巴恩父子)。 在所有得奖科学家中,有10位女性科学家。其中得到物理奖的是1903年得奖的Marie Sklodowska Curie(玛丽?居礼)与1963年得奖的

历届诺贝尔物理学奖得主及成就汇总

若雷斯·阿尔费罗夫 2000 年赫伯特·克勒默杰克·基尔比埃里克·康奈尔2001 年卡尔·威曼沃尔夫冈·克特勒雷蒙德·戴维斯 2002 年小柴昌俊里卡尔多·贾科尼阿列克谢·阿布里科索夫 2003 年维塔利·金兹堡安东尼·莱格特戴维·格罗斯 2004 年戴维·普利策弗朗克·韦尔切克 2005 罗伊·格劳伯俄罗斯德国美国美国美国德国美国日本美国俄罗斯俄罗斯英国美国美国美国美“发展了用于高速电子学和光电子学的半导体异质结构” “在发明集成电路中所做的贡献” “在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究” “在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子” “在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X 射线源的发现” “对超导体和超流体理论做出的先驱性贡献” “发现强相互作用理论中的渐近自由” “对光学相干的量子理论的贡献” 年约翰·霍尔特奥多尔·亨施 2006 年约翰·马瑟乔治·斯穆特艾尔伯·费尔彼得·格林贝格小林诚 2008 年益川敏英南部阳一郎高锟 2009 年威拉德·博伊尔乔治·史密斯安德烈·海姆康斯坦丁·诺沃肖洛夫布莱恩·施密特国美国德国美国美国法国德国日本日本美国英国美国美国荷兰英/ 俄澳大利亚美国“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在” “发现巨磁阻效应” “发现宇宙微波背景辐射的黑体形式和各向异性” “对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,” 2007 年“发现亚原子物理学的自发对称性破缺机制” “在光学通信领域光在纤维中传输方面的突破性成就” “发明半导体成像器件电荷耦合器件” 2010 年“在二维石墨烯材料的开创性实验”[3] 2011 “透过观测遥距超新星而发现宇宙加速膨胀” 亚当·里斯 索尔·珀尔马特塞尔日·阿罗什大卫·维因兰德彼得·希格斯 2013 弗朗索瓦·恩格勒赤崎勇 2014 天野浩中村修二 2015 梶田隆章阿瑟·B·麦克唐纳 2016 戴维·索利斯迈克尔·科斯特利茨邓肯·霍尔丹美国法国美国英国比利时日本日本美国日本加拿大英/美英/美英国他们发现中微子振荡现象,该发现表明中微子拥有质量。发明“高亮度蓝色发光二极管” 对希格斯玻色子的预测[4] “能够量度和操控个体量子系统的突破性实验手法” 2012 发现了物质的拓扑相变和拓扑相。[5]

相关文档
相关文档 最新文档