文档库 最新最全的文档下载
当前位置:文档库 › 水电站施工导流截流方案[优秀工程方案]

水电站施工导流截流方案[优秀工程方案]

水电站施工导流截流方案[优秀工程方案]
水电站施工导流截流方案[优秀工程方案]

2 施工导流

2.1 导流标准

本电站工程规模为中型,属三等工程,主要永久性挡水及泄水建筑物为Ⅲ级建筑物,根据部颁SDJ338—89《水利水电工程施工组织设计规范》规定相应的临时建筑物为Ⅴ级,因此根据规范对导流建筑物设计洪水标准划分,选取5年一遇重现期洪水作为导流设计标准.

2.2 坝体施工临时度汛标准

施工期间当坝体高度高于围堰后,其临时度汛洪水标准根据部颁SDJ338—89《水利水电工程施工组织设计规范》表2.2.3规定如下: 混凝土坝当库容≥1.0亿米3,按全年P=2%频率流量设计;0.1<库容<

1.0亿米3,按P=5%频率流量设计;库容<0.1亿米3,按P=10%频率流量设计.

2.3 导流方式及导流时段

2.3.1 导流方式

由于河床狭窄,两岸较陡,洪枯流量变幅较大,不具备分期导流及明渠导流条件,因此选用断流围堰,隧洞枯期导流方式.

2.3.2 导流时段

导流时段选择原则是导流工程费用增加不多的前提下,基坑施工期最长,经比较分析选定11月6日至次年5月25日(六个月两旬)作为枯期导流时段,相应导流流量为466米3/s,

2.4 导流程序

根据坝址所在河段的地形特征和水文特点选定枯水期右岸导流洞导流,汛期基坑过水的导流方式,后期坝体予留缺口实现全年施工.导流程序如下:

(1) 筹建年11月初~第一年10月下旬,进行导流洞施工及两岸坝肩开挖,为第一年11月上旬截流创造条件.

(2) 第一年11月6日~第二年5月25日,主河道截流,堆筑围堰,同时进行基坑开挖及浇筑垫层砼,隧洞导流,导流流量为466米3/s.

(3) 第二年5月26日~第二年11月5日,围堰过水,基坑淹没,导流洞与基坑联合度汛,大坝停止施工.

(4) 第二年11月6日~第三年5月25日,继续坝体砼浇筑,坝体中孔在汛前已施工完毕.5月25日前坝体升高至868.00米高程,以确保汛期全年施工.

(5) 第三年5月26日~第三年11月5日,本汛期度汛按频率p=5%全年洪水标准设计,相应流量为3370 米3/s.此间洪水由导流洞、坝体中孔联合泄流,坝体全年施工,至第三年10月初坝体浇筑完毕,导流洞11月初下闸封堵,围堰拆除,第三年12月底第一台机组发电.

2.5 导流设计

2.5.1导流建筑物设计

2.5.1.1导流洞设计

(1) 工程地质及洞线布置

根据枢纽布置和河谷地形特点,同时考虑两岸地质情况,将导流洞布置

于右岸是合适的.

导流洞位于坝址右岸,主要穿越栖霞组深灰色中厚层、厚层灰岩及部分裂隙带.进口0-006.17~0+017.00米桩号段及出口0+411.00~0+446.00米桩号属于Ⅳ类围岩,由于边坡裂隙发育,边坡稳定性较差,建议清除上覆覆盖层.隧洞0+446.00~0+503.57米埋深0~17米,隧洞埋深较浅,上部又有崩塌堆积体,受裂隙影响,围岩稳定性差,属Ⅳ类围岩,出口穿过S2暗河,可能会产生岩溶涌水,建议进行明挖处理.隧洞0+017.00~0+411.00米桩号处地下水位变动带,可能发育溶洞;该段岩体属微新岩体,呈中厚层至厚层状结构,完整性好;洞向与岩层走向大角度相交,围岩基本稳定;属Ⅳ类围岩,受裂隙影响,局部可能有小型不稳定块体.Ⅱ类围岩洞段长396米,占87.6%(隧洞长按不计明挖段的452米计算,下同),Ⅳ类围岩洞段长56米,占12.4%,Ⅳ类围岩洞段需进行支护处理.

由于坝址所在的河段较直,导流洞在平面上两次转弯,从进口至第一个转弯点轴线走向为S82.8?E,转弯半径为80米,第一个转弯段终点至第二个转弯段起点洞轴线走向为S62.2?W.转弯半径为70米.从第二个转弯段终点至出口洞轴线走向为S17.2?W.进、出口围岩厚度均大于1.65倍洞宽,洞身埋深大于2.5倍洞宽.导流洞洞长为446.00米,底坡为2.242‰.

(2) 导流洞进出口型式选择

①导流洞进、出口底板高程的确定

导流洞进、出口高程主要考虑截流难度,尽量减少导流洞进、出口明挖,使导流洞进出口高程高于常枯水位线,从而使进出口施工少受河水影响等因素,将导流洞进口高程定为801.00米,出口高程定为800.00米.

②导流洞进、出口形式选择

由于地形条件的限制,无法修建交通通道至导流洞进口,所以在进口明渠段设置导流洞闸门井和喇叭口的难度极大.为减少局部水头损失,提高导流洞泄流能力,避免气蚀的发生,导流洞进口0-006.17~0+000.00米桩号左右边墙向河床扩散,扩散角为5?,顶拱斜率为0.2.出口扩散角为5?.

③导流洞闸门井设计

导流洞闸门井设置于导流洞桩号0+041.77米处,井顶高程为823米.闸门的运输及安装均由导流洞施工支洞进入.

④导流洞断面设计

导流洞断面设计为城门洞型,主要考虑如下因素:①导流洞在大部分时间内均为无压流运行,门洞型断面可以获得较大的过水断面;②门洞型断面的边墙、底板均为平面,便于开挖控制,底部较宽,施工场地较大,便于施工机械工作;③有利于减少截流落差,降低戗堤高度.经水力学计算,选定导流洞断面为7?9米(宽?高),城门洞型,顶拱中心角为102?6'54",顶拱半径为4.5米,直墙高7.33米.

由于隧洞所经过的围岩分别有Ⅱ、Ⅳ类围岩,岩性不同,洞身成洞条件亦不同,Ⅱ类围岩衬砌厚度取50厘米.断层破碎带和进、出口洞段,衬砌厚度按150厘米设计.各衬砌段的衬砌厚度请详见导流洞设计图.

2.5.1.2 围堰设计

按《水利水电工程施工组织设计规范》SDJ338-89规定,本方案的围堰为Ⅴ级建筑物,围堰按枯期五年一遇洪水设计,枯水时段11月6日~次年5月25日共六个月两旬,流量466米3/s.经水力学计算,上游围堰挡水水位为

?815.31米,相应下游围堰挡水水位为?804.63米,上、下游水位落差为10.68米.上、下游均为土石不过水围堰.围堰设计原则:必须保证其在挡水期边坡稳定且防渗性能良好,对浸入堰体的水体具备上堵下排的功能.

表2-5-1 围堰主要设计指标

(1) 上游围堰设计

①堰体结构设计

上游围堰堰顶高程?816.00米,挡水水位?815.31米,河床底高程?799.00米,最大堰高17.0米,堰顶宽10.0米,堰顶长度72.80米,堰基覆盖层最大深度为10.0米.由于上、下游围堰堰型均为不过水围堰,第一个汛期过后必须恢复已被冲毁的上、下游围堰至原设计高程.堰体由戗堤块石、反滤层、土石混合料、防渗体组成.排水棱体由截流戗堤堆筑体形成,排水棱体顶高程?807.00米,顶宽为8米,上下游边坡均为1:1.5.堰体上游面由外至内分别为护坡块石(厚3米)和反滤料(厚1.5米),上游边坡为1:1.75.下游面高程?807.00米至堰顶高程边坡为1:1.75.经计算,上游围堰的最不利滑动面滑动安全系数为2.239,满足规范要求.

②围堰防渗体设计

为形成大坝基坑干地施工条件且防止围堰发生渗流破坏,堰体内设置有防渗体.根据高喷板墙施工速度较快的特点,确定?809.80米以下堰体及堰基覆盖层为高喷板墙防渗,选定11月6日至12月25日(一个月两旬)为高喷板墙施工期,相应该施工期五年一遇洪水流量为236米3/s,相应上游水位为?809.30米,高喷板墙施工平台高程确定为?809.80米.防渗板墙最小厚度30厘米,嵌入基岩50厘米,组成全封闭垂直防渗体系.堰芯填筑料为最大粒径小于15厘米的夹土石碴,以利于高喷造孔,河床覆盖层为崩塌堆积块石、碎石及冲积砂卵砾石混杂堆积,适合建造高喷板墙.高程?809.80米以上堰体防渗,采用复合土工膜防渗,近年来国内有很多工程采用,实践证明施工简单,不需专门机械设备,施工进度较快.为便于和堰体分层碾压1.5米的层厚相适应,土工膜结构采用“之”字形布置,折皱角度按与风化料边坡自然休止角(32°)相同布置,即1:1.6.为防止大块石顶破土工膜,在其上下游各1米~2米范围内铺设风化料.高喷板墙与土工膜连接处采用盖帽砼相连.

(2) 下游围堰设计

①堰体结构设计

下游围堰堰顶高程为?805.50米,挡水水位?804.63米,河床底高程?798.50米,最大堰高7.0米,堰顶长度67.0米,堰基覆盖层最大深度为12米,堰顶宽8米,堰体由护坡块石、夹土石碴、防渗体组成,上下游边坡均为1:1.5.经计算,上游围堰的最不利滑动面滑动安全系数为1.521,满足规范要求.

②围堰防渗体设计

下游围堰及基础覆盖层采用高喷板墙防渗,防渗板墙最小厚度30厘米,嵌入基岩50厘米,堰芯填筑料为最大粒径小于15厘米的夹土石碴,以利于高喷造孔,河床覆盖层为崩塌堆积块石、碎石及冲积砂卵砾石混杂堆积,适合建造高喷板墙.

(3) 上下游围堰与岸坡结合设计

堰体与岸坡结合部位为防渗薄弱环节,应认真处理.下部高喷板墙与岸坡的结合,由于受地形条件限制,边孔与岸坡基岩的结合不能闭合,需待高喷板墙施工完后,挖出端部墙体,与岸坡基岩之间回填防渗粘土,并夯实.堰体上部土工膜防渗体施工,首先需清除轴线上下游各1米岸坡的覆盖层,在其上浇筑厚1.0米的剌墙砼,形成锚固槽,将土工膜条带预埋于其中.由于堰体将产生沉陷,土工膜与两岸岸坡联结结构必须适应堰体变形的要求.设计采用将联结结构部位的土工膜设置折皱伸缩节以释放应力的办法使其适应变形.

(4) 上下游围堰度汛保护措施

由于上下游围堰均为不过水围堰,不需采用护面措施,但是在围堰开始过流前,先对基坑进行预充水至 805.50米,形成水垫,尽量减小洪水对上、下游围堰的冲刷.水位消退后重新堆筑已被冲毁的上下游围堰,使其顶高程恢复至原设计高程.

(5) 厂房围堰设计

厂房为Ⅲ建筑物,根据部颁SDJ338—89《水利水电工程施工组织设计规范》规定相应的临时建筑物为Ⅴ级.选取5年一遇重现期洪水作为厂房

围堰设计标准,选择枯期11月6日至次年4月25日(五个月两旬)为施工时段.相应流量为249米3/s,对应水位为780.10米.厂房围堰采用铅丝笼护坡、土石混合料填筑结合部分预留岩坎方式,围堰和岩坎高程定为781.00米. 2.5.1.3截流设计

(1) 截流时段选择

根据水文资料,北盘江一般从10月中旬进入枯水期.结合进度安排和设计规范要求考虑,截流时间确定在11月上旬.

(2) 截流流量选择

善泥坡坝址处月平均流量见表2.5-2.

表2-5-2善泥坡坝址处月平均流量表

根据主体工程及导截流工程的规模和条件,按照规范规定的标准,采用五年一遇月平均频率流量作为截流设计流量,相应于11月月平均P=20%频率流量为126米3/s.

(3) 截流方式选择

选择截流方式时考虑了以下因素:

①立堵截流准备工作简单,造价低,且国内积累了较丰富的经验.

②河床右岸从导流洞施工支洞可直接设置交通洞至上游围堰.

根据上述情况,本工程采用立堵法截流.龙口设在左岸,自右岸向左岸进占.戗堤顶宽8米,上、下游边坡均为1:1.5,戗堤顶高程为807.00米,戗堤总长42米,预留龙口宽30米,戗堤堤头设计边坡为1:1.5.

(4) 截流水力条件及截流材料选择

戗堤预进占10月下旬进行,采用一般石碴抛投,石料最大粒径为0.76米,预进占段抛投总量为0.49万米3(含30%流失量).

龙口段宽度为30米,按126米3/s流量设计,截流最大落差为4.45米,最大平均流速为5.14米/s,适当备部分大块石,可满足截流要求.龙口段总抛投量0.44万米3(含30%流失量).龙口水力学指标见表2-5-3.

表2-5-3 龙口不同宽度水力学指标计算成果

(1) 大坝基坑排水

本电站基坑排水主要为初期排水,后期的经常性排水设备则适当采用初期排水的设备.

初期排水包括基坑积水和降雨形成的地表径流,由于上、下游围堰都设有高喷防渗板墙,所以堰基渗流很小.基坑积水量约为16.88万米3,考虑在3天内抽干,排水流量为2345米3/h.根据初期排水扬程,选择基坑排水水泵为12sh-13A型1台和12sh-28型3台,另考虑备用1台.设备特性见表2-5-4.

(2) 厂房基坑排水

厂房基坑排水按相同原则考虑.厂房基坑积水量约1.8万米3,同样按3天排干基坑,排水强度为250米3/h,根据排水扬程,选择排水泵为12sh-28型1台,另考虑备用1台.设备特性见表2-5-4.

表2-5-4基坑排水设备表

2.5.1.5 施工度汛及封堵蓄水

(1) 施工度汛

根据施工总进度的安排,截流后第一个汛期,基坑过水,坝体浇筑至▽805.00米高程,导流洞与基坑联合泄流.截流后第二个汛期到来前,坝体浇筑到▽868.00米高程,该高程下相应库容0.39亿米3,根据部颁SDJ338—89《水利水电工程施工组织设计规范》规定,施工度汛标准按二十年一遇洪水、

相应流量为3370米3/s设计,经计算,该流量从导流洞和坝体中孔联合下泄,导流洞泄流量为1231米3/s,洞内水流流速为20.71米/s;坝体中孔泄流量为2139 米3/s,水流流速为22.28米/s;坝前水位为867.00米,低于坝体挡水断面顶高程,坝体可继续施工.

(2) 下闸蓄水

根据施工总进度安排,导流洞于第三年11月初封堵,根据水库蓄水分析计算,第一台机组将于第第三年12月月底初开始发电.

2.5.1.6 导流洞的施工

导流洞施工是控制总进度关键工程项目之一,计划筹建年11月开工和第一年10月底完建.

(1) 进出口明挖工程

导流洞进口高程分别为▽801.0米,出口高程分别为▽800.0米,为使进出口开挖和砼浇筑能在干地施工,采用设置浆砌石围堰和预留岩坎方式挡水,挡水标准选用枯期六个月两旬(11 月6日~5月25日)P=20%频率流量466米3/s作为设计流量,进、出口围堰相应高程分别为▽806.50米和▽804.63米.

进口由于坡度较陡,无法形成工作面,所以进口的开挖待洞身开挖完成后才能进行.

出口开挖按自上而下梯段原则进行,初期采用手风钻打孔爆破,人工扒碴,后期当开挖面扩大后,钻孔及出碴设备进入工作面,采用潜孔钻打孔爆破,推土机集碴,3.1米3装载机配20t自卸汽车出碴.

(2) 洞挖工程

①施工支洞布置

由于受汛期洪水的限制,汛期不便于从出口进入主洞施工,且主洞出碴与出口施工也会发生干扰,故设置施工支洞.根据导流洞施工进度和公路布置要求,在导流洞进口附近设置一条施工支洞,支洞进口高程按20年一遇洪水标准考虑,相应流量为3370米3/s,对应水位为为813.40米,所以进口高程定为814.00米.导流洞施工支洞与导流洞平面相交于Z10点,为导流洞封堵闸门的运输及安装通道.施工支洞在Z4点分一叉洞作为导流洞施工通道,在Z7点分一叉洞作为上游围堰施工通道.支洞断面尺寸考虑施工交通要求设计为7米×6米城门洞型(宽×高).

②导流洞开挖

a.开挖程序

导流洞开挖分上、下两半部进行,先开挖上半部,导流洞开挖时,分别从出口和支洞与主洞交叉处向上下游多工作面掘进.待导流洞上半部工作面开挖完成后,再进行导流洞下半部扩挖.

b.开挖施工方法

导流洞洞身段开挖施工方法采用常规的钻孔爆破法.对于地质条件较好的Ⅱ类围岩,上半断面开挖使用三臂钻车打孔,非电引爆,周边采用光面爆破技术.下半断面采用履带式钻机打垂直孔,周边采用水平孔预裂或光面爆破.采用3.1米3装载机配12.5t自卸汽车出碴,石碴通过施工支洞运至右岸1号弃碴场.

一期采用喷锚支护.喷砼厚10~15厘米,顶拱设置锚杆.采用三联机喷射砼,锚杆台车打孔,人工安装锚杆,注浆机注浆.

c.导流洞开挖进度

上半部Ⅱ类围岩按日进尺6米,平均月进尺150米考虑;对Ⅳ类围岩按日进尺4米,平均月进尺100米考虑.下半部扩挖按平均月进尺180米考虑.

(3) 砼浇筑

导流洞砼量为1.20万米3(包括施工支洞),其中喷砼0.25万米3,由施工单位临时拌和系统供给.砼的运输和入仓方式,因浇筑部位而异:

①导流洞进出口浇筑

该部位主要是底板和边墙砼,其量不大,采用砼搅拌运输车或自卸汽车运输砼,溜槽入仓方式.

②闸门井砼浇筑

闸门井因断面小,砼可通过运输车或自卸汽车运输,溜槽入仓方式.采用插入式振捣器振捣.

③导流洞洞身钢筋砼衬砌

导流洞洞身钢筋砼衬砌按先顶拱边墙、后底板的顺序施工.顶拱和边墙钢筋砼衬砌采用开挖一次形成后衬砌的方式,待顶拱和边墙钢筋砼衬砌完成后,进行底板衬砌施工.边顶拱钢筋砼采用钢模台车立模,钢筋台车绑扎钢筋,砼用搅拌运输车运送,由砼泵车输送入仓,用插入式和平板式振捣器振捣.底板钢筋砼采用拉模施工,搅拌运输车运送砼直接入仓,插入式和平板式振捣器振捣.导流洞洞身钢筋砼根据温控、浇筑等要求,9米~12米为一浇筑段.

④导流洞灌浆

导流洞灌浆按先回填灌浆,再固结灌浆的顺序进行,回填灌浆待衬砌

砼达到70%强度后尽早进行,固结灌浆在回填灌浆后10天左右进行.

(4) 导流洞堵头施工

①导流洞封堵时间

根据施工总进度安排,综合考虑坝体度汛要求、坝体浇筑进度以及堵头施工工期、水库蓄水发电时间等要求,确定导流洞将于第三年11月初下闸.

②堵头施工

堵头施工时,由导流洞洞身钢闸门挡水,堵头开挖及砼浇筑均由导流洞出口进入施工,开挖齿槽采用手风钻打孔爆破,堵头采用微膨胀砼浇筑,砼由搅拌运输车供给泵送入仓.

2.5.1.7 围堰施工

(1) 围堰施工程序

截流后,同时堆筑上游围堰?809.80米以下及下游围堰堰体,然后同时进行高喷板墙施工,板墙完工后,开始基坑排水,之后进行大坝基坑开挖、砼填筑,与此同时,进行围堰上部堰体的填筑施工.

(2) 上游围堰施工

上游围堰总堆筑量4.07万米3,戗堤料、护坡块石料、土石混合料均来自右岸1号碴场,电铲或反铲在料场挖装分选装料,20t、15t自卸汽车运输,推土机平料,待?809.80米高喷施工平台形成后,用13.5t振动碾先静压2遍,然后带振碾压6遍,行驶速度控制在1千米/h~1.5千米/h,以此提高堰体干容重.

①高喷板墙施工

高喷板墙钻孔施工分一、二序进行,相邻异序孔孔距1.2米.施工顺序为先造孔后高压喷射注浆.造孔采用地质钻机,泥浆护壁;喷浆采用“三重管法”,喷射机可采用CYP型高喷液压台车,步履式,具有良好的机动性能.

②堰体 809.8米以上填筑施工

采用分层碾压施工法:a.土工膜上游侧夹土石碴填筑,碾压;b.同侧风化料填筑,用反铲及推土机铺填整形,人工修坡成1:1.6;c.粘接并顺坡铺设土工膜,回填风化料保护土工膜;d.土工膜另一侧夹土石碴填筑、碾压;e.风化料填筑,铺设土工膜.至此完成一层 1.5米高度堰体施工,如此循环上升,直至堰顶.

(3) 下游围堰施工

下游围堰总堆筑量0.64万米3,均来自右岸1号碴场.施工方法同上游围堰.

3 天然建筑材料

3.1 工程所需砂石源料量

本工程根据水工设计方案,上坝址碾压混凝土拱坝+右岸地下厂房方案主体加临建砼总量约50万米3.设计要求所需砂石料的开采量、料场需用储量、料场可采储量计算结果见下表3-1-1.

表3-1-1砼骨料所需毛料量

由于善泥坡电站坝址区及其附近缺乏天然砂砾石料,只能采用料场开

采机械破碎加工砼所需砂石骨料.

预可阶段根据坝址位置及所需用料情况,初步选择了右岸黄家冲料场、穿洞料场及左岸干沟头料场、偏岩洞料场,共4个料场.针对选定的上坝址,在初选料场中,因偏岩洞料场及穿洞料场距大坝较远,本阶段又在法德大桥附近选择一个桥头料场,各料场分布位置见地质篇“料场产地分布图”.

3.2 料场概述

3.2.1 黄家冲砂石骨料场

位于上坝址右岸2号冲沟沟口北东侧,北侧为一陡壁,相对高差可达200米,南西面为一斜坡,自然坡度40~60 ,坡面较陡.岩性为P1q+米深灰色厚层块状灰岩,局部含少量燧石结核,分布高程900~1150米,拟开采面积为0.045千米2.地表基岩裸露,溶沟、溶槽发育,剥离层厚2~5米,可开采厚度80~240米,储量可达491.75×104米3,该料场距上坝址500米.整个料场均位于地下水位之上.

本阶段在料场区取样作矿物成分鉴定及化学分析、岩块物理力学试验等,试验成果见表3-2-1、表3-2-2及表3-2-3.

表3-2-1矿物成分鉴定试验成果表

表3-2-2岩石化学成分试验成果表

表3-2-3岩块物理力学试验成果表

根据以上岩样矿物成份鉴定成果表明,该料场区主要的料源层除局部偶夹燧石结核及条带外,主要的料源层均为生物碎屑灰岩,灰岩的纯度较高,不含能引起碱活性反应的活性二氧化硅,无碱活性问题;化学成分分析亦未发现异常成份构成,可作为砼骨料.

P1q+米厚层灰岩湿抗压强度均值为66.6米Pa,软化系数为0.82,容重为25.6kN/米3,能满足规范对砂石料质量的技术要求.

3.2 2 干沟砂石骨料场

该料场位于坝址下游左岸干沟沟口附近,至坝址直线距离约 1.4千米,分布高程960~1250米.料场南东面干沟及北盘江,南东面、北东面及南西面均为临空面,陡壁高差可达100米,陡壁之上自然坡度30?左右.圈定的料场范围内,坡顶及坡脚有少量覆盖层,地层岩性为P1q+米厚层灰岩,岩性单一,为单斜岩层,岩层产状: N30?E,NW∠15?.岩溶发育不甚强烈,主要为沿裂隙发育溶缝及溶沟、溶槽,陡壁上未见较大的溶洞发育,整个料场均位于地下水位以上.

该料场地层岩性与黄家冲料场相同,为P1q+米厚层灰岩,质量与黄家冲料场一致.

根据圈定范围进行计算,计算方法采用平行断面法,表层剥离层厚按2~5米计,料场开采下限定为960米.计算结果,无用层体积为16.34万米3,有用层储量372.13万米3,剥采比为1:22.77.料场储量基本满足设计用料要

求.

3.2.3 桥头砂石骨料场

该料场位于法德大桥右岸桥头,至坝址直线距离约2.5千米,分布高程920~1040米.料场北面及北西面为一临空面,北面为北盘江,陡壁相对高差130米,陡壁之上相对平缓,地形坡度20~30?.圈定的料场范围内基岩裸露,岩性为石炭系上统马平组(C3米)厚层灰岩,岩层总体产状N30?E,NW∠16?.岩溶较发育,规模小,主要为沿裂隙发育溶缝及溶沟、溶槽,未见较大的溶洞发育,整个料场均位于地下水位以上.

该料场地层岩性为P1q+米厚层灰岩,由于断层影响,岩体隐节理较发育.

根据圈定范围进行计算,计算方法采用平行断面法,表层剥离层厚按2~5米计,料场开采下限定为920米.计算结果,无用层体积为15.25万米3,有用层储量195.25万米3,剥采比为1:12.74.料场储量基本满足设计用料要求.

3.2.4 砂石料场比选

本阶段比选砂石骨料场有3个,第一个为坝址下游右岸的黄家冲料场,勘探储量在491.75×104米3,第二个为坝址下游左岸的干沟料场,勘探储量372.13×104米3,第三个料场为桥头料场,位于法德大桥右岸桥头附近,勘探储量195.25×104米3.3个料场储量均能满足设计用料要求.其中前两个料场岩体质量相同,为较纯灰岩不含活性二氧化硅,无碱活性问题;但均偶夹燧石结核,底部夹燧石团块或条带,料场开采时,应将燧石条带或团块予以剔除.

桥头料场分布高程适中,地形较缓,与公路距离较近,开采条件及运输条

件都较好,但距黑叶猴保护区较近,受环保制约;干沟料场分布高程较高,开采条件次之,但与坝址距离较远;黄家冲料场分布高程较高,地形较陡,开采条件相对要差,但其距坝址最近,运输方便.

可研阶段,地质推荐采用黄家冲料场.

3.2.5 土料

土料场选在坝址右岸下游红坝子一带,该土料场距坝址6千米,成份为残积红粘土,初估厚2~5米,无用层厚0.5~1米,面积约0.5千米2,可开采方量大于100×104米3.

3.3 料场选择

砂石骨料场选择:

根据地质上述料场选择的各料场地质条件,及施工总平面布置,本阶段按照各料场所在地位置,对砂石骨料场进行了大致筛选.

预可阶段就由于偏岩洞料场及穿洞料场距大坝较远而不选用.左岸的干沟头石料场其距离相对较远,高程较高,开采道路布置较难,因此本阶段暂不考虑选用.而右岸桥头料场分布高程适中,地形较缓,与公路距离较近,开采条件及运输条件都较好,但距黑叶猴保护区较近,受环保制约,不宜采用.黄家冲料场分布高程较高,地形较陡,开采条件相对要差,但其距坝址最近,运输距离相对较近,因此本阶段设计选用黄家冲料场作为本次设计所选用料场.

3.4 料场开采规划

按照工程需要,本工程设计要求石料场开采量53万米3、料场储量55

相关文档