文档库 最新最全的文档下载
当前位置:文档库 › 线性代数下07极小多项式与不变子空间

线性代数下07极小多项式与不变子空间

线性代数下07极小多项式与不变子空间
线性代数下07极小多项式与不变子空间

线性空间与欧几里得空间

线性空间与欧几里得空间 自测题 一、填空题 1、对欧几里得空间V 中的任意向量βα,,有()βαβα≤ ,,而且等号成立当且仅当 。 2、设1W 与2W 是V 的两个线性子空间,如果1W +2W 中的每个向量α都可唯一的被表示成21ααα+=,2211W W ∈∈αα,,则称1W +1W 为这两个子空间的 。 3、两个同构的线性空间的维数 。 4、第二类正交变换的行列式的值等于 。 5、如果A 是正交矩阵。若k 为实数,使kA 为正交矩阵,则k 等于 。 二、选择题 6、下列n R 的子集是n R 的子空间的为( ) A :(){}n i Z a a a a a i n ...,3,2,1,.....,,,321=∈ B :(){}0.....,,,21321=a a a a a a n C :(){}R a a a a n ∈211,,0,...,0, C :{} 1..)...,,(2222121≤+++n n a a a a a a 7、全体正实数的集合+R 对于下面定义的加法与标量乘法:k a a k a b b a ==⊕ ,构成R 上的线性空间,则+R 的零元素为( ) A :0 B: 1 C: 2 D: 3 8、若A 是正交矩阵,则下列矩阵中仍为正交矩阵的是(多重选择,其中k 是1±≠的整数) A:kA B:k A C:交换A 的任两行所得的矩阵 D :把A 的某行k 倍加到另一行所得的矩阵 9、设A 是欧几里得空间V 关于基n ααα,,,...21的度量矩阵,则A 满足以下哪个条件时,n ααα,,,...21是规范正交基? ( ) A: A 是正交矩阵 B :A 为对称矩阵 C :1-A 为正交矩阵 D :A 为单位矩阵 10、以下哪个结论不是两个线性子空间1W 与2W 的和21W W +为直和的等价命题:( ) A :dim ()()()()221121dim dim dim dim W W W W W W >+>+且

线性代数教案-向量与向量空间

线性代数教学教案 第3章 向量与向量空间 授课序号01 教 学 基 本 指 标 教学课题 第3章 第1节 维向量及其线性运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质 教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解维向量的概念 教 学 基 本 内 容 一. 维向量的概念 1.维向量:由个数组成的有序数组称为维向量. 2.称为维行向量,称为维列向量. 二.维向量的线性运算 1.定义: (1)分量全为0的向量称为零向量; (2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等; (4)对于,,称为与的和; (5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为. 2.向量的线性运算的性质:对任意的维向量和数,有: n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12?????????????? n a a a n n ()12T n αa ,a ,,a = ()12---T n a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---T n n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,

同济大学线性代数教案第五章线性空间与线性变换

线性代数教学教案 第五章线性空间与线性变换 授课序号01 是一个非空集合,为实数域 中任一数 ): ββ +=+

就称为实数域是实数域 上线性空间,上线性空间}++∈ 1010,,,n a x a a a a , 对于通常的多项式加法、数乘多项式的乘法构成线性空间. ()[]} ,b x a 为上的连续函数[,a (212 1n ij m m mn a i a a a ??? ≤??? )是非空的, ()m n M ?对通常的矩阵加法和数乘构成线性空间(1112 2122212 1,n ij n m nn a a a a M a i a a a ?? ? ? ≤???

0a 对于通常的多项式加法和乘数运算不构成线性空间. x ,在其中定义加法及乘数运算为) ,验证对上述加法与乘数运算构成线性空间7 在实数域 上线性空间(212 1,n ij n m nn a i a a a ??? ≤??? nn a a ? ???? )的非空子集,且)关于)M 的加法和数乘是封闭的,所以)是()n M 的一个子空

授课序号02 个元素,,,ααα满足,,,ααα总可由,,,ααα那么,12,, ,n ααα就称为线性空间,, ,ααα是线性空间,,,x x x 12,, ,n x x x 12,, ,n ααα下的坐标,并记作,, ,ααα与,,,βββ

,,,ααα2,,,n βββ的基变换公式,矩阵P ,, ,ααα,,,βββ,,,βββ在基12,, ,n ααα下的坐标为,在基,,,βββ,且由基12,,,n ααα到基,,,n βββ的过渡矩阵为矩阵n n x y =? ?? ????P 或 =n n y x ? ? ? ????? P . )()21221,2ij A a i j a a ? ==≤≤∈?? ??? ??? ? 中,由于对任一向量 ()有 1112a a ?= ) 的一个

线性代数向量空间自测题(附答案)

《第四章 向量空间》 自测题 (75分钟) 一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。 (A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量; (C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。 4. 设W 是所有二阶实对称矩阵构成的线性空间,即?? ? ???????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=????? ? ? ?????? ?? ? - 10 0021021b a 为正交矩阵,且|A|=-1,则a = ,= 。 二、计算题(60分) 1.(15分)设R 3的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

第九章 欧氏空间

第八章 欧氏空间练习题 1.证明:在一个欧氏空间里,对于任意向量ηξ,,以下等式成立: (1)2222||2||2||||ηξηξηξ+=-++; (2).||4 1 ||41,22ηξηξηξ--+= 在解析几何里,等式(1)的几何意义是什么? 2.在区氏空间n R 里,求向量)1,,1,1( =α与每一向量 )0,,0,1,0,,0() ( i i =ε,n i ,,2,1 = 的夹角. 3.在欧氏空间4R 里找出两个单位向量,使它们同时与向量 ) 4,5,2,3()2,2,1,1() 0,4,1,2(=--=-=γβα 中每一个正交. 4.利用内积的性质证明,一个三角形如果有一边是它的外接圆的直径,那么这个三角形一定是直角三角形. 5.设ηξ,是一个欧氏空间里彼此正交的向量.证明: 222||||||ηξηξ+=+(勾股定理) 6.设βααα,,,,21n 都是一个欧氏空间的向量,且β是n ααα,,,21 的线性组合.证明:如果β与i α正交,n i ,,2,1 =,那么0=β. 7.设n ααα,,,21 是欧氏空间的n 个向量. 行列式 > <><><> <><><> <><> <= n n n n n n n G ααααααααααααααααααααα,,,,,,,,,),,,(21222121211121 叫做n ααα,,,21 的格拉姆(Gram)行列式.证明),,,(21n G ααα =0,必要且只要

n ααα,,,21 线性相关. 8.设βα,是欧氏空间两个线性无关的向量,满足以下条件: ><><ααβα,,2和> <> <βββα,,2都是0≤的整数. 证明: βα,的夹角只可能是 6 54 3,32,2π π ππ或 . 9.证明:对于任意实数n a a a ,,,21 , 2 3322211 (||n n i i a a a a n a ++++≤∑= ). 10.已知 )0,1,2,0(1=α,)0,0,1,1(2-=α, )1,0,2,1(3-=α,)1,0,0,1(4=α 是4R 的一个基.对这个基施行正交化方法,求出4R 的一个规范正交基. 11.在欧氏空间]1,1[-C 里,对于线性无关的向量级{1,x ,2x ,3x }施行正交化方法,求出一个规范正交组. 12.令},,,{21n ααα 是欧氏空间V 的一组线性无关的向量,},,,{21n βββ 是由这组向量通过正交化方法所得的正交组.证明,这两个向量组的格拉姆行列式相等,即 ><>><=<=n n n n G G βββββββββααα,,,),,,(),,,(22112121 13.令n γγγ,,,21 是n 维欧氏空间V 的一个规范正交基,又令 },2,1,10,|{1n i x x V K n i i i i =≤≤=∈=∑=γξξ K 叫做一个n -方体.如果每一i x 都等于0或1,ξ就叫做K 的一个项点.K 的顶点间一切可能的距离是多少? 14.设},,,{21m ααα 是欧氏空间V 的一个规范正交组.证明,对于任意V ∈ξ,以下等式成立:

高等代数习题及答案)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、(){}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若{ }n ααα,,,21 是欧氏空间V 的标准正交基,且∑==n i i i x 1 αβ,那么∑==n i i x 1 2 β。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()()()()()n n n x g x f x g x f ,,=; ②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=?=; ③()()()()()()()x g x g x f x g x f ,,+=; ④若()()()()()()()()1,1,=-+?=x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零; ③A 中可能存在不为零的1+r 阶子式; ④A 中肯定有不为零的r 阶子式。 4、设()n x x x f ,,,21 为n 元实二次型,则()n x x x f ,,,21 负定的充要条件为( )

线性代数的思想本质

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了! 多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗? * 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?

线性代数的理解-学完再看觉得自己弱爆了

线性代数的理解学完再看觉得自己弱爆了 对了解矩阵、线性变换的本质有太大帮助如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。”* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得

这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合? * 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的? * 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗?* 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思? * 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较

[高等代数(下)课外习题 第九章 欧氏空间]

第九章 欧氏空间 一、判断题 1、12,,,n εεε 是n 维欧氏空间的一组基,矩阵()ij n n A a ?=,其中(,)ij i j a εε=,则A 是正定矩阵。( ) 2、设V 是一个欧氏空间,,V αβ∈,并且αβ=,则αβ+与αβ-正交。( ) 3、设V 是一个欧氏空间,,V αβ∈,并且(,)0αβ=,则,αβ线性无关。( ) 4、n 维Euclid 空间中任意一个正交向量组都能扩充成一组正交基 ( ) 5、若T 是正交变换,则T 保持向量的内积不变 ( ) 6、度量矩阵是正定的 ( ) 7、正交矩阵的行列式等于1 ( ) 8、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。 ( ) 9、设A 与B 都是n 阶正交矩阵,则AB 也是正交矩阵。 10、在欧氏空间V 中,若向量α与自身正交,则0=α.( ) 11、两两正交的向量构成的向量组叫正交向量组.( ) 12、若矩阵A 为正交矩阵,则1 -='A A .( ) 13、设A 是n 维欧氏空间V 的正交变换,则A 在V 的任意基下的矩阵是正交矩阵.( ) 14、设21,V V 是n 维欧氏空间V 的两个正交子空间,且21V V V +=,则21V V V ⊕=。( ) 15、对称矩阵A 的任意两个特征向量都正交。( ) 二、填空题 1、在欧氏空间3 R 中,向量(1,0,1)α=-,(0,1,0)β=,那么(,)αβ=_________, α=_________. 2、两个有限维欧氏空间同构的充要条件是__________________. 3、已知A 是一个正交矩阵,那么1A -=_________,2 A =_________. 4、已知三维欧式空间V 中有一组基123,,ααα,其度量矩阵为110120003A --?? ?=- ? ??? ,则向量 12323βααα=+-的长度为 。

第4章 n维向量空间

第4章 n 维向量空间 §4.1 n 维向量 定义 1 n 个有次序的数n a a a ,,,21 所组成的数组),,,(21n a a a 称为 n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量. n 维向量可写成一行,称为行向量,也可以写成一列,称为列向量. 向量常用黑体小写字母βα、、、b a 等表示, 即n 维列向量记为???? ?? ? ??=n a a a 21α,n 维行向量记为),,,(21n αααα =. 行向量与列向量的计算按矩阵的运算规则进行运算. 例 设.)1,0,1,0(,)2,4,7,1(,)3,1,0,2(T T T =-=-=γβα (1) 求 γβα32-+; (2) 若有x , 满足,0253=++-x γβα 求 .x 解(1)γ βα32-+T T T )1,0,1,0(3)2,4,7,1()3,1,0,2(2--+-=.)1,2,4,5(T = (2)由,0253=++-x γβα得 x )53(21γβα-+-=])1,0,1,0(5)2,4,7,1()3,1,0,2(3[2 1 T T T --+--=.)8,2/7,1,2/5(T --= 在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),这就是上面定义的3维向量. 因此,当3≤n 时,n 维向量可以把有向线段作为其几何形象. 当3>n 时,n 维向量没有直观的几何形象. §4.2 向量组的线性相关性 1、向量组的概念 若干个同维数的列向量(或行向量)所组成的集合称为向量组.

高等代数欧几里得空间知识点总结

第九章 欧几里得空间( * * * ) 一、复习指导:在第九章中,有两个重要的考点:1.标准正交基(施密特正交化)2.实对称矩阵如何相似对角化,如何求标准形。除此之外,欧氏空间的含义,概念,性质也要作为一个比较重要的内容来复习。 二、考点精讲: 三、首师大真题: (一)欧氏空间 1.设V 是是数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记为(,)αβ,特具有一下性质: (1)(,)(,)αββα=; (2)(,)(,)k k αβαβ= (3)(,)(,)(,)αβγαγβγ+=+; (4)(,)0αα≥,当且仅当α=0时(,)αβ=0.这里,,αβγ是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间。 2.α的长度,记为α。 3.非零向量的夹角,β规定为(,) ,arccos ,0,ααβαβπαβ =≤≤ 4.如果向量,αβ的内积为零,即(,)0αβ=,那么,αβ称为正交或互相垂直,记为αβ⊥。 5.设V 是一个n 维欧几里得空间,在V 中取一组基1,2,......,n εεε令 (,),(,1,2,....)ij i j a i j n εε==矩阵()ij n n A a ?= 称为基1,2,......,n εεε的度量矩阵。 (1)度量矩阵是正定的; (2)不同基底的度量矩阵是合同的。 6.欧氏空间V 中一组非零向量,如果它们两两正交,就称为一正交向量组。在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基。 (1)施密特正交化 这是把线性无关向量组改造为单位正交向量组的方法. 以3个线性无关向量α1,α2,α3为例. ①令β1=α1, β2=α2- 11112) ,() ,(ββββα, β3=α3-11113),(),(ββββα-22223) ,() ,(ββββα. 此时β1,β2,β3是和α1,α2,α3 等价的正交非零向量组. (二)同构 1.实数域R 上欧氏空间V 与' v 称为同构,如果由V 到' v 有一个1-1上的映射σ,适合 (1)()()()σαβσασβ+=+ (2)()()k k σασα=

线性代数思维导图

代数: 代数是研究数、数量、关系、结构与代数方程的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。 线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 定义与历史: 概念 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也

就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。 历史 线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。 由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维线性空间的过渡。 随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维线性

n维向量空间

第二节 n 维向量空间 定义1:n 个实数组成的有序数组称为n 维向量,一般用γβα,,等希腊字母 表示。称()n a a a ,,,21 =α为n 维行向量,称()T n n b b b b b b ,,,2121 =?????? ? ??=β为n 维列向 量。称i i b a ,分别为向量βα,的第i 个分量。 特别对矩阵=A ?? ? ? ? ? ? ??mn m m n n a a a a a a a a a 2 1 22221 11211中每一行()in i i a a a ,,,21 ),,2,1(m i =称为 矩阵A 的行向量;每一列() T nj j j a a a ,,,21 ),,2,1(n j =称为矩阵A 的列向量。 定义2:所有分量都是零的向量称为零向量,零向量记作0=()000 。 定义3:由n 维向量()n a a a ,,,21 =α各分量的相反数组成的向量,称为α的负向量,记作:()n a a a ---=-,,,21 α。 定义4:若n 维向量()n a a a ,,,21 =α与()n b b b ,,,21 =β的所有对应分量相等,即),,2,1(n i b a i i ==,则称这两个向量相等,记作βα=。 定义5:设n 维向量()n a a a ,,,21 =α,()n b b b ,,,21 =β,βα与对应分量的和所构成的n 维向量,称为向量βα与的和,记作βα+。 ()n n b a b a b a +++=+,,,2211 βα ()βαβα-=-+()n n b a b a b a ---=,,,2211 定义6:设n 维向量()n a a a ,,,21 =α的各分量都乘以数k 后所组成的n 维向量,称为数k 与向量α的乘积,记作: k α=()n ka ka ka ,,,21 。 向量的运算性质: (1)αββα+=+ (2)γβαγβα++=++)()(

线性代数教案-第一章 线性空间

第一章线性空间 一、教学目标与基本要求 数学的特点之一是抽象.从实数、复数、实值函数、无穷级数、向量等数学对象中,可以抽象出它们的共同特点:同一集合中的元素彼此可以相加,可与数相乘,这些运算还遵从一些共同规律.本章讨论的线性空间,就是针对上述特点建立的一种一般性的数学概念.它包括了所有前面提到的实例,另有许多数学对象也可归属其中. 数学中所谓空间,就是具有某些特性的集合.所谓线性空间,概言之就是这样一个集合:在其上定 义了称为加法和数乘的两种运算,并可在该集合上实施(准确的定义见后详述).在此,既不强调集合元素的本来属性,又不规定这两种运算是如何实施的,只规定运算具有称为公理的某些性质. 1 线性空间的定义及例 定义1.1.1设V是一个非空集合,其元素用x、y、z等表示.V被称为一个线性空间,如果它满足以下被分为三组由10条公理构成的公理体系: 1.1.1封闭公理 公理1(加法封闭公理)在V中定义了加法运算:对于V中任意两个元素x和y,有唯一的V中的元素与之对应并被称为x与y的和,记为x+y. 公理2(数乘封闭公理)在V中定义了实数乘法(简称数乘)运算:对于V中任意元素x和任意实数a,有唯一的V中的元素与之对应并被称为a与x的积,记为a x. 加法运算和数乘运算合称线性运算. 1.1.2加法公理 公理3 (交换律)对于任意x,y∈V,有 x+ +. = x y y 公理4(结合律) 对于任意x,y,z∈V,有 + x+ = +. + y ) ) z (z ( y x 公理5 (零元素存在性)V中存在一个记为θ的零元素,对于任意x∈V,有 +. x= x θ -的x的负元素,使公理6 (负元素存在性)对于任意x∈V,V中存在记为x +) - (. θ x= x 1.1.3数乘公理 公理7(结合律)对于任意x∈V,任意实数a和b,有 b (ab a=. x) x ( )

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组是各个方程关于未知量均为一次的方程组 xj 表示未知量,aij 为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c2,…,cn )为一个解。若c1,c2,…,cn 不全为0,则称(c1,c2,…,cn )为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n 维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请看下面一个例子。

自考线性代数第二章向量空间

第二章 向量空间 打印本页 内容提要:n 维向量的概念:向量的线性运算:向量空间及其子空间的概念。向量组的线性相关与线性无关,向量组的秩的概念,向量空间的基,维数和向量的坐标。 一、向量空间及其子空间 1.n 维向量及其线性运算 例:坐标原点0(0,0)为起点,以M (x,y )为终点的向量OM ,称为点M 的位置向量或点M 的向径,可用有序数组(X ,Y )来表示,而M 1(x 1,y 1)为起点,M 2(x 2, y 2)为终点的向量m 1m 2可用二元有序数组(x 2-x 1,y 2-y 1)表示,类似地,空间中的向量可以用3元有序数组(a 1,a 2,a 3)来表示。 定义: 称由n 个数a 1,a 2……a n 组成的有序数组(a 1,a 2……a n ) 为一个n 维向量,数a i 称为该向量的第i 个分量。(i=1,2……,n ) 行向量:(a 1,a 2……a n ) 列向量: α,β,x ,y……等来表示向量,用ai, xi, yi ……等来表示向量的分量 向量的相等:如果两个n 维向量 α=( a 1,a 2……a n ),β=( b 1,b 2……b n ) 的对应分量相等,即ai=bi (I=1,2……n ) 则称向量α与β相等,记为α=β 零向量:分量全是零的n 维向量称为n 维零向量,记为0 负向量:对于向量α=(a 1,a 2……a n )称 -α=(-a 1,-a 2.……-an )为α的负向量。 向量的线 性运算:加法运算

=(a1,a2,---,a n) =(b1,b2,---b n) 与的和为:+=(a 1 +b1,a2+b2,……,a n+b n) 数乘运算:k(或k)=(ka 1,ka 2 ,……,ka n ) 减法运算:-=+(-)=(a 1 -b1,a2-b2,……a n-b n)向量的线性运算法则: (1)+=+ (2)(+)+=+(+) (3)+0= (4)+(-)=0 (5)1= (6)k(l)=(kl) (7)k(+)=k+k (8)(k+l)=k+l 向量的转置和乘法矩阵一致 例:设向量=(4,7,-3,2) =(11,-12,8,58) 求满足5-2=2(-5)的向量 解:∵5-2=2(-5) ∴15=2+2 ∴=(+)=(15,-5,5,60) =(2,,8) 由向量的定义,一个mxn的矩阵 可以看成是用m个n维行向量:ai=(ai1,ai2,……,ain)(i=1,2,……m)组成的,或看成是由n个m维列向量

线性代数-线性空间及线性相关性课件

第四章n元向量空间 ?n元向量组的线性相关性; ?向量组的秩; ?n元向量空间; ?线性方程组解的结构; ?欧氏空间.n

n 第4.1节元向量组的线性相关性 n 元向量的定义及线性运算在第章已经给出 元向量的定义及线性运算在第一章已经给出,本节进一步研究一个向量组的线性相关性。这里我们先只讨论含有有限个向量的向量组,以后再把讨论的结果推广到含有无限个向量的向量组。 个向量的向量组

一、线性组合与线性表示线性组合与线性表示 ()12:,,, n s 设Ⅰ, 义定 4.1.1ααα是中的一个向量组12,,, s k k k 是数域 中的数,称向量 ()112212,,,.s s s k k k k k k +++ Ⅰ为ααα为向量组的一,组线性组合合系数个(),Ⅰ如果给定的向量能表为向量组 的线性组合即存在使β121122,,, s s s k k k k k k =+++ 数域中的数,使 βααα()示数Ⅰ表系则称可由向量组,称组合系数为. 线性表示β

412零向量是任意向量组的线性组合这是因为 例4.1.2 零向量是任意向量组的线性组合,这是因为12000s =?+?++?0 ααα. 例1 向量组中的任意一个向量可由该向 量组的线性表示, 这是因为 12,,,s ααα11100100, (1,2,,). i i i i s i s -+=?++?+?+?++?= αααααα

已知向量组 例2 T T 12[1,2,3], [1,2,3], [024][345]αα==---T T 344123[0,2,,[3,4,5], ,,αααααα==试判断向量是否可由线性表示? 所以可以表示若能,表示式是否唯一? 4134123213,,ααααααα=-=--观察可知所以可以表示;又所以表解法法不唯一.41122332,x x x αααα=++设考察该方程解法组解的情况考察该方程组解的情况.

相关文档
相关文档 最新文档