文档库 最新最全的文档下载
当前位置:文档库 › 基于矩阵分解的卡尔曼滤波技术分析及应用

基于矩阵分解的卡尔曼滤波技术分析及应用

基于矩阵分解的卡尔曼滤波技术分析及应用
基于矩阵分解的卡尔曼滤波技术分析及应用

基于矩阵分解的卡尔曼滤波技术分析及应用

【摘要】本文简要介绍了卡尔曼滤波研究的发展历程,重点对卡尔曼滤波及其在改善数值稳定性,提高计算效率等数值方面的研究与发展进行了综述,对Q-R 分解,U-D 分解,奇异值分解(SVD )等在卡尔曼滤波的应用进行了介绍。最后给出了一种基于Q-R 矩阵分解的自适应滤波方法,仿真验证了其有效性。

1 引言

1960年,美籍科学家卡尔曼(R. E. Kalman)在系统状态空间模型的基础上提出了著名的线性卡尔曼滤波器,它在线性的前提假设下是一个线性无偏、最小方差估计器,从而可以为线性滤波问题提供精确解析解。自该技术被提出以来,它已成为控制、信号处理与通信等领域最基本最重要的计算方法和工具之一,并已成功地应用到航空、航天、电力系统及社会经济等不同领域。随着微型计算机的普及应用,对卡尔曼滤波的数值稳定性、计算效率、实用性和有效性的要求越来越高.为此,人们在如何改善卡尔曼滤波的计算复杂性和数值稳定性方面作了大量的探索工作,各种基于平方根滤波与平滑,U-D 分解滤波与平滑,奇异值分解滤波与平滑,状态与偏差分离滤波以及并行与分散滤波等方法得到不断发展.本文给出了矩阵分解的一些基础知识,并着重从卡尔曼滤波数值计算方法入手,对现有的常规卡尔曼滤波、基于矩阵的因式分解滤波的数值计算方法进行了较系统的介绍和分析,并在第四章给出了一种基于Q-R 矩阵分解的自适应滤波算法。

2 常规卡尔曼滤波

2.1 协方差卡尔曼滤波

考虑如下线性离散系统

k k k k k w x A x Γ+=+1 (2.1.1)

k k k k v x C z += (2.1.2)

式中n k R x ∈是状态向量,m k R z ∈是量测向量,p k R w ∈是系统噪声向量,m k R v ∈是量测噪声向量.假设系统噪声和量测噪声是互不相关的零均值高斯白噪声,方差阵分别为k Q ,k R ,则协方差卡尔曼滤波方程为:

111|??---=k k k k x A x

(2.1.3) T k k k k T k k k k Q A P A P 1111111|-------ΓΓ+= (2.1.4)

]?[??1|1|---+=k k k k k k k k x C z K x x

(2.1.5) 1|][--=k k k k k P C K I P (2.1.6)

11|1||][---+=k T k k k k T k k k k R C P C C P K (2.1.7)

理论分析和实际应用均证明上述滤波公式是数值不稳定的,其原因是由于计算机有限字长的限制,计算中舍入误差和截断误差的累积、传递会使协方差阵k P 失去对称正定性,因此,Joseph 提出一种所谓“稳定化”卡尔曼滤波,其目的是减小滤波算法对计算舍入误差的灵敏性,保证k P 的对称正定性,以提高滤波的数值稳定性,防止发散.其滤波阵公式,只是将(2.1.6)式改写为如下形式即可:

T

k k k T k k k k k k k K R K C K I P C K I P +--=-][][1| (2.1.8) 但该算法由于所需计算量和存储量较大,而且并不一定很奏效,因而应用并不广泛.

2.2 信息滤波

为了解决在某些没有有关初始状态信息和先验知识可供采用情况下的滤波,Fraser 提

出了信息滤波,即用协方差阵k P 的逆1

-k P 来代替k P 的递推计算,这种算法对测量更新比 较有效,但时间更新所需计算量较大.

2.3 推广卡尔曼滤波器

推广卡尔曼滤波(EKF)是一种应用最广泛的非线性系统滤波方法。EKF 与线性卡

尔曼滤波公式完全类似,只是上述滤波公式中k A ,k Γ,和k C 要在由非线性函数的偏导计算 得到,不能象线性滤波那样可事先离线计算增益和协方差阵,但EKF 与常规卡尔曼滤波一 样,数值稳定性差,初值不易确定.为了改善上述常规滤波算法的数值稳定性,并提高计算效 率,自七十年代以来,人们提出了平方根滤波、U 一D 分解滤波、奇异值分解滤波等一系列数 值鲁棒的滤波算法.

3 基于矩阵因式分解的滤波方法

3.1 预备知识

定理3.1.1 设A 是实正定对称矩阵,则存在唯一正线下三角矩阵S ,使得

T SS A =

(3.1.1) 定理3.1.2 Householder 变换 设n C u ∈,且1=u u H ,则

H n uu E u u E u H 2)2;,()(-== (3.1.2)

称为初等酉阵,或Householder 变换。

定理3.1.3 Cholesky 分解 设n n n

C A ?∈是正定Hermite 矩阵,用L 表示单位下三角矩阵,

D 是对角矩阵,则有

H LD LD

A ))((2/12/1= (3.1.3) 定理3.1.4 QR 分解 设n n n R A ?∈,则A 可唯一地分解为

QR A = (3.1.4) 定理3.1.5 奇异值分解 设n m r

C A ?∈,r σσσ,,,21???是A 的r 个奇异值,则存在m 阶酉矩阵和n 阶酉矩阵V ,使得

V O O O

D U A )(= (3.1.5)

其中),,,(21r diag D δδδ???=,且),,2,1(||r i i i ???==σδ。

3.2 平方根协方差滤波(SRCF )

首先提出平方根滤波思想的是Potter,他把k P 按Cholesky 方法分解为下三角阵k S ,即

令T k k k S S P =,在滤波递推计算中用k S 的传递计算代替k P

的计算,由公式(3.1.1)可知,从而保证了k P 的对称正定性.Potter 的算法经美国阿波罗登月舱的实际应用,证明是很成功的.随后,Potter 的算法被推广来解决存在着系统噪声和量测量为向量的情形。Schmidt 给出了向量量测既可以同时处理,也可以序列处理的一种处理过程噪声的方法.为了提高平方根滤波的计算效率,Carlson 注意到传递阵通常是块上三角阵的特点,给出了一种量测更新和时间更新均为上三角阵形式的快速平方根滤波,减少了计算量.上述平方根滤波均把时间更新和量测更新按常规分成两个分离的过程,其算法的关键是通过利用正交变换获得上三角阵的平方根矩阵.为了减小计算量,人们对如何构造正交变换的问题给予了很大的注意,常用的正交变换方法是Householder 变换,即公式(3.1.2)、修正的Gram-Sehmidt 正交化法及Givens 变换等。

1975年,Morf 一Kailath 在总结上述平方根滤波基础上,把时间更新和量测更新两个过程结合起来,给出了一种量测和时间更新的联合更新方程,从而仅需一个正交变换,即完成滤波计算,且无需计算滤波增益阵.

3.2 平方根信息滤波

与平方根协方差滤波相对应,信息滤波的平方根滤波方法也得到人们的极大重视和研究。Dyer 一MeReynolds 基于Householder 变换利用动态规划理论研究出一种平方根信息滤波

(SRIF),与SRCF 类似,SRIF 把信息矩阵1

-k P 定义为平方根阵形式,即定义T k k k S S P )1(11---=由1-k S 的递推计算来代替1-k P 的计算.Bierman 利用

“数据方程”法给出一种结构较简单的SRIF,并给出有色噪声情况的滤波公式,该算法需要计算状态转移矩阵的逆,即要求状态转移矩阵是非奇异的,针对这一问题,给出一种对状态转移阵奇异仍适用的SRIF,Bierma 在此基础上,把SRIF 应用于具有时间延迟系统的滤波,并把SRIF 推广到大规模互联系统的情形,大大减少了计算量和存储量.正如SRCF 那样,将量测更新和时间更新结合起来,可以容易的求得联合SRIF 更新方程,Paige-Saunders 基于把卡尔曼滤波转换为最小二乘估计的思想,提出一种联合量测更新和时间更新的SRIF 方案。由于SRIF 在某些情况下,如对于多量测量系统,比常规卡尔曼滤波有更高的计算效率、更好的数值稳定性和精度,因此,在轨道确定、飞行状态估计和多传感器跟踪与辨识等方面得到应用。

3.3 U-D 分解滤波

上述SRCF 和SRIF,一般来讲由于存在矩阵的求逆运算和平方根计算,所需计算量较常规卡尔曼滤波要大,因而限制了在工程中的应用。Bierman 在研究和应用SRIF 及Carlson 序列滤波的基础上,于1975~1977年间,提出了一套计算效率高、数值稳定的称之为“U-D 分解”滤波

的算法。该算法把协方差阵分解为单位上三角阵U 和对角阵D,即有T k k k k U D U P =,2/1UD 相

当于协方差平方根阵S ,即公式(3.1.3)。U-D 分解滤波既具有平方根滤波的优点,即始终能保证协方差阵的正定性,同时避免了Carlson 等平方根滤波算法中平方根的计算,因而具有与常规卡尔曼滤波相当的计算量,是上述滤波算法中效率最高的一种算法,并且在实际应用问题中,结合实际问题的特点,U-D 分解算法计算效率还更高,因而,近年来在轨道确定、目标跟踪和飞行状态估计及神经网络学习算法等方面得到广泛应用和发展,但该算法由于量测更新采用序列处理,对于量测量较多的系统,计算效率受到一定影响,对有色噪声的处理不如SRIF,SRCF 方便。

3.4 基于奇异值分解(SVD )的滤波方法

奇异值分解由于具有很强的数值鲁棒性和可靠性,广泛应用于最小二乘问题、病态方程 组求解及广义逆计算等场合,并在控制、通讯与信号处理等领域越来越受到人们的极大重视。在滤波问题中,也已得到应用。

Oshman 基于协方差阵的频谱分解,以SVD 为计算工具,提出称之为v-Lambda 滤波的方法,

他把协方差阵分解成T

V V P Λ=形式,其中V 是矩阵P 的特征向量矩阵,Λ为对角元是P 阵奇异值的对角矩阵。首先给出量测更新为信息滤波模式,时间更新为协方差滤波模式的v 一Lambda 滤波方法。随后,Oshman 又给出量测更新和时间更新方程均为信息滤波模式的滤波公式,该算法不需计算滤波增益,由于利用SVD,使得状态估计算法鲁棒性较之平方根滤波、U-D 分解滤波更好,但该算法由于进行一步滤波迭代计算,需一次正交变换,两次奇异值分解,所以,其缺点是计算量较大,但其优异的数值鲁棒性以及随着奇异值分解并行处理的实现而随之带来计算时间的减少,使得此算法将成为一种极富吸引力的滤波方法.另外利用协方差阵的对称正定性,给出一种类似U-D 分解形式、计算量较小的基于SVD 的滤波算法,本文又给出一种基于SVD 的推广卡尔曼滤波算法,并应用于飞行状态估计问题,随后又提出一种基于SVD 的递推最小二乘辨识新方法,与递推最小二乘、基于U-D 分解的递推最小二乘法相比,不仅收敛速度快、数值稳定性和辨识精度高,而且能得到系统参数的无偏估计。

4 一种基于Q-R 矩阵分解的自适应滤波算法

4.1 机动目标加速度模型及自适应卡尔曼算法

令状态向量X 为:T x x x X ]3,2,1[=,x1,3,2,1x x x 分别表示目标的位置、速度和加速度。 假设目标当前加速度服从非零均值α的一阶马尔可夫过程,即: )(3t x αα+=

(4.1.1) )()()(t w t t +-=ααα (4.1.2) 目标的时域状态方程为: )(t Lw B AX X ++=α (4.1.3)

式中:

??????????-=α00100010A 、??????????=α00B 、????

??????=100L 、

)(t w 为白噪声序列。 根据上述时域方程,经过离散化处理后,得到系统的离散状态方程和观测方程为: )()()(),1()1(k W k B k X k k k X +++Φ=+α (4.1.4) )()()(k V k HX k Y += (4.1.5) 式中:

????????????????-++-=+Φ---T T T e e e T T

k k αααααα00)1(110)1(1

1),1(2 ???????

?????????----++-=---T T T e e T e T T k B ααααααα11)12(1)(2 δδααδαδαδαδαd w e e e T k k W T k T k T k T k kT )(/}1{/)}))1((1{)())1(())1((2))1(()1(????

??????-+-++-=-+--+--+-+?

]001[=H

)(V )(k k W 、均为白噪声序列。

基于状态方程(4.1.4)和观测方程(4.1.5),依据标准的卡尔曼滤波方程,得到当前机动加速度统计模型的自适应卡尔曼滤波算法。

1.时间更新

α)(??)1/1()1,()1/(k B X X k k k k k k +Φ=---- (4.1.6)

)1/(3?-=k k x

α (4.1.7) παπδα/))/(3?)(4(2max 2k k x

--= (4.1.8) w T Q k k k k P k k k k p +-Φ---Φ=-)1,()1/1()1,()1/( (4.1.9) 1

))1/(()1/()(-+--=R H k k HP H k k P k K T T (4.1.10) 其中,max α表示最大可能的加速度。

2.测量更新 )]1/(?)()[(??)1/()/(--+=-k k X H k Y k K X X k k k k (4.1.11)

)1/(])([)1/()()1/()/(--=---=k k P H k K I k k HP k K k k P k k P (4.1.12)

4.2 引入Q-R 矩阵分解的自适应平方根滤波算法

在机动“当前”统计自适应滤波算法中,在计算协方差阵时,存在矩阵相减的运算,由于计算或其他参数不匹配的影响,有可能导致协方差阵出现不对称或负定的情况。协方差阵是一个对称的非负定的矩阵,利用矩阵分解的技术,在基于平方根矩阵分解的基础上,引入Q-R 矩阵分解,构造出协方差平方根自适应滤波算法。

令)/()/()/(k k S k k S k k P T =

)1/()1/()1/(--=-k k S k k S k k P T

T w UU Q =

其中U )1/()/(、、-k k S k k S 为下三角矩阵。又

)1/1(~)1/1(~])1/1()1,([])1/1()1,([)1,()1/1()1/1()1,()1,()1/1()1,()1/(----=---Φ?---Φ=

+-Φ-----Φ=

+-Φ---Φ=-k k S k k S U k k S k k U k k S k k UU k k k k S k k S k k Q k k k k P k k k k P T T T T T w T

对)1/1(~--k k S 进行Q-R 分解得到:

)1/()1/()1/(~

--=-k k Q k k S k k S (4.2.1)

因此有 )

1/()1/()1/()1/()1/()1/()1/1(~)1/1(~)1/(--=----=

----=-k k S k k S k k S k k Q k k Q k k S k k S k k S k k P T T T T

经过推导,得到下述的基于Q-R 分解的自适应平方根卡尔曼滤波算法。

1.时间更新

])1/([)1/(~U k k S k k S -Φ=- (4.2.2) 进行Q-R 分解得到

)1/()1/()1/(~--=-k k Q k k S k k S (4.2.3)

T T k QH k k S F )1/(-= (4.2.4)

1][-+=R F F T k k k α (4.2.5)

R

R r k k k αα+±=11 (4.2.6) k k F k k S k K )1/()(-=α (4.2.7)

αB k k X k k k k X

+---Φ=-)1/1(?)1/()1/(? (4.2.8) )1/(3?-=k k x

α (4.2.9) παπδα/))/(3?)(4(2max 2k k x

--= (4.2.10) )1/()1/()1/(--=-k k S k k S k k P T (4.2.11)

2.测量更新

])[1/()/(T k k k k F F r I k k S k k S α--= (4.2.12)

)]1/(?)()[(??)1/()/(--+=-k k X H k Y k K X X k k k k (4.2.13)

)/()/()/(k k S k k S k k P T = (4.2.14)

4.3 仿真与结论

为了验证算法的有效性,进行了一系列的仿真,并在一维的情况下,研究了基于Q-R 矩阵分解的当前统计自适应滤波算法对常加速度目标运动的跟踪特性。仿真中,假设观测噪声方差(距离观测误差)与目标距离的平方成正比,即观测噪声为:

)())(()(k w c k x k V +?=β

式中β为相对误差系数,c 为固定观测误差,w(k)为均值为零,方差为1的标准正态分布函数。因此,观测噪声方差为:

))()(())(()(2k w k w E c k x k R +?=β

仿真中所选参数为:c=100m,β=0.01,目标加速度α=10m/s2,采样间隔T=1.0s 。图1和图2分别给出没有自适应的滤波器和基于Q-R 矩阵分解的当前统计自适应滤波器的位置、速度和加速度滤波误差曲线。

图1非基于Q-R矩阵分解的加速度滤波器的滤波误差曲线

图2基于Q-R矩阵分解的机动加速度“当前”统计模型自适应滤波器的滤波误差曲线由以上图可知,在目标作匀加速直线运动的情形下,基于Q-R矩阵分解的当前统计自适应滤波器的滤波效果好于非基于Q-R矩阵分解的滤波算法。图中显示的是滤波误差曲线,其中(1 000m-12s)表示纵轴的一格代表1 000m,横轴的一格代表12s。

5 自我小结

本文主要对常规的卡尔曼滤波、矩阵因式分解滤波等数值计算方法进行了综述,给出了这些滤波方法的优缺点及适用领域。同时重点介绍了一种基于Q-R矩阵分解的自适应滤波算法,该方法将协方差矩阵分解为两个矩阵的乘积,来保证协方差矩阵的正定性,仿真结果表明,该算法可以较好地跟踪机动目标,具有精度高、稳定好、收敛快等特点。

本文主要从矩阵三角分解,奇异值分解出发,结合正定矩阵的概念对卡尔曼滤波技术分析,最主要是将协方差矩阵进行分解,从而提高卡尔曼滤波技术的稳定性和精度。近年来,由于电网谐波污染越来越严重,可以预见,基于矩阵分解的卡尔曼滤波技术将会在电力系统中的电能质量分析中越来越受重视。

参考文献

[1] 丛源材,戴洪德,周绍磊.一种基于相关系数矩阵分解的非线性滤波方法.武汉:华中科技大学学报,2014

[2] 张友民,戴冠中,张洪才,卡尔曼滤波计算方法研究进展,控制理论与应用,1995

[3] 邢昌风,石章松.一种基于Q-R矩阵分解的自适应滤波算法.火力与指挥控制,2003

卡尔曼滤波计算举例

卡尔曼滤波计算举例 ?计算举例 ?卡尔曼滤波器特性

假设有一个标量系统,信号与观测模型为 [1][][]x k ax k n k +=+[][][] z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。 系统的起始变量x [0]为随机变量,其均值为零,方差为。2n σ2 σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。 22 0.9,1,10,[0]10 n x a P =σ=σ==1. 计算举例

根据卡尔曼算法,预测方程为: ??[/1][1/1]x k k ax k k -=--预测误差方差为: 2 2 [/1][1/1]x x n P k k a P k k -=--+σ 卡尔曼增益为: () 1 22 22 22 [][/1][/1][1/1][1/1]x x x n x n K k P k k P k k a P k k a P k k -=--+σ --+σ=--+σ+σ ???[/][/1][]([][/1])??[1/1][]([][1/1])?(1[])[1/1][][]x k k x k k K k z k x k k ax k k K k z k ax k k a K k x k k K k z k =-+--=--+---=---+滤波方程:

()() 2 2222222 222 22 [/](1[])[/1] [1/1]1[1/1][1/1][1/1][1/1]x x x n x n x n x n x n P k k K k P k k a P k k a P k k a P k k a P k k a P k k =--??--+σ=---+σ ?--+σ+σ??σ--+σ = --+σ+σ 滤波误差方差 起始:?[0/0]0x =[0/0][0] x x P P =

矩阵分解在优化方法中的应用

矩阵分解以及矩阵范数在数值计算中的应用 张先垒 (自动化与电气工程学院 控制科学与工程 2012210186) 【摘要】矩阵的分解是将一个矩阵分解为较为简单的或具有某种特性的若干矩阵的和或 者乘积,这是矩阵理论及其应用中比较常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵的分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,它是应用于解最优化问题、特征值问题、最小二乘方问题的主要数学工具。 关键词 : 矩阵分解 对角化 逆矩阵 范数 条件数 1. 引言 矩阵分解在工程中的应用主要是在解线性方程组中,而这主要就是关系到储存和计算时间的问题上面,如何实现最小的储存和最少的计算时间是在工程计算中的头等问题。在这方年就牵涉到很多对矩阵进行怎样的分解,这篇文章介绍了基本的关于三角分解相关的内容以及关于界的稳定性的考虑。 2. 矩阵的三角分解求解线性方程组 数值求解线性方程组的方法中有一个主要是直接法,假设计算中没有舍入误差,经过有限次算术运算能够给出问题的精确解的数值方法。其中高斯消去法就是利用矩阵的分解实现的。矩阵论一种有效而且应用广泛的分解法就是三角分解法,将一个矩阵分解为一个酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积。(见课本P93例4.3)考虑一般的线性方程组,设其中的系数矩阵A 是可逆的, 1111 n m mn a a A a a ?? ? = ? ??? (1-1) 设矩阵A 的第一列中至少有一个是非零元素(否则A 就是奇异矩阵)不妨设为1i a 若一 般的记初等矩阵 [1] 如1-2式及矩阵论课本上的Givens 矩阵。

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.wendangku.net/doc/0513092712.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

矩阵分解的研究及应用

矩阵分解的研究及应用 摘要:将一矩阵分解为若干个矩阵的和或积,是解决某些线性问题的重要方法,其技巧性、实用性强。 本文首先分成四部分内容来阐述矩阵分解的形式及一些很常见的分解。最后举例说明矩阵分解的应用。 关键词:特征值分解 秩分解 三角分解 和分解 关于矩阵分解的形式的文献已有很多,但对于这个问题的分析各不相同。本文从四个方面来论述矩阵的分解的形式,并以一些具体的例子来说明矩阵分解在实际应用中的重要性。 一、特征值分解 性质1:任意n 阶矩阵A ,存在酉矩阵T ,使得1 10n A T T λλ-*?? ? = ? ??? ,其中1,,n λλ 为矩阵A 的 特征值。称形如这样的分解叫做矩阵A 的特征值分解。 性质1':任意n 阶矩阵A ,存在酉矩阵T ,使得11s J A T T J -?? ? = ? ??? ,其中 11i i i i i i n n J λλλ??? ? ?= ? ? ? ? ,1,2,,i s = 且1,,s λλ 为矩阵A 的特征值。 对于对称矩阵有如下结论: 定理1.1:若A 为n 阶实对称矩阵,则存在正交矩阵T ,使得11n A T T λλ-?? ? = ? ??? , 其中1,,n λλ 为矩阵A 的特征值。 证明 由性质1,知 存在酉矩阵T ,使得1 10n A T T λλ-*?? ? = ? ??? 又由于A 为n 阶实对称矩阵,因此 111 111000n n n A T T T T A T T λλλλλλ---'??**?????? ? ? ? ?'==== ? ? ? ? ? ? ? ?*??????? ? 从而,得 1 100n n λλλλ*???? ? ? = ? ? ? ?*???? 因此11n A T T λλ-?? ? = ? ??? 得证。

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

矩阵分解及其简单应用

矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、分解、满秩分解和奇异值分解.矩阵地分解是很重要地一部分内容,在线性代数中时常用来解决各种复杂地问题,在各个不同地专业领域也有重要地作用.秩亏网平差是测量数据处理中地一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数地估计数大大简化了求解过程和难度. 矩阵地三角分解 如果方阵可表示为一个下三角矩阵和一个上三角矩阵之积,即,则称可作三角分解.矩阵三角分解是以消去法为根据导出地,因此矩阵可以进行三角分解地条件也与之相同,即矩阵地前个顺序主子式都不为,即.所以在对矩阵进行三角分解地着手地第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义.矩阵地三角分解不是唯一地,但是在一定地前提下,地分解可以是唯一地,其中是对角矩阵.矩阵还有其他不同地三角分解,比如分解和分解,它们用待定系数法来解求地三角分解,当矩阵阶数较大地时候有其各自地优点,使算法更加简单方便.资料个人收集整理,勿做商业用途 矩阵地三角分解可以用来解线性方程组.由于,所以可以变换成,即有如下方程组:资料个人收集整理,勿做商业用途 先由依次递推求得,,……,,再由方程依次递推求得,,……,. 资料个人收集整理,勿做商业用途 必须指出地是,当可逆矩阵不满足时,应该用置换矩阵左乘以便使地个顺序主子式全不为零,此时有:资料个人收集整理,勿做商业用途 这样,应用矩阵地三角分解,线性方程组地解求就可以简单很多了. 矩阵地分解 矩阵地分解是指,如果实非奇异矩阵可以表示为,其中为正交矩阵,为实非奇异上三角矩阵.分解地实际算法各种各样,有正交方法、方法和方法,而且各有优点和不足.资料个人收集整理,勿做商业用途 .正交方法地分解 正交方法解求分解原理很简单,容易理解.步骤主要有:)把写成个列向量(,,……,),并进行正交化得(,,……,);) 单位化,并令(,,……,),(,,……,),其中;). 这种方法来进行分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便.资料个人收集整理,勿做商业用途 .方法地分解 方法求分解是利用旋转初等矩阵,即矩阵()来得到地,()是正交矩阵,并且(()).()地第行第列 和第行第列为,第行第列和第行第列分别为和,其他地都为.任何阶实非奇异矩阵可通过左连乘()矩阵(乘积为)化为上三角矩阵,另,就有.该方法最主要地是在把矩阵化为列向量地基础上找出和,然后由此把矩阵地一步步向上三角矩阵靠近.方法相对正交方法明显地原理要复杂得多,但是却计算量小得多,矩阵()固有地性质很特别可以使其在很多方面地应用更加灵活.资料个人收集整理,勿做商业用途 .方法地分解 方法分解矩阵是利用反射矩阵,即矩阵,其中是单位列向量,是正交矩阵,.可以证明,两个矩阵地乘积就是矩阵,并且任何实非奇异矩阵可通过连乘矩阵(乘积为)化为上三角矩阵,则.这种方法首要地就是寻找合适地单位列向量去构成矩阵,

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

时间序列分析方法 第3章 kalman滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设t y 表示时刻t 观测到的n 维随机向量,一类非常丰富的描述t y 动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量t ξ表示,因此表示t y 动态性的状态空间表示(state-space representation)由下列方程系统给出: 11+++=t t t v ξF ξ 状态方程(state model) (13.1) t t t w ξH x A y t +'+'= 量测方程(observation model) (13.2) 这里F ,A '和H '分别是阶数为r r ?,k n ?和r n ?的参数矩阵,t x 是1?k 的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),1?r 维向量t v 和1?n 维向量t w 都是向量白噪声,满足: ? ??≠=='τττt t E t ,,)(0Q v v (13.3) ? ??≠=='τττt t E t ,,)(0R w w (13.4) 这里Q 和R 是r r ?和n n ?阶矩阵。假设扰动项t v 和t w 对于所有阶滞后都是不相关的,即对所有t 和τ,有: 0w v =')(τ t E (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y --t t 内的信息以外,t x 没有为s t +ξ和s t +w ( ,2,1,0=s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与τξ和τw (任意τ)不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列},,,{21T y y y ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不相关: 0ξv =')(1 t E ,对任意T t ,,2,1 = (13.6) 0ξw =')(1 t E ,对任意T t ,,2,1 = (13.7) 状态方程(13.1)表明,t ξ可以表示成为},,,,{321t v v v ξ 的线性函数: 1122221ξF v F v F v F v ξ----+++++=t t t t t t ,T t ,,3,2 = (13.8) 因此,方程(13.6)和方程(13.3)意味着t v 与所有ξ的滞后值都是不相关的: 0ξv =')(τ t E ,1,,2,1 --=t t τ (13.9) 类似地,可以得到: 0ξw =')(τ t E ,T ,,2,1 =τ (13.10)

卡尔曼滤波与组合导航课程报告

卡尔曼滤波与组合导航》课程实验报告 实验 捷联惯导 /GPS 组合导航系统静态导航实验 实验序号 3 姓名 陈星宇 系院专业 17 班级 ZY11172 学号 ZY1117212 日期 2012-5-15 指导教师 宫晓琳 成绩 、实验目的 ① 掌握捷联惯导 /GPS 组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导 /GPS 组合的基本原理; ③掌握捷联惯导 /GPS 组合导航系统静态性能; ④了解捷联惯导 /GPS 组合导航静态时的系统状态可观测性; 、实验原理 ( 1)系统方程 X FX GW 系统噪声矢量由陀螺仪和加速度计的随机误差组成,表达式为: 2)量测方程 和 H 分别为捷联解算与 GPS 的东向速度、北向速度、天向速度、纬度、经度和高度之 差;量测矩阵 H H V H P T ,H P 03 6 diag R M H, (R N H )cos L, 036 , H V 033 diag 1, 1, 1 039 ,v v V E v V N v V U v L v v H 为量测噪声。 量测噪声 v E v N T v U L h x y z x y z 其中, E 、 N 、 U 为数学平台失准角; v E 、 v N 、 v U 分别为载体的东向、北向和天向速度误差; L 、 、 h 分别为纬度误差、经度误差和高度误差; x 、 y 、 z 、 x 、 y 、 z 分别为陀螺随 机常值漂移和加速度计随机常值零偏。(下 标 系统的噪声转移矩阵 G 为: E 、N 、 U 分别代表东、北、天) C b n 3 3 0 9 3 3 3 C n C b 9 3 15 6 系统的状态转移矩阵 w w w w F 组成内容为: w z F 06N 9 F S F M ,其中 F N 中非零元素为可由惯导误差模型获得。 F S C b n 3 3 0 3 3 3 3 C b n 3 3 96 量测变量 z V E V N V U L H , , V E 、 V N 、 V U 、 L 、 X U

2019机器学习中的数学 5 强大的矩阵奇异值分解 SVD.doc

机器学习中的数学 5 强大的矩阵奇异 值分解SVD 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@https://www.wendangku.net/doc/0513092712.html, 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。

卡尔曼(kalman)滤波算法特点及其应用

Kalman滤波算法的特点: (1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。 (2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。 (3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。 (4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。 Kalman滤波的应用领域 一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。Kalman滤波主要应用领域有以下几个方面。 (1)导航制导、目标定位和跟踪领域。 (2)通信与信号处理、数字图像处理、语音信号处理。 (3)天气预报、地震预报。 (4)地质勘探、矿物开采。 (5)故障诊断、检测。 (6)证券股票市场预测。 具体事例: (1)Kalman滤波在温度测量中的应用; (2)Kalman滤波在自由落体运动目标跟踪中的应用; (3)Kalman滤波在船舶GPS导航定位系统中的应用; (4)Kalman滤波在石油地震勘探中的应用; (5)Kalman滤波在视频图像目标跟踪中的应用;

北航卡尔曼滤波实验报告-GPS静动态滤波实验

卡尔曼滤波实验报告

2014 年 4 月 GPS 静/动态滤波实验 一、实验要求 1、分别建立GPS 静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS 数据进行Kalman 滤波。 2、对比滤波前后导航轨迹图。 3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 2.1 GPS 静态滤波 选取系统的状态变量为[ ]T L h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度 (m)。设()w t 为零均值高斯白噪声,则系统的状态方程为: 310()w t ?=+X (1) 所以离散化的状态模型为: ,111k k k k k W ---=+X X Φ (2) 式中,,1k k -Φ为33?单位阵,k W 为系统噪声序列。 测量数据包括:纬度静态量测值、经度静态量测值和高度构成31?矩阵Z ,量测方程

可以表示为: k k k Z HX V =+ (3) 式中,H 为33?单位阵,k V 为量测噪声序列。 系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。 系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。所以R 阵为: 2 2 25180()0 05180 ( )0cos()00 5p e R R L ππ ??? ?? ? ??= ??? ? ? ?? ? R (4) 2.2 GPS 动态滤波 动态滤波基于当前统计模型,在地球坐标系下解算。选取系统的状态变量为 T x x x y y y z z z X x v a y v a z v a εεε??=??,其中,,,x x x x v a ε依次为地球坐标系下x 轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。系统的状态模型可以表示为: ()()()()t t t t =++X AX U W (5) 式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为: x x x x y y y y z z z z w w w εετεετεετ?=-+????=-+????=-+?? 1 11 (6) 其中,i τ(,,i x y z =)为对应马尔科夫过程的相关时间常数,(,,)i w i x y z =为零均值高斯白噪声。

相关文档
相关文档 最新文档