文档库 最新最全的文档下载
当前位置:文档库 › 高三数学总复习:专题一第4讲不等式(2)

高三数学总复习:专题一第4讲不等式(2)

高三数学总复习:专题一第4讲不等式(2)
高三数学总复习:专题一第4讲不等式(2)

2014-2015学年度第二学期教学案例

年 级:ZX-12 学 科:SX

编写时间:2015-03-11 编 号:NO:011

主 备 人: 复备人:

教学内容:不等式(2)

教学目标:

掌握不等式解法;基本不等式;线性规划;不等式的实际应用。

教学重点:

一元二次不等式的解法、基本不等式及线性规划问题。

教学难点:

不等式成立问题.

教学过程:

一、基础训练:

1.若A ={x |x 2+(p +2)x +1=0,x ∈R },B ={x |x >0},且A ∩B =?,则实数p 的取值范围是________.

解析 当A =?时,Δ=(p +2)2-4<0,∴-4

当A ≠?时,方程x 2+(p +2)x +1=0有一个或两个非正根,

∴?????

Δ≥0,x 1+x 2=-(p +2)≤0,∴p ≥0.综上所述,p >-4. 2.已知函数f (x )=x 2-2x +3在闭区间上的最大值为3,最小值为2,则m 的取值范围为________.

解析 ∵f (x )=(x -1)2+2,其对称轴为x =1,当x =1时,f (x )min =2,故m ≥1,又∵f (0)=3,f (2)=3,∴m ≤2.综上可知1≤m ≤2.

3.方程x 2-32

x -m =0在x ∈上有实根,则m 的取值范围是________. 解析 m =x 2-32x =????x -342-916

,x ∈. 当x =-1时,m 取最大值为52,当x =34时,m 取最小值为-916,∴-916≤m ≤52

. 4.已知函数f (x )=?????

x +1,x ≤0,x 2-2x +1,x >0,若关于x 的方程f 2(x )-af (x )=0恰有5个不同的实数解,则a 的取值范围是________.

解析 设t =f (x ),则方程为t 2-at =0,解得t =0或t =a ,

即f (x )=0或f (x )=a .如图,作出函数f (x )的图象,

由函数图象,可知f (x )=0的解有两个,

复备栏

故要使方程f 2(x )-af (x )=0恰有5个不同的解,

则方程f (x )=a 的解必有三个,此时0

二、例题教学:

例1 (2014·武汉模拟)直线2x +y -10=0与不等式组

????? x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.

由不等式组画出平面区域如图(阴影部分).

直线2x +y -10=0恰过点A (5,0),且斜率k =-2<k AB =-43

,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).

二元一次不等式(组)表示平面区域的判断方法:直线定

界,测试点定域.不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.

变式训练:

(2014·北京模拟)若满足条件????? x -y ≥0,x +y -2≤0,

y ≥a ,的整点(x ,y )恰有9个,其中整点是

指横、纵坐标都是整数的点,则整数a 的值为______.

解析:不等式组所表示的平面区域如图中阴影部分,当

a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1

时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),

(3,-1)5个整点.故所求整数a 的值为-1.

例2 (2014·苏北三校市模拟)为了响应国家号召,某地

决定分批建设保障性住房供给社会.首批计划用100万元购

得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.

(1)若建筑第x 层楼时,该楼房综合费用为y 万元(综合费用是建筑费用与购地费用之和),写出y =f (x )的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?

(1)由题意知建筑第1层楼房每平方米建筑费用为720元,

建筑第1层楼房建筑费用为720×1 000=720 000(元)=72 (万元),

楼房每升高一层,整层楼建筑费用提高20×1 000=20 000(元)=2(万元), 建筑第x 层楼房的建筑费用为72+(x -1)×2=2x +70(万元),

建筑第x 层楼房时,该楼房综合费用为

y =f (x )=72x +x (x -1)2

×2+100=x 2+71x +100, 综上可知y =f (x )=x 2+71x +100(x ≥1,x ∈Z ).

(2)设该楼房每平方米的平均综合费用为g (x ),则g (x )=f (x )×10 0001 000x =10f (x )x

10(x 2+71x +100)x =10x +1 000x +710≥2 10x ·1 000x

+710=910. 当且仅当10x =1 000x

,即x =10时等号成立. 综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元. 江苏高考实际应用题的背景一般是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.

变式训练:

如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设AB =y km ,并在公路同侧建造边长为x km 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知AB =AC +1,且∠ABC =60°.

(1)求y 关于x 的函数解析式;

(2)如果中转站四周围墙造价为1万元/km ,两条道路造

价为3万元/km ,问:x 取何值时,该公司建中转站围墙和

两条道路总造价M 最低?

解:(1)∵AB =y ,AB =AC +1,∴AC =y -1.

在直角三角形BCF 中,∵CF =x ,∠ABC =60°,

∴∠CBF =30°,BC =2x .由于2x +y -1 >y ,得x >12

. 在△ABC 中,∵AC 2=AB 2+BC 2-2AB ·BC cos 60°,∴(y -1)2=y 2+4x 2-2xy .

则y =4x 2-12(x -1)

.由y > 0,及x >12,得x > 1. 即y 关于x 的函数解析式为y =4x 2-12(x -1)

(x > 1). (2)M =3(2y -1)+4x =12x 2-3x -1

-3+4x . 令x -1=t ,则M =12(t +1)2-3t -3+4(t +1)=16t +9t

+25≥49, 在t =34,即x =74,y =152

时,总造价M 最低. 所以x =74

时,该公司建中转站围墙和两条道路总造价M 最低. 巩固练习:

1.(2013·重庆改编)若a

①(a ,b )和(b ,c )内②(-∞,a )和(a ,b )内

③(b ,c )和(c ,+∞)内④(-∞,a )和(c ,+∞)内

解析 由于a 0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,

又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,

因此函数f (x )的两零点分别位于区间(a ,b )和(b ,c )内.

2.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2.若f(x1)=x1

解析因为函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可知关于导函数的方程f′(x)=3x2+2ax+b=0有两个不等的实根x1,x2.则方程3(f(x))2+2af(x)+b=0的根的个数就是方程f(x)=x1和f(x)=x2的不等实根的个数之和,再结合图象可看出函数y =f(x)的图象与直线y=x1和直线y=x2共有3个不同的交点,故所求方程有3个不同的实根.

3.若关于x的不等式(2x-1)2

解析因为不等式等价于(-a+4)x2-4x+1<0,其中(-a+4)x2-4x+1=0中的Δ=

4a>0,且有4-a>0,故0

2+a

1

2-a

1

4<

1

2+a

<

1

2,则

一定有{1,2,3}为所求的整数解集.所以3<1

2-a ≤4,解得a的范围为????

25

9,

49

16.

4.已知函数f(x)=x2-2ax+2,当x∈.

课后反思:

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

4 第4讲 基本不等式

第4讲 基本不等式 1.基本不等式:ab ≤ a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b 2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤???? a + b 22 (a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥ ????a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2 4 .(简记:和定积最大) 判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1 x 的最小值是2.( ) (2)ab ≤???? a + b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +y x ≥2”的充要条件.( ) (4)若a >0,则a 3+1 a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× (教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析:选C.xy ≤????x +y 22 =???? 1822 =81,当且仅当x =y =9时等号成立,故选C.

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2020浙江高考数学二轮专题强化训练:专题一第4讲 不等式 Word版含解析

专题强化训练 1.(2019·金华十校联考)不等式(m -2)(m +3)<0的一个充分不必要条件是( ) A .-3<m <0 B .-3<m <2 C .-3<m <4 D .-1<m <3 解析:选A.由(m -2)(m +3)<0得-3<m <2,即不等式成立的等价条件是-3<m <2, 则不等式(m -2)(m +3)<0的一个充分不必要条件是(-3,2)的一个真子集, 则满足条件是-3<m <0. 故选A. 2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪????-1 2,+∞,则a =( ) A .2 B .-2 C .-1 2 D.12 解析:选B.根据不等式与对应方程的关系知-1,-1 2是一元二次方程ax 2+x (a -1)-1=0 的两个根,所以-1×????-12=-1 a ,所以a =-2,故选B. 3.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +1 3y 的最小值是( ) A .2 B .2 2 C .4 D .2 3 解析:选C.因为lg 2x +lg 8y =lg 2, 所以x +3y =1, 所以1x +13y =????1x +13y (x +3y )=2+3y x +x 3y ≥4, 当且仅当3y x =x 3y , 即x =12,y =1 6 时,取等号. 4.若平面区域???? ?x +y -3≥0, 2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间 的距离的最小值是( )

A.35 5 B.2 C.322 D.5 解析:选B.不等式组???? ?x +y -3≥02x -y -3≤0x -2y +3≥0表示的平面区域如图中阴影部分所示,其中A (1,2)、 B (2,1),当两条平行直线间的距离最小时,两平行直线分别过点A 与B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A 、B 两点的平行直线间的距离,易得|AB |=2,即两条平行直线间的距离的最小值是2,故选B. 5.(2019·金丽衢十二校高三联考)若函数f (x )=2x 2-a x -1(a <2)在区间(1,+∞)上的最小值为 6,则实数a 的值为( ) A .2 B.32 C .1 D.12 解析:选 B.f (x )= 2x 2-a x -1 = 2(x -1)2+4(x -1)+2-a x -1 =2(x -1)+ 2-a x -1 + 4≥2 2(x -1)·2-a x -1+4=2 4-2a +4,当且仅当2(x -1)=2-a x -1 ?x =1+ 2-a 2 时,等号成立,所以2 4-2a +4=6?a =3 2 ,故选B. 6.若不等式组? ????x 2-2x -3≤0, x 2+4x -(1+a )≤0的解集不是空集,则实数a 的取值范围是( ) A .(-∞,-4] B .[-4,+∞) C .[-4,20] D .[-4,20) 解析:选B.不等式x 2-2x -3≤0的解集为[-1,3],

高三数学第二轮复习教案 不等式的问题 人教版

高三数学第二轮复习教案不等式问题的题型与方法三 (3课时) 一、考试内容 不等式,不等式的基本性质,不等式的证明,不等式的解法,含绝对值不等式 二、考试要求 1.理解不等式的性质及其证明。 2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。 3.掌握分析法、综合法、比较法证明简单的不等式。 4.掌握简单不等式的解法。 5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。 三、复习目标 1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式; 3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题; 4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.四、双基透视 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用. 4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值). 5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的. 6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点. 7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

人教A版高中数学选修4-5_《不等式选讲》全册教案

选修4--5 不等式选讲

一、课程目标解读 选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。 二、教材内容分析 作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示: 第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。 对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。 第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。本讲内容也是本专题的一个基础内容。 第三讲是“柯西不等式和排序不等式”。这两个不等式也是本专题实质上的新增内容,教材主要介绍柯西不等式的几种形式、几何背景和实际应用。其中柯西不等式及其在证明不等式和求某些特殊类型函数极值中的应用是教材编写和我们教学的重点。事实上,柯西不等式和均值不等式在求最值方面的简单应用,二者同样重要,在某些问题中,异曲同工。比如课本P41页,习题3.2 第四题。

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理 一、选择题 1.若x >0,则x +4 x 的最小值为( ). A .2 B .3 C .2 2 D .4 解析 ∵x >0,∴x +4 x ≥4. 答案 D 2.已知a >0,b >0,a +b =2,则y =1a +4 b 的最小值是( ). A.72 B .4 C.9 2 D .5 解析 依题意得1a +4b =12? ????1a +4b (a +b )=12??????5+? ????b a +4a b ≥12? ? ???5+2 b a ×4a b =9 2 , 当且仅当????? a + b =2b a = 4a b a >0,b >0 ,即a =2 3 , b =4 3时取等号,即1a +4b 的最小值是9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a 和b (a a 2 -a 2 a + b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4

C.a +b 有最大值 2 D .a 2+b 2 有最小值 22 解析 由基本不等式,得ab ≤ a 2+ b 2 2 = a +b 2 -2ab 2,所以ab ≤14,故B 错;1a +1b = a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2 -2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C 5.已知x >0,y >0,且2x +1y =1,若x +2y >m 2 +2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ?? ??2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2 +2m 恒成立, 只需(x +2y )min >m 2 +2m 恒成立, 即8>m 2 +2m ,解得-40),l 1与函数y =|log 2x |的图象从左至右相 交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b a 的最小值为 ( ). A .16 2 B .8 2 C .83 4 D .434 解析 如图,作出y =|log 2x |的图象,由图可 知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -

最新高三数学专题精练:不等式

高三数学专题精练:不等式 一、选择题(10小题,每题5分) 1.设x ,y 满足约束条件?? ? ??≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0, b>0)的值是最大值为12,则23a b +的最小值为( ). A.625 B.38 C. 3 11 D. 4 2.若不等式组034 34x x y x y ≥??+≥??+≤? 所表示的平面区域被直线4 3 y kx =+分为面积 相等的两部分,则k 的值是(A )73 (B ) 37 (C )43 (D ) 34 3.“”是“ 且”的 A. 必要不充分条件 B. 充分不必要条件 C. 充分必要条件 D. 既不充分也不必要条件 4、若不等式f (x )=2ax x c -->0的解集{}|21x x -<<,则函数y =f (-x )的图象为( ) 5.设,x y 满足24, 1,22,x y x y x y +≥?? -≥??-≤? 则z x y =+ (A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最 B

大值 6.已知D 是由不等式组20 30 x y x y -≥?? +≥?,所确定的平面区域,则圆 224x y +=在区域D 内的弧长为 [ ] A 4π B 2 π C 34π D 32π 7.设变量x ,y 满足约束条件:3 123x y x y x y +≥?? -≥-??-≤? .则目标函数z=2x+3y 的最 小值为 (A )6 (B )7 (C )8 (D )23 8.在平面直角坐标系中,若不等式组101010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示 的平面区域内的面积等于2,则a 的值为 A. -5 B. 1 C. 2 D. 39.不等式对任意x 实数恒成立,则实数a 的取值范围为( ) A . (,1][4,) -∞-+∞ B .(,2][5,)-∞-+∞ C .[1,2] D .(,1][2,)-∞+∞ 10.已知0,0a b >>,则112ab a b ++ ) A .2 B .22 C .4 D .5 二、填空题(5个题,每题4分) 11.若0x >,则2x x +的最小值为. 2313x x a a +--≤-

高考数学二轮复习 第一部分 专题篇 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式课

2017届高考数学二轮复习 第一部分 专题篇 专题一 集合、常用逻 辑用语、不等式、函数与导数 第四讲 不等式课时作业 理 A 组——高考热点基础练 1.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( ) A.c a <b a B.b -a c >0 C.b 2c 0,∴c a 0,a -c ac <0, 但b 2 与a 2 的关系不确定,故b 2c 0,即-16x 2+56 x -1>0,解 得2

C .4 D .5 解析:先作出可行域,再求目标函数的最大值. 根据题意作出可行域如图阴影部分所示,平移直线y =-2x ,当直线平移到虚线处时,目标 函数取得最大值.由? ?? ?? 2x -y =0, x +y =3,可得A (1,2),此时2x +y 取最大值为2×1+2=4. 答案:C 4.已知函数f (x )=ax 2 +bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (- x )的图象可以为( ) 解析:由f (x )<0的解集为{x |x <-3或x >1}知a <0,y =f (x )的图象与x 轴交点为(-3,0),(1,0), ∴f (-x )图象开口向下,与x 轴交点为(3,0),(-1,0). 答案:B 5.设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是( ) A .6 B .42 C .2 2 D .26 解析:2a +2b ≥22a +b =223=42,当且仅当2a =2b ,a +b =3,即a =b =32 时,等号成立.故 选B. 答案:B

高三数学一轮复习 18 基本不等式及其应用学案 文

学案18 基本不等式及其应用 班级________姓名________ 【导学目标】 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】 1.基本不等式 ab ≤ a +b 2 (1)基本不等式成立的条件:____________. (2)等号成立的条件:当且仅当________时取等号. 2.几个重要的不等式 (1)a 2+b 2≥__________(a ,b ∈R ). (2)b a +a b ≥____(a ,b 同号). (3)ab ≤? ?? ?? a + b 22 (a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为________,几何平均数为________; 基本不等式可叙述为:________________________________________________. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当________时,x +y 有最____值是________(简记:积定和最小). (2)如果和x +y 是定值p ,那么当且仅当________时,xy 有最____值是__________(简记:和定积最大). 5.一个结论:11 02; 0 2.x x x x x x >+ ≥<+≤-当时,则当时,则 【自我检测】 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 2.已知t >0,则函数y = t 2-4t +1 t 的最小值为________.

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

专题一 第3讲 不等式

第3讲 不等式 [考情分析] 1.不等式的解法是数学的基本功,在许多题目中起到工具作用.2.求最值和不等式 恒成立问题常用到基本不等式.3.题型多以选择题、填空题形式考查,中等难度. 考点一 不等式的性质与解法 核心提炼 1.不等式的倒数性质 (1)a >b ,ab >0?1a <1b . (2)a <0b >0,0b d . 2.不等式恒成立问题的解题方法 (1)f (x )>a 对一切x ∈I 恒成立?f (x )min >a ,x ∈I ;f (x )g (x )对一切x ∈I 恒成立?当x ∈I 时,f (x )的图象在g (x )的图象的上方. (3)解决恒成立问题还可以利用分离参数法. 例1 (1)若p >1,01 B.p -m p -n log n p 答案 D 解析 方法一 设m =14,n =1 2 ,p =2,逐个代入可知D 正确. 方法二 对于选项A ,因为01,所以00,所以p -m p -n >m n ,故B 不正确;对于 选项C ,由于函数y =x -p 在(0,+∞)上为减函数,且0n -p ,故C 不正确;对于选项D ,结合对数函数的图象可得,当p >1,0log n p ,故D 正确. (2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( )

高三数学(理科)二轮复习-不等式

2014届高三数学第二轮复习 第3讲 不等式 一、本章知识结构: 实数的性质 二、高考要求 (1)理解不等式的性质及其证明。 (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。 (3)分析法、综合法、比较法证明简单的不等式。 (4)掌握某些简单不等式的解法。 (5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。 三、热点分析 1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注. 2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点. 3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点. 4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识. 不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。高考试题中有以下几个明显的特点: (1)不等式与函数、数列、几何、导数,实际应用等有关内容综合在一起的综合试题多,单独考查不等式的试题题量很少。

高中数学 不等式专题训练

1、(02京皖春1)不等式组???<-<-0 30 122x x x 的解集是( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3} 2、(01河南广东1)不等式 3 1 --x x >0的解集为( ) A .{x |x <1} B .{x |x >3} C .{x |x <1或x >3} D .{x |1+->|22|330x x x x x 的解集是( ) A .{x |0<x <2} B .{x |0<x <2.5} C .{x |0<x <6} D .{x |0<x <3} 5、(95全国理16)不等式( 3 1)8 2 -x >3-2x 的解集是_____。 6、(02全国文5理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A .( 4π,2π)∪(π,45π) B .( 4π ,π) C .(4π,4 5π) D .(4π,π)∪(45π,2 3π) 7、解不等式1|55|2<+-x x 8、不等式022>++bx ax 的解集为}3 1 21|{<<- x x ,求a , b 9、解不等式∣∣x +4∣-8∣>2 解:由原不式式得∣x +4∣-8>2或∣x +4∣-8<-2 ∴∣x +4∣>10或∣x +4∣<6 ∴x >6或x <-14或-106或x <-14或-102x 11、解不等式:∣x +3∣+∣2x -4∣>2 12、解不等式2931831>?+-+x x 13、解关于x 的不等式0)1(2>---a a x x 14、a 为何值时,不等式2)1()23(22+-++-x a x a a >0的解为一切实数? 15、(06重庆文15)设0,1a a >≠,函数2 ()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的 解集为 。 16、(06重庆理15)设0,1a a >≠,函数2lg(23) ()x x f x a -+=有最大值,则不等式() 2log 570a x x -+>的 解集为 。 17、已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为 (1)求t ,m 的值; (2)若函数4)(2++-=ax x x f 在区间(],1-∞上递增,解关于x 的不等式2 log (32)0a mx x t -++-<.

(浙江专用)最新2020-2021高考数学二轮复习 专题三 数列与不等式 第4讲 不等式学案

第4讲 不等式 [考情考向分析] 1.利用不等式性质比较大小、不等式的求解、利用基本不等式求最值、线性规划、绝对值不等式的应用问题是高考的热点,主要以选择题、填空题为主.2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数的取值范围.3.在解答题中,特别是在解析几何中求最值、范围问题或在解决导数或数列问题时常利用不等式进行求解,难度较大. 热点一 基本不等式 利用基本不等式求最大值、最小值,其基本法则是:(1)如果x >0,y >0,xy =p (定值),当x = y 时,x +y 有最小值2p (简记为:积定,和有最小值);(2)如果x >0,y >0,x +y =s (定值), 当x =y 时,xy 有最大值14 s 2 (简记为:和定,积有最大值). 例1 (1)(2018·浙江省金丽衢十二校联考)设a >b >0,当a 2 2+2 b (a -b )取得最小值 c 时,函数f (x ) =|x -a |+|x -b |+|x -c |的最小值为( ) A .3 B .2 2 C .5 D .4 2 答案 A 解析 a 2 2+2b (a -b )=[b +(a -b )]2 2+2 b (a -b ) ≥2b (a -b )+ 2 b (a -b ) ≥2 2b (a -b )· 2 b (a -b ) =4, 当且仅当a =2b =2时,上面不等式中两个等号同时成立, 所以a 2 2+2 b (a -b )的最小值为4,此时a =2,b =1, c =4, 则f (x )=|x -1|+|x -2|+|x -4| =????? 7-3x ,x <1,5-x ,1≤x ≤2,x +1,24, 所以当x =2时,函数f (x )取得最小值f (2)=5-2=3,故选A. (2)(2018·诸暨市高考适应性考试)已知a ,b 为正实数,且(a +b )(a +2b )+a +b =9,则3a +4b 的最小值为________.

【高考精品复习】第七篇 不等式 第4讲 基本不等式

第4讲 基本不等式 【高考会这样考】 1.考查应用基本不等式求最值、证明不等式的问题. 2.考查应用基本不等式解决实际问题. 【复习指导】 1.突出对基本不等式取等号的条件及运算能力的强化训练. 2.训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养. 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定

积最大 ) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤? ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2) a 2+b 22≥a +b 2≥ab ≥2 1a +1b (a >0,b >0,当且仅当a =b 时取等号). 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是

相关文档 最新文档