文档库 最新最全的文档下载
当前位置:文档库 › 塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因

塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因

塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因
塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因

岩石地球化学特征

岩石地球化学特征 1火山岩岩石学特征 1.1主量元素特征该旋回岩石化学成分平均值与黎彤值和戴里值相比,该旋回火山熔岩,总体具高硅、高镁,低铁、铝、钙的特点;A/NKC值反映该旋回为铝过饱和岩石类型;分异指数(DI)为3 2.63~88.51, 均值为61.04,各氧化物随着DI值的增大有不同变化,如SiO2、K2O 明显升高,Na2O稍有增高,Al2O3变化不明显,TiO2、Fe2O3、FeO、MgO、CaO明显降低,MnO、P2O5稍微降低。总体上反映了该旋回火山 岩正常的分异趋势;里特曼组合指数说明本区义县旋回火山岩具钙碱 性向碱性演化的趋势。总体上来看,依据同源岩系的δ值事连续且相 近的原理,说明义县旋回火山岩浆是同源的。 1.2微量元素特征该旋回火山岩各岩石过渡元素分配型式曲线基本协 调一致,呈明显的“W”型,表明为同源岩浆分异产物。岩石曲线出现 相交现象,是因为个别元素在不同岩石中富集水准不同所致,反映了 岩浆在运移和成岩过程中可能有外界物质的介入和混染。图中给类岩 石的Ba、Nb呈明显的波谷,说明其在该旋回岩浆演化分异过程中分异 较好,而Zr具有明显的波峰说明该元素在该旋回中比较富集。仅在流 纹岩中Th元素具有明显的波谷,说明其在流纹岩中分异较好。 1.3稀土元素特征该旋回火山熔岩各岩石稀土总量差别较大,∑REE 在94.6~230.17,平均值为152.4。与世界同类岩石维氏值相比,该 旋回火山岩基性-中性岩,为富稀土岩石,中酸性-酸性岩为贫稀土岩石。LREE/HREE值为9.26~15.49,(La/Yb)N值为11.8~27.33,(Ce/Yb)N值为7.98~17.35,La/Sm值为3.36~8.83之间,以上参 数值及稀土配分曲线特征反映该旋回火山岩各岩石均具轻稀土富集, 分馏较好;重稀土亏损,分馏较弱的特点,火山岩浆可能来源于壳幔 混源。 2火山岩形成环境及源区

岩石成因

火山岩形成原因 熔岩是因为在地球的内部有大量的熔岩,因为积攒时间很长而且能量很大所以就会从火山里爆发出来,就变成火山爆发,和熔岩,而熔岩在很长时间的分化和化学变质,就变成金子或钻石之类的物体。 岩浆喷出地表冷却凝固而形成的岩石。狭义的喷出岩即指各种熔岩。熔岩具有两种含义,一是指喷出地表后挥发分逸散的炽热熔融状态的岩浆,又称熔浆;一是指由熔浆冷却凝固而形成的岩石。没有冷却的熔浆可以沿山坡或河谷流动,其前端多呈舌状,称为熔岩流。由于熔浆化学成分的差异,其粘稠性和流动速度亦不同,基性熔浆一般含SiO2较少,粘性小,流速大,酸性熔浆含有SiO2较多,粘性大,流速小。大面积的熔岩流冷凝而形成的岩石为熔岩被。熔岩冷凝过程中,由于岩石导热性和地表形态的差异,可形成波状熔岩、绳状熔岩、块状熔岩、熔岩瀑布和熔岩隧道等各种形态。熔浆可以是在火山爆发时从火山口喷流出来,也可以是沿断裂溢流出来。熔浆的化学成分不同,冷却凝固后所形成的岩石也不同。基性的喷出岩为玄武岩,中性的喷出岩为安山岩,酸性的喷出岩为流纹岩,半碱性和碱性喷出岩为粗面岩和响岩。喷出岩多具气孔、杏仁和流纹等构造。多呈玻璃质、隐晶质或斑状结构。玻璃质的黑曜岩、珍珠岩、松脂岩、浮岩等喷出岩称为火山玻璃岩。广义的喷出岩包括各种熔岩和火山碎屑岩。火山碎屑岩主要是由火山作用而形成的各种碎屑物堆积而成的,往往混有一定数量的正常沉积物或熔岩物质. 化学成分SiO2 CaO MgO Fe2O3 FeO Al2O3 TiO2 K2O Na2O 由火山喷发时喷出的岩浆冷凝而成的矿物岩石,多数为岩浆岩组成,质地疏松多孔。 又称“火山岩”。喷出岩作为盆地地层中的特殊岩性,具有与天然地震、断层 活动时空分布的同一性以及原位沉积、时间标定等一系列特性。 狭义的喷出岩即指各种熔岩。熔岩具有两种含义,一是指喷出地表后挥发分逸散的炽热熔融状态的岩浆,又称熔浆;一是指由熔浆冷却凝固而形成的岩石。没有冷却的熔浆可以沿山坡或河谷流动,其前端多呈舌状,称为熔岩流。由于熔浆化学成分的差异,其粘稠性和流动速度亦不同,基性熔浆一般含SiO2

草滩沟群火山岩的地球化学特征及其形成构造环境

第41卷 第1期 2008年 (总164期) 西 北 地 质 NORT HWESTERN GEOLOGY Vol.41 No.1  2008(Sum164)   文章编号:1009-6248(2008)01-0059-08 草滩沟群火山岩的地球化学特征 及其形成构造环境 朱涛1,董云鹏1,王伟2,徐静刚3,马海勇3,查理4 (1.西北大学大陆动力学国家重点实验室,西北大学地质学系,陕西西安 710069; 2.贵州大学环境与资源学院,贵州贵阳 550003; 3.中国石油长庆油田公司研究院, 陕西西安 710021; 4.长庆油田第一采油厂,陕西延安 716000) 摘 要:通过对出露于东—西秦岭交接处的草滩沟群火山岩地球化学特征的研究表明,草滩沟群火山岩具有较高的A l2O3含量和较低的T iO2含量,低 R EE等特征;球粒陨石标准化稀土元素配分图解显示呈平坦型-微弱富集型;微量元素组成以富集大离子亲石元素Cs、Rb、Ba、T h,强烈亏损N b、T a,以及高场强元素(HFSE)不分异为特征,N b、T a、Z r、Hf丰度及N b/L a,Hf/T a,L a/T a,T i/Y等值特征均显示岩浆源区受到消减组分加入的影响,与典型的岛弧玄武岩相似。综合地质、地球化学资料认为,草滩沟群玄武岩可与东秦岭丹凤群变基性火山岩对比,是早古生代秦岭洋俯冲消减作用的岩浆活动产物,代表了商丹缝合带的西延组成部分,向西延伸可与西秦岭天水关子镇-武山蛇绿混杂岩带相接。 关键词:秦岭造山带;草滩沟群;玄武岩;地球化学;构造环境 中图分类号:P591 文献标识码:A 秦岭造山带是中国南、北诸板块拼合形成的构造结合带,在研究中国大陆的形成演化过程中具有重要的意义。现有的研究表明,秦岭造山带中存在南北两条缝合带,即南部的勉略缝合带和北部的商丹缝合带(张国伟等,1996,2001),而商丹缝合带则是中国华北和华南最主要的构造边界,也是分割中国南北大陆的主要边界构造结合带。沿该带分布着一系列蛇绿混杂岩块和岛弧火山岩(张国伟等, 1995,1996;张旗等,1995;李曙光等,1993)。其中,出露较好、研究程度较高的地段主要集中在东秦岭商南—丹凤一带,目前许多研究表明在西秦岭天水关子镇及武山等地区存在蛇绿混杂岩带,并认为该蛇绿混杂岩带是商丹带的西延部分(裴先治等, 2004;杨钊等,2006;董云鹏等,待刊)。然而,在东西秦岭之间的交接地区,关于商丹缝合带的研究程度还比较薄弱,对其时空展布尚不清楚,这关系到商丹缝合带是否存在于该区以及能否西延至西秦岭地区等基础地质问题,也直接影响到对秦岭造山带早古生代带构造格局以及秦岭-祁连造山带构造交接关系的认识。 笔者在区域地质调研基础上,选取东西秦岭交接部位太白县魏家湾地区出露的一套变质火山岩,重点研究其地质、地球化学特征,探讨岩石成因及形成环境,为秦岭造山带早古生代构造格局及演化研究提供依据。 草滩沟群火山岩产于斜峪关岩群南部,其形成时代通过古生物化石间接限定为奥陶纪,而关于该套火山岩形成构造环境尚存争议,因此,在野外地  收稿日期:2007-07-21;修回日期:2007-10-18  基金项目:国家自然科学基金项目(编号:40234041,40472115)资助  作者简介:朱涛(1983-),男,青海乐都人,西北大学地质学系,硕士。通讯地址:710069,西安市太白北路229号,西北大学地质学系;E-ma il:Z hut-1983@163.co m。

岩石地球化学计算

岩石地球化学计算 1. TFe2O3=FeO+0.9Fe2O3 FeOT(wt.%)=FeO(wt.%)+Fe2O3(wt.%)*0.8998 =FeO(wt.%)+Fe2O3(wt.%)*(71.844/(159.6882/2)) 2. LOI 烧失量 3. Mg#=100*(MgO/40.3044)/(MgO/40.3044+FeOT/71.844) FeOm71.85 ;MgOm40.31 上述是分别测试分析了FeO和Fe2O3的计算方法,如果是测试的全铁,也可以近似计算。 通常说的高Mg,是指岩石具有较高的MgO含量,如火山岩中的高镁安山岩(通常情况下,异常高的MgO含量指示着可能有地幔物质参与,如俯冲带地幔楔或者软流圈熔体上涌等等)。Mg#(镁指数)也可以定量的表示岩石中的Mg含量高低。Mg#通常用于镁铁质岩石,可以粗略指示地幔岩石的部分熔融程度,高Mg#的地幔橄榄岩可能经历了更高程度的部分熔融,常在92-93左右,而原始地幔会相对富集,Mg#较低,在88-89左右。 4. 里特曼组合指数δ或里特曼指数δ=(K2O+Na2O)2/(SiO2-43)(wt%)δ<3.3 者称为钙碱性岩,δ=3.3-9 者为碱性岩,δ>9 者为过碱性岩。 5.A/NK = Al2O3/102/(Na2O/62+K2O/94) 6.A/CNK = Al2O3/102/(CaO/56+Na2O/62+K2O/94) 7.全碱ALK = Na2O+K2O 8.AKI = (Na2O/62+K2O/94)/Al2O3*102 9.AR = (Al2O3+CaO+Na2O+K2O)/(Al2O3+CaO-Na2O-K2O) 10.固结指数(SI) =MgO×100/(MgO+FeO+F2O3+Na2O+K2O) (Wt%) 11.阳离子R1-R2图(岩石氧化物wt%总量不用换算成100%) R1=(4Si-11(Na+K)-2(Fe+Ti)*1000 R2=(6Ca+2Mg+Al)*1000

微量元素与岩石成因

微量元素在岩石成因上的应用 姓名: 班级: 学号:

目录 微量元素在岩石成因上的应用 (1) 一、花岗岩成因上的应用 (3) §1.微量元素含量差异对于不同花岗岩的判断 (3) §2.微量元素含量的比值对于不同花岗岩成因的判断 (4) §3.稀土元素对于不同花岗岩成因的判断 (4) 二、玄武岩成因上的应用 (5) §1.微量元素含量差异对于不同玄武岩的判断 (5) §2.某些微量元素的比值对于不同玄武岩成因的判断 (6) §3.稀土元素对于不同玄武岩成因的判断 (7) 三、微量元素对于不同流纹岩的判断 (7) 四、个人总结 (8) 五、参考文献 (9)

微量元素可作为地质——地球化学的示踪剂,在解决当代地球科学的基础理论问题、为人类提供足够资源和良好的生存环境等方面正发挥着重要的作用。 一、花岗岩成因上的应用 §1.微量元素含量差异对于不同花岗岩的判断 Rb- ( Y + Nb)及(Sc/Nb)一(Y/Nb)构造判别图 Rb- ( Y + Nb)及(Sc/Nb)一(Y/Nb)构造判别图 实例:根据这些图解,诸广山花岗岩类都落在火山弧花岗岩(V AG)和板内花岗岩(WPG)的交界处(a),这表明本区花岗岩是一种后碰撞花岗岩,具有板内花岗岩的某些特征,而非板内花岗岩。Eby根据地球化学特征将A型花岗岩分为A1型和A2型,并认为A1型是与洋岛岩浆来源相同的地慢分异产物,且侵位于大陆裂谷或板内的构造环境,A2型来源于大陆地壳或板下地壳,且与陆一陆碰撞或岛弧岩浆作用有关。在图(b)中,碱长花岗岩全部落人A2区。另外,本区花岗岩的Y/Nb = 2. 6一8. 5,均大于1. 2,同样说明了本区碱长花岗岩为后碰撞型而非非造山型花岗岩。事实上,达拉布特洋壳形成于早泥盆世,并至少从中泥盆世开始不断向南北两侧的大陆板块下俯冲,而在石炭纪末,大洋基本消减殆尽,导致岛弧和小洋盆强烈挤压碰撞关闭,之后出现一个以挤压结束伸展开始为特征的动力学演化阶段,本区碱长花岗岩就是在这样的构造背景下形成的。

岩石地球化学数据解释

主要标准矿物组合: Or :正长石 Ab :钠长石 An :钙长石 Q :石英 En :辉石 Hy :紫苏辉石 C :刚玉 Mt :磁铁矿 A/CNK=Al 2O 3/CaO+Na 2O+K 2O A/CNK 数值: >1.1,S 型花岗岩,过铝的 <1.1,I 型花岗岩 里特曼指数σ: σ<1.8,钙性的 1.8<σ<3.3,钙碱性的 3.3<σ<9,碱钙性的 Σ>9,碱性的 钙碱率A.R ,(适用于42%<SiO 2<70%的岩石),SiO2相同时,数值越大越碱性 NK/A=Na 2O+K 2O/Al 2O 3 NK/A 数值: NK/A <0.9,钙碱性 0.9<NK/A <1,偏碱性 1≤NK/A ,偏碱性 分异指数DI :数值越大表明岩浆分异演化越彻底,酸性程度越高 数值越小表明岩浆分异演化程度低,基性程度相对高 一般数值: 固结指数SI :岩浆分异程度高,SI 就越小,岩石酸性程度高 岩浆分异程度差,SI 就越大,岩石基性程度高 一般数值: 长英指数FL 与镁铁指数MF :岩浆分离结晶作用程度高,镁铁指数就大,长英指数也大 岩浆分离结晶作用程度低,镁铁指数就小,长英指数也小 一般长英指数和镁铁指数的数值在50—100,绝对小于100 碱性花岗岩 93 花岗岩 80 花岗闪长岩 67 闪长岩 48 辉长岩 30 橄榄辉长岩 27 橄榄岩 6 岩类 玄武岩 玄武安山岩 安山岩 安山英安岩 SI 30-40 20-30 10-20 0-10

稀土重量ΣREE:一般几百都是偏低,上千就高。 轻重稀土比值ΣCe/ΣY:一次热事件的早期单元,比值较大,轻稀土越富集 随着岩浆演化到晚期单元,比值减小, (La/Yb)N: (Ce/Yb)N: 反映轻稀土的分馏程度,比值越大,轻稀土分馏越明显,富集程度越高。 数值一般和1比较 (Sm/Eu)N: 反映重稀土的分馏程度,比值越小,重稀土分馏越明显,富集程度越高。 数值一般和1比较 元素铕值δEu:: δEu>0.7,基性岩浆分异的花岗岩,成因与板块有关 0.3<δEu<0.7,分布最广泛,地壳经不同程度的部分熔融形成 δEu<0.3,岩浆演化晚期的偏碱性花岗岩, 一个超单元的最后一、二个单元,由完全的分异结晶作用形成 δEu一般都是亏损 微量元素数据解释 元素含量数值对比,和地壳丰度值 特征参数: Nb*,Sr*,P*,Ti*,Zr*,数值小于1就亏损,大于1,就富集,与投图一致。 形成的构造环境解释 Tr,同熔型花岗岩,Gr,改造型花岗岩 R1-R2图解: 1,地幔分离 2,板块碰撞前 3,碰撞后抬升 4,造山晚期 5,非造山的 6,同碰撞期 7,造山后期 CRG:洋脊花岗岩,WPG:版内花岗岩,V AG:火山弧花岗岩,COLG:同碰撞花岗岩

火山岩岩石化学整理及应用

火山岩岩石化学整理及应用 作用与目的: (一)客观反映研究对象的化学特征,如氧化物、微量元素的丰度、演化学变化规律、富集及迁移规律。 方法:与平均值、与克拉克值对比,用分析值、某些比值以及哈克图解等方法分析、研究。(二)求化学参数确定火成岩基本类型、系列 如碱性、钙碱性,高钾、低钾、铝饱和、硅饱和、分异度… *对于火山岩,尤为主要是确定拉斑系列和钙碱性系列,采用参数、比值、图解等方法。(三)研究火山岩成因类型 如花岗岩类的I、S;火山岩的钠质、钾质类型;大西洋型、太平洋型… (四)确定成因及大地构造环境 如岛弧、板内、板缘… (五)确定岩石成岩过程中的温压信息(地质温度计、压力计),计算P、T参数… (六)分析成矿情况 *对每一计算,要明确计算要满足的基本条件和数据解释的有效性 *对图解,要确定使用范围,参数的取值范围,计算公式对标准图解要弄清原图的思路,有无改进方法… 火山岩整理、掌握 一、火山岩类的铁调整 (注意:计算氧化度等值时,不允许调整) A:Fe2O3上限值的确定: ①基性一超基性玄武岩类建议用Fe2O3=TiO2+1.5(由于岩石中TiO2较稳定,不易风化蚀变等影响。而TiO2与Fe2O3有一定的关系。) ②中基性岩火山岩(参明照花岗岩的铁调整) B:调整方法 包括不同成分的火山岩、深成岩,均可采用Le Maitre(1976)方法进行调整 1.是否需要调整?视实际氧化度(O X实)与允许氧化度(O X允)的相对大小而定。 所谓O X实是由岩石化学分析结果中的FeO、Fe2O3值计算所得,它反映岩石中实际计算

出来的已有的氧化度。 即:O X实=FeO/(FeO+ Fe2O3) 所谓O X允,是由岩石化学分析结果中的SiO2、K2O,Na2 O值计算所得。深成岩与火 山岩的计算式不同,反映岩石中根据SiO2、K2O+Na2 O(Alk)确定岩石中允许的氧化度。 由于岩石易于氧化,因此O X实的数值不一定可靠,常常由于Fe2O3高、FeO低,而使 O X实低。而由SiO2、K2O+Na2 O(Alk)确定,因此是岩石真正氧化度的标准值。 综前所述,岩石中SiO2、Alk愈高,O X允愈小,则允许的Fe2O3上限值愈大;反之,SiO2、Alk愈低,O X允愈大,则允许的Fe2O3上限值也愈小。火山岩与深成岩O X允计算式不同。 即对于深成岩:O X允=0.88-0.0016SiO2-0.027(K2O+Na2 O) 对于火山岩:O X允=0.93-0.0042SiO2-0.022(K2O+Na2 O) 如果由岩石中Fe2O3、FeO计算的O X实大于由岩石中计算的SiO2、K2O+Na2O计算的O X 允,说明该岩石的Fe2O3不高(FeO不低),不需要调整;反之,如果O X实< O X允,说明该岩石中Fe2O3,超过上限值,需要调整Fe2O3、FeO。 2.如何进行调整?已知O X=FeO/(FeO+ Fe2O3);设调整后的Fe2O3(即Fe2O3的上限值) 为x,如多余的Fe2O3,换算为FeO,则调整后的FeO=FeO+0.9(Fe2O3-x),以之代入O X=FeO /(FeO+ Fe2O3),则 O X =[FeO+0.9(Fe2O3-x))/(FeO+0.9(Fe2O3-x)+x] 得x= (1-O X)(FeO+0.9 Fe2O3)/(0.1O X+0.9) 此x值为调整后的Fe2O3,也即Fe2O3的上限值;该式中O X为O X允,即O X实=O X允。调整 后的FeO设为y,则y=FeO +0.9(Fe2O3-x)。 综上所述,可小结如下: 1.凡是要研究岩石的氧化程度,而不需要计算标准矿物者,岩石中Fe2O3、FeO不应调整。 2.凡是计算标准矿物的岩石,如Fe2O3不超过上限值者,一般也不需要调整;只有超过上 限值者,才需要调整。 3.对于各种成分的火山岩、深成岩,均可用Le Maitre(1976)方法进行调整Fe2O3、FeO。凡 O X允O X实者,则需要调整。 二岩石化学指数计算(常用以下7 项) 1. 钙碱指数(CA):碱性(CA<51)、碱钙(5161) 4类。 2. 里特曼指数(σ):σ=(Na2O+K2O)2/(SiO2-43) (σ在SiO2值42%~70%有效)

地球化学岩石测量规程

岩石地球化学测量规程 1.引言 根据ZT/DKY-S-2003的要求,为更好的执行ZT/DKY7.5-1C—2003,结合地质矿产行业相关标准的规定,制定本要求。 2.目的和范围 2.1 目的 本要求的目的是规范地球化学勘查岩石测量野外工作的技术要求,保证岩石测量的质量,使其完全满足地质勘查工作需要。 2.2 范围 适用于地质矿产勘查项目中地球化学岩石测量工作及其它专项地球化学勘查项目的岩石测量工作。 3.职责 3.1 本要求的责任部门是生产技术部和各勘查室及项目组。 3.2 生产技术部负责各地质勘查项目中地球化学岩石测量工作进行中和工作结束后对工作质量的检查验收。 3.3 各勘查室根据工作进程负责安排地球化学岩石测量工作,并对工作进行定期的检查和指导。 3.4 项目组成员具体负责地球化学岩石测量工作的实施。 4.管理内容与要求 4.1适用范围 4.1.1为系统地了解不同地层和岩浆岩中元素的含量(或近似丰度),为区域化探异常解释和评价提供资料,同时,也为基础地质研究提供地球化学资料。 4.1.2为在异常查证和矿产普查中,应用岩石地球化学测量,解决矿源层、赋矿层、矿体剥蚀程度、寻找隐伏矿床等提供资料。 4.1.3在区域化探中不适宜采用水系沉积物、土壤、岩屑等方法的地区利用岩石地球

的测量进行区域化探扫面。 4.2采样密度 仅在利用岩石地球化学测量进行区域化探扫面时,其采样密度要求为: 1:20万化探扫面:1个点/1-2km2 1:5万化探扫面:4-12个点/ km2 用作其他目的的岩石测量不作密度要求。 4.3采样布局 4.3.1用作区域化探扫面的岩石测量布局原则同水系沉积物测量。 4.3.2为了解不同地层、岩浆岩中元素丰度值的岩石测量按不同地质构造单元(或沉积相)来布置。对不同时代的沉积岩、变质岩和岩浆岩进行系统采样。 地层以系(或组)为统计单元,每个采样单元应有30件以上样品;岩浆岩以期或主要岩类为采样单元,每个主要岩类至少有7-10件样品,变质岩区以变质建造或分布面积大的主要岩类为采样单元,每个主要岩类样品数一般不少于5件。 4.4采样方法 4.4.1区域化探扫面的岩石测量采样方法和要求: a)沉积岩(含火山岩)样品的采集。主要选取各地质时代研究程度高、代表性好、岩性出露齐全的区域地质调查标准剖面进行,在标准剖面不能满足要求时,可布 置部分辅助剖面或点采少量样品;岩浆岩样品的采集。主要选取各岩类(不同时 代)面积较大的和有代表性的岩体取样,采样剖面应穿过岩体的不同岩性单元; 变质岩样品的采集,应依变质岩的不同类型区别对待,深变质体的采样可参照岩 浆岩类的取样方法,采样要着重考虑变质建造、岩类及其面形分布特征。浅变质 体的采样,可参照沉积岩的采样方法进行。 b)采集岩石样品时,每个样品在采样点周围10-20米范围内,多处采集(3处以上)同一岩性的新鲜岩石碎块(直径应小于30mm)组合成一个样品,重量300克以 上。按岩石测量记录卡的格式记录有关内容,并应附有采样点的地形地质示意图。

岩石地球化学

云南个旧卡房火山岩稀土元素地球化学特征分析 徐章辉 摘要:云南个旧锡铜多金属矿是一个以锡铜为主的多金属矿区,前人对矿区将行了大量的研究,对矿床成因提出了不同的观点,近年来随着研究的深入表明,个旧锡铜矿区不仅与燕山期花岗岩岩浆期后气化热液侵入有关,印支期的基性火山岩对个旧铜锡矿床起到了很重要的作用,稀土元素具有十分相近的地球化学行为,对于揭示矿区岩石的成因与分类、成矿成岩的物理化学条件和物质来源、成矿机制起到了极其重要的作用而受到重视,并广泛应用于地质矿产资源方面的研究。 关键词:稀土元素球粒陨石分配曲线蛛网图 1地质概况 个旧矿区位于云南省东南部,基本构造格局为东西向、南北向、北东向及北西向断裂、褶皱。卡房矿田位于北东向五子山复式背斜南部,北与老厂矿田相邻,南以白龙断裂为界,出露地层主要为个旧组卡房段,侵入岩为新山花岗岩体,火山岩为三叠纪火山岩。卡房段安尼期火山岩主要产于个旧组下段( T2g1 ) 的碳酸盐层中,与碳酸盐岩层呈整合接触,同步褶曲和位移,未见穿层现象。该期火山岩主要分布于个旧东区,南北长约25 km ,宽约25 km ,分布面积125 km 以上。

图1 稀土元素球粒陨石标准化图解 2 稀土元素球粒陨石标准化图解分析 玄武岩稀土元素球粒陨石标准化配分曲线呈右倾斜,ΣREE 为57.67 ×10^-6~340.84×10^-6平均166.51 ×10^-6 ,具富集轻稀土分布模式( Ce / Y = 2.75~4.12, NLa / Yb = 7.38~18.84) 。轻重稀土分馏程度差异不明显( NL a / Sm = 1.99 ~2.47, NGd / Yb = 2.45~3.95 ) 。铈异常不明显(δCe= 0.90~0.96 ) ,铕具弱的负异常(δEu = 0. 53 ~1.14 ) 。大理岩稀土元素球粒陨石标准化配分曲线同样呈右倾斜, ΣREE 为17.78 ×10^-6~56.05 ×10^-6 ,平均37.04 × 10^-6,具富集轻稀土分1010Σ布模式(ΣCe / Y = 2.36 ~2.79, NL a / Yb = 6.84 ~8.20 ) ,轻稀土比重稀土分馏程 度略明显一些(NLa / Sm = 3.01 ~3.22, NGd / Yb = 1.67 ~1.91 ) 。铈异常不明显(δ = 0.86 ~0.89 ) ,铕具弱的负异Ce常(δEu = 0.85~0.89 ) 。

岩石地球化学-杨学明

第一章岩石地球化学数据的控制因素和分析方法 第一节引言 本书主要讨论岩石地球化学数据及其如何用来获取有关地质过 程和成因信息的方法。习惯上,地球化学数据可分四类:主要元素、 微量元素、放射性成因同位素和稳定同位素地球化学数据(见表1.1)。 我们将以这四类地球化学数据为主线,分别来进行介绍和编写本书 的主要章节。每一章将说明如何用特定的地球化学数据来追索一套 岩石的成因,讨论数据的表达方式和评价其优缺点。 表1.1 津巴布韦Belingwe绿岩带科马提岩岩流的全岩地球化学数据 (据Nisbet等,1987) ZV14 ZV85 ZV10 ZV14 主要元素氧化物(wt%) SiO2 48.91 45.26 45.26 Ni 470 TiO2 0.45 0.33 0.29 Cr 2080 Al2O3 9.24 6.74 6.07 V 187 Fe2O3 2.62 2.13 1.68 Y 10 FeO 8.90 8.66 8.70 Zr 21 MnO 0.18 0.17 0.17 Rb 3.38 MgO 15.32 22.98 26.31 Sr 53.3 CaO 9.01 6.94 6.41 Ba 32 Na2O 1.15 0.88 0.78 Nd 2.62 K2O 0.08 0.05 0.04 Sm 0.96 P2O5 0.03 0.02 0.02 S 0.04 0.05 0.05 放射性成因同位素比值H2O+ 3.27 3.41 2.20 εNd+2.4 H2O- 0.72 0.57 0.28 87Sr/86Sr 0.7056 CO2 0.46 0.84 1.04 总计100.38 99.03 99.20 稳定同位素比值(‰) δ18Ο+7.3 *注明: 主要元素和微量元素Ni,Cr,V,Y,由XRF测定;FeO 由湿化学法测定;H2O和CO2由量重法测定;Rb,Sr,Sm,Nd 由IDMS测定。 主要元素(第三章)是指在任何岩石中占绝对多量的元素,如Si,

岩石地球化学一些原理

花岗岩研究 一、花岗岩的系列划分 根据花岗岩化学成分划分为准铝(metaluminous)、过铝(peraluminous)和过碱性nous)和亚碱性(peralkaline)的成分分类。由于花岗岩通常具有较高的Si02含量,一般岩浆岩中的拉斑、钙碱性和碱性系列的划分在花岗岩研究中并不经常被采用。 所以花岗岩的系列划分时只用投K2O-SiO2 和ANK-ACNK就可以了。碱性-钙碱性-高钾钙碱性和准铝质-过铝质这些系列的划分,是因为通过大量数据证明,这些划分对岩石成因等方面有一些指示意义。例如:钙碱性花岗岩石是岛弧岩浆活动产物,碱性和过碱性与板内背景有关,过铝质花岗岩石(ACNK要大于 1.1)是沉积岩深熔作用形成,尤其是大陆碰撞时期。 二、花岗岩的成因分类MlSA MlsA(即M、I、S和A型)是目前最常用的花岗岩成因分类方案。其英文分别是I(infraerustal或igneous)、s(supraerustal或sedimentary)、A(alkaline,anorogenie 和anhydrous)和M(mantle derived)。 分类依据:花岗岩的岩浆源区性质划分,及火成岩、沉积岩、碱性岩和有地幔参与成分的源区。 A型特征及成因 A型:岩石学和实验岩石学(Clemensetal.,1986;patino Douce,1997)证据表明,A型花岗岩形成温度高,而且部分A型花岗岩形成压力还很低(即较浅部的中上地壳)。因此,正常的I或者S型花岗岩经分异作用是形成不了A型花岗岩的。 A型花岗岩都表现出低Sr、Eu和富集Nb、Zr等元素的特点,反映其源区存在斜长石的残留(形成的压力较低),因此它也不可能是慢源岩浆分异而来(在极端情况下,慢源岩浆的强烈结晶分异可能会产生有限的低Sr、Eu的碱性岩石,但此时应与大规模的镁铁质岩石伴生),或来源于镁铁质源岩的部分熔融。 A型花岗岩的最重要之处是,如果浅部地壳能够发生高温部分熔融,显然暗示其深部存在热异常,而这大多只会在拉张情况下出现。因此,A型花岗岩是判断伸展背景的重要岩石学标志。

双峰式火山岩的成因及其判别方法

双峰式火山岩的成因及其判别方法 摘要:双峰式火山岩通常被认为是在大陆裂谷中形成的。近年来的研究发现,双峰式火山岩还可以出现在多种大地构造背景中,如大陆拉张减薄、弧后扩张、造山带、洋内岛弧和成熟岛弧/活动陆缘等多种环境。对于双峰式火山岩中玄武岩,一致观点认为来源源于地幔岩的部分熔融,而对于酸性火山岩的成因存在争议。本文通过对同源双峰式火山岩的研究,归纳总结了对其形成机制的判断方法。 关键词:双峰式火山岩形成机制判别方法 近年来的研究发现,在地球动力学特征明显不同的环境同样可以产出双峰式火山岩,如大陆拉张减薄、弧后扩张、造山带、洋内岛弧和成熟岛弧/活动陆缘等[1-3]。 1、双峰式火山岩的岩石成因 双峰式火山岩的玄武岩源于地幔岩的部分熔融,这一点基本达成共识,而对于双峰式火山岩中酸性火山岩的成因存在争议,主要是以下两种观点: 一种观点认为酸性岩和基性岩可分别来自不同的母岩浆,二者在空间上的共生可能仅仅与一次热事件有关。酸性火山岩是由地壳深熔作用形成的[4]。这种酸性岩的出露面积一般相比基性火山岩要大得多。由于这种基性岩浆和酸性岩浆来源不同,生成的基性火山岩和酸性火山岩在微量元素比值和Sr、Nd、Pb同位素组成上就有很大的差异。 另一种观点认为酸性岩和基性岩可以具有共同的幔源母岩浆,酸性岩是基性岩分离结晶作用的产物,其中只有少量或没有地壳物质的加入[5]。这种来源相同的基性岩和酸性岩一般具有相似的微量元素比值和同位素特征,但生成的酸性岩要比玄武岩少的多。 2、双峰式火山岩岩石成因的判别方法 针对双峰式火山岩酸性火山岩岩石成因存在的争议,我们应该先考虑酸性火山岩和基性火山岩是否是同源的,如果是同源,那么酸性火山岩是继续火山岩部分熔融还是分离结晶的结果呢?如果不是同源,那它是否就是下地壳深熔的结果呢?下面具体介绍同源双峰式火山岩可以采用的判断方法。 2.1 基性火山岩与酸性火山岩是否同源 由于Th、Ta、Hf 都是强不相容元素,其亲岩浆性的变化是同步的,Hf/Th 和Hf/Ta比值在地幔部分熔融过程中只有很小的变化,在岩浆分离结晶过程中基本不变,OIB型地幔Hf/Ta为2.9,因此,相对原始岩浆中,Hf/Th 和Hf/Ta比值大的差异被解释为源区成分不同引起。如果基性玄武岩和酸性玄武岩的Hf/Ta 比值非常相似,又几乎全部落在OIB型地幔附近,就可以说明它们具有相似的

火山岩石成因

①火成岩也称岩浆岩。来自地球内部的熔融物质,在不同地质条件下冷凝固结而成的岩石。当熔浆由火山通道喷溢出地表凝固形成的岩石,称喷出岩或称火山岩。常见的火山岩有玄武岩、安山岩和流纹岩等。当熔岩上升未达地表而在地壳一定深度凝结而形成的岩石称侵入岩,按侵入部位不同又分为深成岩和浅成岩。花岗岩、辉长岩、闪长岩是典型的深成岩。花岗斑岩、辉长玢岩和闪长玢岩是常见的浅成岩。根据化学组分又可将火成岩分为超基性岩(SiO2 ,小于45%)、基性岩(SiO2 ,45%~52%)、中性岩(SiO2 ,52%~65%)、酸性岩(SiO 2 ,大于65%)和碱性岩(含有特殊碱性矿物,SiO 2 ,52%~66%)。火成岩占地壳体积的64.7%。 ②沉积岩。在地表常温、常压条件下,由风化物质、火山碎屑、有机物及少量宇宙物质经搬运、沉积和成岩作用形成的层状岩石。按成因可分为碎屑岩、粘土岩和化学岩(包括生物化学岩)。常见的沉积岩有砂岩、凝灰质砂岩、砾岩、粘土岩、页岩、石灰岩、白云岩、硅质岩、铁质岩、磷质岩等。沉积岩占地壳体积的7.9%,但在地壳表层分布则甚广,约占陆地面积的75%,而海底几乎全部为沉积物所覆盖。 沉积岩有两个突出特征:一是具有层次,称为层理构造。层与层的界面叫层面,通常下面的岩层比上面的岩层年龄古老。二是许多沉积岩中有“石质化”的古代生物的遗体或生存、活动的痕迹-----化石,它是判定地质年龄和研究古地理环境的珍贵资料,被称作是纪录地球历史的“书页”和“文字“。 ③变质岩。原有岩石经变质作用而形成的岩石。根据变质作用类型的不同,可将变质岩分为5类:动力变质岩、接触变质岩、区域变质岩、混合岩和交代变质岩。常见的变质岩有糜棱岩、碎裂岩、角岩、板岩、千枚岩、片岩、片麻岩、大理岩、石英岩、角闪岩、片粒岩、榴辉岩、混合岩等。变质岩占地壳体积的27.4%。 岩石具有特定的比重、孔隙度、抗压强度和抗拉强度等物理性质,是建筑、钻探、掘进等工程需要考虑的因素,也是各种矿产资源赋存的载体,不同种类的岩石含有不同的矿产。以火成岩为例,基性超基性岩与亲铁元素,如铬、镍、铂族元素、钛、钒、铁等有关;酸性岩与亲石原素如钨、锡、钼、铍、锂、铌、钽、铀有关;金刚石仅产于金伯利岩和钾镁煌斑岩中;铬铁矿多产于纯橄榄岩中;中国华南燕山早期花岗岩中盛产钨锡矿床;燕山晚期花岗岩中常形成独立的锡矿及铌、钽、铍矿床。石油和煤只生于沉积岩中。前寒武纪变质岩石中的铁矿具有世界性。许多岩石本身也是重要的工业原料,如北京的汉白玉(一种白色大理岩)是闻名中外建筑装饰材料,南京的雨花石、福建的寿山石、浙江的青田石是良好的工艺美术石材,即使那些不被人注意的河沙和卵石也是非常有用的建筑材料。许多岩石还是重要的中药用原料,如麦饭石(一种中酸性脉岩)就是十分流行的药用岩石。岩石还是构成旅游资源的重要因素,世界上的名山、大川、奇峰异洞都与岩石有关。我们祖先从石器时代起就开始利用岩石,在科学技术高度发展的今天,人们的衣、食、住、行、游、医……无一能离开岩石。研究岩石、利用岩石、藏石、玩石、爱石已不再是科学家的专利,而逐渐变成广大群众生活的组成部分。 岩石的风化 岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。导致上述现象的作用称风化作用。分为:①物理风化作用。主要包括温度变化引起的岩石胀缩、岩石裂隙中水的冻结和盐类结晶引起的撑胀、岩石因荷载解除引起的膨胀等。②化学风化作用。包括:水对岩石的溶解作用;矿物吸收水分形成新的含水矿物,从而引起岩石膨胀崩解的水化作用;矿物与水反应分解为新矿物的水解作用;岩石因受空气或水中游离氧作用而致破坏的氧化作用。③生物风化作用。包括动物和植物对岩石的破坏,其对岩石的机械破坏亦属物理风化作用,其尸体分解对岩石的侵蚀亦属化学风化作用。人为破坏也是岩石风化的重要原因。岩石风化程度可分为全风化、强风化、弱风化和微风化4个级别。 大约在200年前,人们可能认为高山、湖泊和沙漠都是地球上永恒不变的特征。可现在我们已经知 道高山最终将被风化和剥蚀为平地,湖泊终将被沉积物和植被填满,沙漠会随着气候的变化而行踪不定。地球上的物质永无止境地运动着。暴露在地壳表面的大部分岩石都处在与其形成时不同的物理化学条件下,而且地表富含氧气、二氧化碳和水,因而岩石极易发生变化和破坏。表现为整块的岩石变为碎块,或

岩石地球化学-结课作业答案(原著-可直接交)-中国地质大学

2013《岩石地球化学》开卷考试题目 一、元素分配系数的定义及其测定方法(20分)。 在温度、压力一定的条件下,微量元素在两相平衡分配时其浓度比为一常数K D,K D即为分配系数。在一定浓度范围内分配系数与微量元素的浓度无关,只与温度、压力有关。 根据能斯特定律,分配系数需测定平衡体系中固相和液相两部分的微量元素浓度,目前常用直接测定法和实验测定法。直接测定法即直接测定地质体中两平衡共存相的微量元素丰度,再按能斯特分配定律计算分配系数。实验测定法是用化学试剂合成与天然岩浆成相似的玻璃物质;或者直接采用天然物质作为初始物质,实验使一种矿物和熔体或两种矿物间达到平衡,并使微量元素在两相中达到溶解平衡,然后测定元素在两相中的浓度,得出分配系数。 二、举例说明何谓相容元素和不相容元素(20分)。 相在岩浆或热液中的某些微量元素(如Cr、Ni、Co、V等)。在矿物结晶过程中趋向于在早期固相中富集。因其浓度低,不能形成独立矿物,但其离子半径、电荷、晶体场等晶体化学性质与构成结晶矿物的主要元素相似,故在固——液相反应或平衡中易于呈类质同象形式进入有关矿物相。其固——液相分配系数明显大于1。元素的相容性可因结晶条件的不同而改变。 不相容元素又称湿亲岩浆元素,在岩浆或热液的矿物结晶过程中趋向于在液相中富集的某些微量元素(如Sn、Li、Rb、Sr、Cs、Be、Ba、Zr、Hf、Nb、Ta、Th、U和稀土元素)。因其浓度低,不能形成独立矿物相。因受其离子半径、电荷和化合键所限,很难进入造岩矿物晶体结构中,而在残余岩浆或热液中相对富集。其固-液相分配系数近于零。元素的不相容性可因结晶条件的不同而改变。 三、Rb-Sr同位素定年的方程、等时线年龄测定的原理及其适用的岩石类型(20 分)。 Rb-Sr法测定地质年龄的原理基于87Rb经过一次β衰变生成稳定的87Sr,即: 87Rb→87Sr+β ̄+v+E 式中:β ̄表示负电子;v为反中微子;E为衰变能。设含有初始(87Sr)0,

岩石地球化学找矿

岩石地球化学找矿:是用岩石地球化学测量了解岩石中元素分布,总结元素分散与集中地规律,研究其与成岩成矿作用的联系,并通过发现异常与解释评价来进行找矿的。也可根据所发现的区域异常,评价各时代的地层及侵入体的含矿性。 成矿热液:沿着构造通道自深处向上进入上层围岩,由于物理化学条件的改变,促使金属组分从溶液中析出,在成矿有利部位,大量沉淀聚集,形成了矿体。同时成矿溶液还对矿体围岩产生影响,一方面是改变围岩的矿物组成和结构构造,产生近矿围岩蚀变现象,另一方面使成矿有关组分带入和围岩某些组分释出,改变围岩的元素分布,特别是改变围岩中微量元素的分布,形成原生晕。 成晕元素的迁移方式:渗透迁移,扩散迁移。气相迁移 引起含矿溶液物理化学条件的因素:1.含矿溶液进入开阔断裂带,外部压力降低,挥发物质气化逸出,造成有关物质沉淀。2.。热液随远离岩浆而冷却。3.热液与围岩相互作用,改变了溶液的成分或Ph值和Eh值。4,在近地表处氧化使络合物分解。5,与下渗的地下水相遇而起化学反应。 影响元素迁移的因素:含矿溶液的性质,构造,围岩性质, 岩石地球化学测量的应用:矿产的普查评价阶段,对有矿化,蚀变或物探,化探异常的找矿远景地段,进行岩石地球化学找矿工作,可寻找盲矿体,并对矿化蚀变带或物化探异常区的找矿远景作出评价。在普查找矿阶段,岩石地球化学找矿可用以评价地质体(岩体,地层,断裂带,蚀变岩等)的含矿性。 区域地质研究的主要方面:地层的划分与对比。沉积环境的分析。侵入体的划分,对比和成因分析。变质岩原岩类别的判断。 水系沉积物地球化学找矿的应用:了解水系沉积物中元素的分布,总结其分散,集中的规律,研究其与附近基岩中地质体的联系,通过发现异常与解释评价异常来进行找矿。 分散流和次生晕的共同点:首先:具有共同的物质来源,即都是矿体及其原生晕在表生作用下,与矿石组分有关的元素,迁移分散所形成。其次:形成作用基本相同,在形成过程中,即可有与物理风化作用有关的机械分散,又可有化学风化作用下的水成分散,而且都是以机械分散为主。第三:都是表生作用下形成的因而都受气候因素所控制。 分散流的形成有特殊之处:第一:形成分散流的物质不仅是来自地表的矿体与原生晕,也可以来自地下的盲矿体及原生晕,甚至还可以来自次生晕,进一步迁移,分散,在水系沉积物中形成分散流。第二:形成作用方面,虽然分散流,次生晕都可有机械分散和水成分散,但分散流的机械分散并不像次生晕那样由于气候变化所造成,而主要是由于水动力的冲刷,搬运,矿石物质进入水系,并在水系内进一步分散而形成分散流。第三:气候对分散流形成的控制,不仅如同次生晕那样反应在年平均温度,年降雨量方面,而且还反映在季节性气温变化和降雨量上,因为季节性气温和降雨量变化,对形成分散流物质的冲刷搬运影响很大。水系沉积地球化学找矿:适合在地形切割剧烈,水系发育的山区进行,而在地形平坦,水系不发育的地区,起应用效果受到限制,水系沉积地球化学找矿不仅能找到有成矿远景的地区,为成矿预测及基础地质研究提供资料,而且方法简单,效率高,用于大规模扫面,有利于迅速查明广大地区矿产资源远景,对找矿来说可起到战略侦察的重要作用。 化探野外工作:一个完整的化探工作包括踏勘,实验,工作设计,采样,样品加工处理,分析,资料整理,异常解释评价与验证直到提交报告的全过程,是一个有组织,有计划,有步聚调查研究的过程,涉及很多人员协同工作,不但是技术工作,也是组织管理工作。 地球化学异常的评价方法:等级评价。类比评价异常。地质,物探,化探综合评价异常。利用单矿物中微量元素区分矿与非矿。

岩石地球化学文献整理绝对有用

岩石地球化学文献整理 文献: No 2. Acadian造山带超高压变质作用的发现 在造山带中构造作用如逆冲推覆的速度要比热传递速度快得多, 因而会扰 动地壳的热结构。一旦构造运动停止, 这种受扰动的地壳热结构就会向稳态松弛, 同时加厚地壳区由于遭受剥蚀及构造伸展等因素会导致深部岩石折返抬升。 金红石是俯冲带变质岩( 如榴辉岩)中高场强元素(特别是Nb、Ta元素)的一个重要载体, 长期以来一直受到许多地质学家的重视。它可以容纳和控制高达百分比含量的高场强元素和过渡金属元素, 如Nb、Ta、V、Cr、Fe、A l和W 等。 超高温(富Zr)金红石出现在富Zr,Ti的石榴子石中,Zr含量与石榴子石达到平衡,受石榴子石的保护保留了峰期或者近峰期的变质特征,锆石甚至斜锆石的出现可能是因为体系中Zr的饱和,也可能是退变质过程中金红石中Zr重新结晶形成。出现在蓝晶石区域的低温(贫Zr)金红石是由于退变质过程中金红石中的Zr向外扩散产生的。 金红石Zr温度计具有较好的精度,在超高温地质活动研究中受压力影响较小。一般来看,被石榴子石包裹并达到平衡的金红石记录了峰期或近峰期变质作用的信息。总体来说,除了温度,金红石Zr还受到(1)压力;(2)ZrO2和SiO2的活度; (3)亚固相条件下Zr含量变化(交换和扩散);(4)降压折返过程中的退变反应;(5)金红石生长世代及介质等一系列因素影响,这虽然给我们判定其温度地质意义带来一定的影响,但也暗示了大量的地质信息。 超高温变质作用的热源可能有:(1)高温幔源物质的热量(2)增厚地壳富集的放射性元素(3)机械作用(4)岩浆作用 No 6.地壳深熔和S型花岗岩形成初期熔体组分与流体机制的重建 文献的理解与领悟( 通过Spanish Betic Cordillera 地区变沉积岩转熔矿物石榴子石中的熔体包裹体的均一化实验,得到均一化的MI在700℃条件下的组分:淡色花岗质过铝质组分,铝饱和指数ASI=1.04~1.35,含水量:3.1~7.6wt%。并认为该组分最能代表地壳深熔时的熔体组分。 这篇文章具有很强的目的导向性——即地壳深熔初期熔体组分。那么如何获得答案,实验岩石学是一个途径,但是不能做太精细化的限定。从野外采集样品是另外一个途径,作者成功的关键就在于选取了一个最能代表地壳熔融初始熔体的样品——转熔矿物中的熔体包裹体(MI),最后作均一化实验和理论分析,结果已是水到渠成。 文章存在的问题:如何确定本研究的石榴子石是转熔矿物? 因为转熔矿物能完整保存下来的很少,而且,对转熔矿物的鉴定还没有形成统一的意见。 本次研究的方法新颖,就像是一把钥匙,打开了深熔体初始组分的这道大门。但是这把钥匙是不是对所有地质背景下的地壳深熔都适用,需要进一步检验。

相关文档
相关文档 最新文档