文档库 最新最全的文档下载
当前位置:文档库 › 编号16、牛顿定律临界极值

编号16、牛顿定律临界极值

编号16、牛顿定律临界极值
编号16、牛顿定律临界极值

牛顿定律应用临界、极值问题

1.接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力FN=0.

2.相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.

3.绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:FT=0.

4.加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.

例1.个质量为0.2 kg的小球用细绳吊在底角θ=53°的斜面顶端,如图所示.斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s2的加速度向左做加速运动时,

求绳子的拉力及斜面对小球的弹力.(g取10 m/s2)

变式练习1:如图所示,质量为m=1 kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=2 kg,斜面光滑,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,试确定推力F的取值.(g=10 m/s2 )

拓展:若斜面与物块间的动摩擦因数为μ=0.4,其他不变,试确定推力F的取值范围.

(g=10 m/s2 )

例2.如图所示,一轻绳上端系在车的左上角的A 点,另一轻绳一端系在车左端B 点,B 点在A 点正下方,A 、B 距离为b ,两绳另一端在C 点相结并系一质量为m 的小球,绳AC 长度为2b ,绳BC 长度为b.两绳能够承受的最大拉力均为2mg.求:

(1)绳BC 刚好被拉直时,车的加速度是多大?

(2)为不拉断轻绳,车向左运动的最大加速度是多大?

2-1.小车在水平路面上加速向右运动,一质量为m 的小球用一条水平线和一条斜线(与竖直方向成30度角)把小球系于车上,求下列情况下,两绳的拉力:(1)加速度a1=g/3 (2)加速度a2=2g/3

例3.如图6所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m ,用竖直向下的力压物体稳定后撤掉,物体与秤盘分开时弹簧的形变量 。

3-1:现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,

物体与秤盘分开时弹簧的形变量 。

3-2:如图25-7所示,在光滑水平面上挨放着甲、乙两物块。已知m2=2m1,乙受到水平拉力F2=6N ,甲受到一个随时间变化的水平推力F1=(9-2t )N 作用。

当t= S

时,甲、乙两物块间开始无相互挤压作用。

图6

3-3. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g=10 m/s 2

)求:使木块A 竖

直做匀加速运动的过程中,力F 的最大值;

例4. 如图所示,质量为M 的木块与水平地面的动摩擦因数为μ,用大小为F 的恒力使木块沿地面向右作直线运动,木块M 可视为质点,则怎样施力才能使木块产生最大的加速度?最大加速度为多少?

4-1水平地面上有一木箱,木箱与地面之间的动摩擦因数为(01)μμ<<。现对木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平面夹角为θ,如图,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则

A.F 先减小后增大

B.F 一直增大

C.F 的功率减小

D.F 的功率不变

4-2如图所示,在水平面上放一质量为m 的物体,与水平面间的动摩擦因数为μ,现用力F 拉物体,(1)如果要是物体做匀速运动,求拉力F 的最小值(2)如果要是物体以加速度a 做匀加速运动,求拉力F 的最小值

例5.如图,竖直放置的圆环O 为圆心,A 为最高点,将物体从A 点释放经t 1落到B 点,沿光滑斜面物体从C 点由静止释放经t 2落到B 点,沿光滑斜面将物体从D 点由静止释放经t 3落到B 点,关于t 1、t 2、t 3的大小,以下说法中正确的是:( )

A 、t 1>t 2>t 3

B 、t 1=t 2=t 3

C 、t 1>t 2=t 3

D 、以上答案均不正确

F

F

图1

拓展 一质点从倾角为的斜面上方P 点沿光滑斜槽PA 由静止开始下滑,如图12,若要使质点滑至斜面所需的时间最短,则P A 与竖直线PB 之间的夹角应

取何值?若PB 长为,求此最短时间。

图12

5-1一个物块由静止开始沿不同长度的光滑斜面滑到水平地面上的定点B ,这些斜面的起点都靠在竖直墙上,如图1所示,已知B 点距墙角距离为b ,要使小物块从斜面的起点滑到B 点所用的时间最短,求斜面的起点(如图中P 点)距地面的高度是多少?所用的时间又是多少?

5-2图所示,几个倾角不同的光滑斜面具有相同的高度,物体以大小相同的初速度沿不同的斜面向上运动,都不能到达E 点,则关于物体的运动时间,以下说法正确的是( )

A. 沿倾角为

的斜面上升到最高点所需的时间最短 B. 沿倾角为

的斜面上升到最高点所需的时间最短 C. 沿倾角为的斜面上升到最高点所需的时间最短

D. 以上说法均不对

练习

1. 一间新房即将建成要封顶,考虑到下雨时落至房顶的雨滴能尽快淌离房顶,需要设计房顶的高度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么图4中所示的四种情况中符合要求的是: ( )

图4

2.如图6,aD .bD .cd 是竖直面内三根固定的光滑细杆,A .B .C .d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。每根杆上都套着一个小滑环(图中未画出),三个滑环分别从A .B .c 处释放(初速为0),用、、依次表示滑环到达d 所用的时间,则 ( )

A .

B .

C .

D .

3.在距离坡底为的山坡上竖直固定长也为的直杆AO ,A 端与坡底B 间连有一钢丝,钢丝处于伸直状态,一穿心于钢丝上的小球从A 点由静止

开始沿钢丝无摩擦地滑下,如图9,则小球在钢绳上滑行的时间为( )

A

. B . C

. D .条件不足,无法计算 图9

4.一个物体在斜面上以一定的速度沿斜面向上运动,斜面底边水平,斜面倾角θ可在0~90°间变化,设物体达到的最大位移x 和倾角θ间关系如图25-4所示,试计算θ为多少时x 有最小值,最小值为多少?

5. 一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图5所示。现让木板由静止开始以加速度a(a <g )匀加速向下移动。求经过多长时间木板开始与物体分离.

5

6.用细绳拴着质量为m的重物,从深为H的井底提起重物并竖直向上作直线运动,重物到井口时速度恰为零,已知细绳的最大承受力为T,则用此细绳子提升重物到井口的最短运动时间为多少?

7.如图2—1所示,质量均为M的两个木块A、B在水平力F的作用下,一起沿光滑的水平面运动,A与B的接触面光滑,且与水平面的夹角为60°,求使A与B一起运动时的水平力F 的范围。

图2—

11

8.如图1所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A,槽的半径为R,且OA与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m,木块的质量为M,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽。

牛顿运动定律的临界问题

牛顿运动定律的应用----------临界问题 一、临界问题 在物体的运动变化过程中,往往会出现某个特殊的状态,相关物理量在这个特定状态前后会发生突变,这种运动状态称为临界状态。临界状态通常分为运动(速度、加速度)变化的临界状态和力(摩擦力、弹力)变化的临界状态。 1、运动变化的临界状态:运动的物体出现最大或最小速度,相互作用的物体在运动中达到共同的速度等。 2、力变化的临界状态: 相互作用的物体间静摩擦力达到最大时将要发生相对滑动。 相互接触的物体运动中因为弹力逐渐减小直至减小到零将要发生分离等。 二、分析临界问题的一般步骤 1、通过受力分析和过程分析找到临界状态; 2、弄清在临界状态下满足的临界条件;如:两相互滑动的物体恰好不脱离、同向运动的两个物体相距最近的临界条件是两物体达到共同的速度。 3、使用物理方法或数学方法求解。 【例1】(弹力变化的临界)如图1所示,在倾角为θ的光滑斜 面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板.系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .重力加速度为g . 变式1.如图2所示,一弹簧秤的托盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k =800N/m ,开始时系统处于静止状态.现给 P 施加一个竖直向上的力F ,使P 从静止开始做匀加速直线运动,已知在最 初0.2s 内F 是变化的,在0.2s 后F 是恒定的,求F 的最大值和最小值各是 多少.(取g =10m/s 2) 【例2】(摩擦力变化的临界)如图3所示,物体A 叠放在物体B 上,B 置于光滑水平面上.A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2, F 从10逐渐增大到50N 在此过程中,下列说法准确的是( ). A .当拉力F <12 N 时,两物体均保持相对静止状态 B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动 C .两物体从受力开始就有相对运动 D .当拉力超过48 N 时,开始相对滑动 θ C 图1 A B 图2

高考物理牛顿运动定律专题训练答案

高考物理牛顿运动定律专题训练答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。重力加速度g =10m/s 2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】(1)0.3(2) 120(3)2.75m 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:2221114/3/1 v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: 0121 2v mg mg m t μμ+?= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 21222v mg mg m t μμ-?= 而且121t t t s +== 联立可以得到:2120μ= ,10.5s t =,20.5t s =; (3)在10.5s t =时间内,木板向右减速运动,其向右运动的位移为: 01100.52 v x t m +=?=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:

牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。问: (1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大? (2)此过程中水平恒力至少为多少? 例1解析:(1)以m为研究对象,竖直方向有: mg-F f=0 水平方向有:F N=ma 又F f=μ2F N 得:a=12.5 m/s2。 (2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a 水平恒力至少为:F=105 N。 答案:(1)12.5 m/s2(2)105 N 例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求: (1)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (2)劈以加速度a1= g/3水平向左加速运动时,绳的拉力多大? (3)当劈以加速度a3= 2g向左运动时,绳的拉力多大? 例2解:(1)恰无压力时,对球受力分析,得 (2),对球受力分析,得

(3),对球受力分析,得(无支持力) 练习: 1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等) 1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度 隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度 设此时作用于M的力为F min,再取M、m整体为研究对象,则有: F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g 当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)() A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2 2.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对 小猴受力分析,运用牛顿第二定律求解加速度. 解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg; 小猴对细绳的拉力等于细绳对小猴的拉力F′=F; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有

牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题 1.动力学中的典型临界问题 (1)接触与脱离的临界条件 两物体相接触或脱离的临界条件是接触但接触面间弹力F N=0. (2)相对静止或相对滑动的临界条件 两物体相接触且处于相对静止时,常存在着静摩擦力,则相对静止或相对滑动的临界条件是:静摩擦力达到最大值. (3)绳子断裂与松弛的临界条件 绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力.绳子松弛的临界条件是 F T=0. (4)速度最大的临界条件 在变加速运动中,当加速度减小为零时,速度达到最大值. 2.解决临界极值问题常用方法 (1)极限法:把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的. (2)假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题. (3)数学法:将物理过程转化为数学公式,根据数学表达式解出临界条件. 题型一:接触与脱离类的临界问题 例1: 如图所示,在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一 托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做 匀速直线运动(a

牛顿运动定律专题精修订

牛顿运动定律专题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

牛顿运动定律专题 一、基础知识归纳 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以 可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. 理解要点:

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

平衡中的临界极值问题

平衡中的临界和极值问题 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。 求解平衡的临界问题一般用极限法。极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。在平衡中最常见的临界问题有以下两类: 一、以弹力为情景 1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。 2. 绳子断与持续的临界条件是:作用力达到最大值; 绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。 例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。 解:作出A 受力图如图所示,由平衡条件有: F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0 要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为: N F N 3 3 403320≤≤ 变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断? (2)要使细线不被拉断,拉力F 不得超过多少? 变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承 受的最大拉力均为T ,则每根绳的长度不得短于__ ____. 例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。 解析 以球为研究对象,如图所示。有 R h Rh 2cos R h R sin F cos F G sin F 2 2N 1N 1N -= θ-= θ=θ=θ 再以整体为研究对象得F F 2N = 即 G ·h R )h R 2(h F --= 变式训练3:如图所示,平台重600N ,滑轮重不计,要使系统保持静止,人重不能小于( B ) A .150N B .200N C .300N D .600N 二、以最大静摩擦力为情景 靠摩擦力连接的物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。 例3:如图所示,跨过定滑轮的轻绳两端分别系着物体A 和B ,物体A 放在倾角为θ的斜面上。已知物体A 的质量为m ,物体A 与斜面间的动摩擦因数为μ(μ

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

“牛顿第二定律”难题解析

(二)“牛顿第二定律”难题--压轴题参考答案与试题解析 9.(2011?历城区校级模拟)在一个与水平面成α角的粗糙斜面上的A点放着一个物体,它系于一根不可伸长的细绳上,绳子的另一端B通过小孔C穿出底面,如图所示,开始时物体与C等高,当物体开始缓慢下滑时,适当的拉动绳端B,使物体在斜面上划过一个半圆到达C,则A和斜面之间的动摩擦因数μ为() A.s inαB.c osαC.t anαD.c otα 考点:牛顿第二定律;力的合成与分解的运用;向心力. 专题:压轴题;牛顿第二定律在圆周运动中的应用. 分析:物体缓慢转动,近似平衡,受力分析后,根据平衡条件列式求解. 解答:解:物体在斜面上缓慢运动时,受到4个力:重力G,绳子的拉力F ,斜面的支持力F2,物体在运动时受到的摩擦 1 力F3,这四个力的合力近似为零; 其中F1和F3同斜面平行,F2同斜面垂直,G同斜面成(90°﹣α). 根据各力之间的平衡的原则,可列出以下公式: 在垂直斜面方向,有:F2=G?cos α 因此有摩擦力F3=μ F2=μGcosα 接下来考虑平行于斜面的力,为了简化问题状态,可以直接以A点处的系统状态来进行分析,此时时摩擦力和重力在斜面平行方向上的力是反向、等大的,即应该是近似平衡的,有 μGcosα=Gsinα 因此μ=tan α 故选C. 点评:这个解法最有技巧的部分就是选取了A点处受力分析,根据平衡条件得到重力的下滑分量等于摩擦力,然后列式求解;当然,也可以对其它点处,运用平衡条件列式. 11.(2007?徐州模拟)压敏电阻的阻值随所受压力的增大而减小,有位同学利用压电陶瓷设计了判断小车运动状态的装置,其工作原理如图(a)所示,将压电陶瓷和一块挡板固定在绝缘小车上,中间放置一个绝缘重球,它的直径略小于陶瓷和挡板间的距离.小车向右做直线运动过程中,电压流表示数如图(b)所示,下列判断正确的是() A.从t 到t2时间内,小车做变加速直线运动 1 B.从t 到t2时间内,小车做匀加速直线运动 1 C.从t 到t3时间内,小车做匀加速直线运动 2 D.从t 到t3时间内,小车做匀速直线运动 2 考点:牛顿第二定律;闭合电路的欧姆定律. 专题:压轴题;恒定电流专题. 分析:根据图象,结合题意,得到压力的变化规律,再根据牛顿第二定律判断出加速度的变化规律,从而得到小车的运动情况. 解答:解:A、B、从t 到t2时间内,压电陶瓷两端电压变大,故受到的压力变大,故其对小球有向右且不断变大的压力, 1 故小球的加速度不断变大,水平向右,由于速度向右,故小球向右做加速度不断变大的加速运动,故A正确,B错误; C、D、从t2到t3时间内,电陶瓷两端电压不变,故受到的压力恒定,故其对小球有向右且恒定大的压力,故小球的 加速度恒定,水平向右,由于速度向右,故小球向右做匀加速直线运动,故C正确,D错误; 故选AC. 点评:本题关键是对小球受力分析,根据图象得到压力的变化规律,然后根据牛顿第二定律判断出加速度的情况,最后得到小车的运动情况. 16.(2010?越秀区三模)如图所示装置中,光滑的定滑轮固定在高处,用细线跨过该滑轮,细线两端各拴一个质量相等的砝码m1和m2.在铁架上A处固定环状支架z,它的孔只能让m1通过.在m1上加一个槽码m,m1和m从O点由静止释放向下做匀加速直线运动.当它们到达A时槽码m被支架z托住,m1继续下降.在下图中能正确表示m1运动速度v与时间t和位移x与时间t关系图象的是() A.B.C.D.

5 平衡中的临界问题

【专题概述】 1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。 2.临界问题:涉及临界状态的问题叫做临界问题。 3. 解决临界问题的基本思路 (1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题 4.三类临界问题的临界条件 (1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。 (2)绳子松弛的临界条件是:绳中拉力为零 页脚内容1

(3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等.解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 【典例精讲】 典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。现给A施加一水平力F,如图所示。设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是() 页脚内容2

精选2018高中物理第四章牛顿运动定律6深度剖析临界问题练习新人教版必修1

深度剖析临界问题 (答题时间:30分钟) 1. (多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是() A. 若μmg小于kx,则小车的加速度方向一定向左 m mg kxμ - B. 若μmg小于kx,则小车的加速度最小值为a= m mg kxμ - ,且小车只能向左加速运动 C. 若μmg大于kx,则小车的加速度方向可以向左也可以向右 D. 若μmg大于kx,则小车的加速度最大值为 m mg kxμ + ,最小值为 m mg kxμ - 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量m=15 kg的重物,重物静止于地面上,有一质量m1=10 kg的猴子,从绳子的另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度为(g=10 m/s2)() A. 25 m/s2 B. 5 m/s2 C. 10 m/s2 D. 15 m/s2 3. (渭南检测)如图所示,有A、B两个楔形木块,质量均为m,靠在一起放于水平面上,它们的接触面的倾角为θ,现对木块A施一水平推力F,若不计一切摩擦,要使A、B一起运动而不发生相对滑动,求水平推力F的最大值。 4.(山东高考)如图所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与 斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A 点运动到B点,A、B之间的距离L=10 m.,已知斜面倾角θ=30°,物块与斜面之间的

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

专题五 牛顿第二定律中的临界和极值问题

专题五 牛顿运动定律的应用 ——临界和极值问题 一、概念 (1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态。 (2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况。 二、关键词语 在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类问题一般用假设法。 三、常见类型 动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛问题;三是摩擦力发生突变的滑动与不滑动问题。 四、解题关键 解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件。 常见的三类临界问题的临界条: 1、 相互接触的两个物体将脱离的临界条件是:相互作用的弹力为零。 2、 绳子松弛的临界条件是:绳子的拉力为零。 3、 存在静摩擦的系统,相对滑动与相对静止的临界条件是:静摩擦力达到最大值。 五、例题解析 【例题1】质量为0.2kg 的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g =10 m/s 2) (1) 斜面体以23m/s 2的加速度向右加速运动; (2) 斜面体以43m/s 2,的加速度向右加速运动; 【例题2】如图所示,轻绳AB 与竖直方向的夹角θ=37°,绳BC 水平,小球质量m =0.4 kg ,取g =10m/s 2。试求: (1)小车以a 1=2.5m/s 2的加速度向右做匀加速运动时,绳AB 的张力是多少? (2)小车以a 2=8m/s 2的加速度向右做匀加速运动时,绳AB 的张力是多少?

牛顿运动定律中的临界问题

例1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g =匀加速向下移动。求经过多长时间木板开始与物体分离。 例2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F ,使P 从静 止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2 ,则F 的最小值是,F 的最大值是。 例3、一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的, 求F 的最大值和最小值各是多少?(g=10m/s 2 ) 例4、如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N ,A受到的水平力FA =(9-2t)N ,(t 的单位是s)。从t =0开始计时,则: A .A物体在3s 末时刻的加速度是初始时刻的5/11倍; B .t >4s 后,B物体做匀加速直线运动; C .t =4.5s 时,A物体的速度为零; D .t >4.5s 后,AB的加速度方向相反。 图7 图8 图 9 图10

例5、如图11所示,细线的一端固定于倾角为450 的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。当滑块至少以加速度a=向左运动时,小球对滑块的压力等于零,当滑块以a=2g 的加速度向左运动时,线中拉力T=。 例6、如图所示,在小车的倾角为300 的光滑斜面上,用倔强系数k=500N/m 的弹簧连接一个质量为m=1kg 的物体,当小车以2 /3s m 的加速度运动时,m 与斜面保持相对静止,求弹簧伸长的长度?若使物体m 对斜面的无压力,小车加速度必须多大?若使弹簧保持原长,小车加速度大小、方向如何?

牛顿运动定律专题(一)

牛顿运动定律专题(一) 知识达标: 1、下列说法正确的是…………………………………() A、甲主动推乙,甲对乙的作用力的发生先于乙对甲的作用力 B、施力物体必然也是受力物体 C、地球对人的吸引力显然要比人对地球的吸引力大得多 D、以卵击石,卵破碎,说明石块对卵的作用力大于卵对石块的作用力 2、关于惯性下列说法中正确的是…………………………………………() A、物体不受力或所受的合外力为零才能保持匀速直线运动状态或静止状态,因此只有此时物体才有惯性 B、物体加速度越大,说明它的速度改变得越快,因此加速度大的物体惯性小; C、行驶的火车速度大,刹车后向前运动距离长,这说明物体速度越大,惯性越大 D、物体惯性的大小仅由质量决定,与物体的运动状态和受力情况无关 3、一小球用一细绳悬挂于天花板上,以下几种说法正确的是………………………() A、小球所受的重力和细绳对它的拉力是一对作用力和反作用力 B、小球对细绳的拉力就是小球所受的重力 C、小球所受的重力的反作用力作用在地球上 D、小球所受重力的反作用力作用在细绳上 4、当作用在物体上的合外力不为零时,下面结论正确的是……………………() A、物体的速度大小一定发生变化 B、物体的速度方向一定发生变化 C、物体的速度不一定发生变化 D、物体的速度一定发生变化 5、关于超重和失重的说法中正确的是…………………………………() A、超重就是物体受到的重力增加了 B、失重就是物体受到的重力减少了 C、完全失重就是物体的重力全部消失了 D、不论超重、失重还是完全失重,物体所受重力不变 6、在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他作出了下列判断,你认为正确的是() A、升降机以0.8g的加速度加速上升 B、升降机以0.2g的加速度加速下降 C、升降机以0.2g的加速度减速上升 D、升降机以0.8g的加速度减速下降 7、2001年1月,我国又成功进行“神舟二号”宇宙飞船的航行,失重实验是至关宇宙员生命安全的重要实验,宇宙飞船 在下列哪种状态下会发生失重现象………………………() A、匀速上升 B、匀速圆周运动 C、起飞阶段 D、着陆阶段 经典题型: 一、牛顿第二定律结合正交分解 例:1、细线悬挂的小球相对于小车静止,并与竖直方向成θ角,求小车运动的加速度。 2、如图,斜面固定,物体在水平推力F作用下沿斜面上滑,已知物体质量m,斜面倾角 θ,动摩擦因数μ和物体小球加速度a,求水平推力F的大小。 练习:1、如图,已知θ=300,斜杆固定,穿过斜杆的小球质量m=1kg,斜杆与小球动摩擦因数μ= √3/6,竖直向上的力F=20N,求小球的加速度a=?

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

实用文档之牛顿运动定律中的临界和极值问题

实用文档之"牛顿运动定律中的临界和极值问题" 1.动力学中的典型临界问题 (1)接触与脱离的临界条件 两物体相接触或脱离的临界条件是接触但接触面间弹力F N=0. (2)相对静止或相对滑动的临界条件 两物体相接触且处于相对静止时,常存在着静摩擦力,则相对静止或相对滑动的临界条件是:静摩擦力达到最大值. (3)绳子断裂与松弛的临界条件 绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力.绳子松弛的临界条件是F T=0. (4)速度最大的临界条件 在变加速运动中,当加速度减小为零时,速度达到最大值. 2.解决临界极值问题常用方法 (1)极限法:把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的. (2)假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题. (3)数学法:将物理过程转化为数学公式,根据数学表达式解出临界条件. 题型一:接触与脱离类的临界问题 例1: 如图所示,在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动(a

运动一段距离后将分离,分离后A 上升最大高度为0.2 m ,取g =10 m/s 2 , 求刚撤去F 时弹簧的弹性势能? 例3:如图所示,质量均为m 的A 、B 两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg 21的恒力F 向上拉A ,当运动距离为h 时A 与B 分离。则下列说法正确的是( ) A .A 和 B 刚分离时,弹簧为原长 B .弹簧的劲度系数等于h mg 23 C .从开始运动到A 和B 刚分离的过程中,两物体的动能先增大后减小 D .从开始运动到A 和B 刚分离的过程中,A 物体的机械能一直增大 例4:如图甲所示,平行于光滑斜面的轻弹簧劲度系数为k ,一端固定在倾角为θ的斜面底端,另一端与物块A 连接;两物块A 、B 质量均为m ,初始时均静止。现用平行于斜面向上的力F 拉动物块B ,使B 做加速度为a 的匀加速运动,A 、B 两物块在开始一段时间内的v-t 关系分别对应图乙中A 、B 图线(t 1时刻A 、B 的图线相切,t 2时刻对应A 图线的最高点),重力加速度为g ,则( ) A .t 1和t 2时刻弹簧形变量分别为k ma mg +θsin 和0 B .A 、B 分离时t 1()ak ma mg +=θsin 2 C .拉力F 的最小值ma mg +θsin D .从开始到t 2时刻,拉力F 逐渐增大

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

相关文档
相关文档 最新文档