文档库 最新最全的文档下载
当前位置:文档库 › 壳聚糖与黄原胶对绿茶汁澄清效果的研究

壳聚糖与黄原胶对绿茶汁澄清效果的研究

壳聚糖与黄原胶对绿茶汁澄清效果的研究
壳聚糖与黄原胶对绿茶汁澄清效果的研究

开发应用中国食品添加剂

Ch i n a Food Add itives 壳聚糖与黄原胶对绿茶汁澄清效果的研究

潘叶,黄惠华*

(华南理工大学食品工程与科学系,广州510641)

摘要:壳聚糖分子链上具有氨基、羟基官能团,与酸或酸性化合物结合后,便成为带正电荷的聚电解

质,和溶液中存在的带负电荷的蛋白质、纤维素等微粒相互作用,能够使引起果汁和酒液混浊的蛋白质、单

宁等胶态颗粒絮凝沉淀下来而达到澄清目的。黄原胶可以将食品分散体系中的颗粒物絮凝出来。本文以浊度

和色差为指标,壳聚糖和黄原胶为澄清剂,研究了壳聚糖/黄原胶对绿茶汁的澄清效果,确定了最佳的工艺参

数,并在单因素试验的基础上,通过多因素正交试验,得出澄清绿茶汁的最适工艺为时间55m i n,壳聚糖

(10g/L)黄原胶(10g/L)比例7B3,绿茶汁p H411,验证试验结果表明此时浊度为0163NTU,绿茶汁的色

差L*=40108,b*=20119,此工艺条件不但能得到满意的澄清效果还能呈现绿茶原汁的亮黄色。

关键词:绿茶汁;澄清;壳聚糖;黄原胶

中图分类号:TS255144文献标识码:A文章编号:1006-2513(2010)01-0195-04

Study on the clarification of gree n tea w it h c hitosan and xant han

PAN Ye,HUANG Hu-i hua*

(Depart m en t o f Food Science and techno logy,

South Ch i n a U niversity o fTechno logy,Guangzhou510641)

Ab stract:Chitosan are co m po sed of a m i no-groups and hydroxy l g roups.Co m bined w it h acidic o r a l kali ne substances,

they beco m e po lyelectro l y te w ith po siti ve charg es,and i nte ract w ith pro te i n、fi ber and other pa rti culates such as pro-

te i ns、tanni n to c l ar ify the sedi m entati on i n j u i ce and w ine.X an t han can prec i p itate particulates i n d i spersi ve syste m.

The c larificati on effects o f ch itosan and X an t han gu m on green tea w ere stud i ed.The techno l ogy para m eters of c l a rifica-

tion we re opti m i zed i n the exper i m ent.Based on t he orthogonal test,t he best cond iti ons w as:35e,55m i n treat m ent,

the concentrati on of chitosan und X anthan gu m:7B3and p H411.U nder t he above cond iti on,the t urbi d ity o f clar ifi ed green tea w as decreased to0163NTU,and chro m a tic aberration L*=40108,b*=20119.

K ey w ords:green tea;clar ificati on;chitosan;x anthan

茶叶由于具有丰富的营养成分,越来越为世人推崇,用茶叶或茶叶深加工产品作为饮品倍受世人青睐。茶饮料自70年代出现以来,正以强劲的发展势头抢占饮料市场,国内的茶饮料生产与研究开发十分活跃。在茶饮料的生产中,茶汁的澄清是生产的关键。经过20多年的大力发展,茶饮料生产技术取得了长足的进步和发展,但是浑浊沉淀现象仍是茶饮料生产中的一个重大问题[1]。本文通过对壳聚糖/黄原胶在绿茶汁中的应用研究,提出了绿茶汁的澄清方法。

收稿日期:2009-06-16*通讯作者

基金项目:广东省教育部产学研结合项目(2007B090100009),广东省关键领域重点突破项目(2008A024200003)。

作者简介:潘叶(1985-),女,在读硕士,研究方向为农产品加工与贮藏。

195

中国食品添加剂

China Food Add iti v es

开发应用

壳聚糖是甲壳素水解脱去N-乙酰基得到的一种线性高分子碳水化合物,是一种含量丰富的天然碱性多糖,具有良好的生物相容性、适合性与安全性,美国食品与医药卫生管理局(FDA)已批准其作为食品添加剂[2]。壳聚糖分子链上具有氨基、羟基官能团,与酸或酸性化合物结合后,便成为带正电荷的聚电解质,和溶液中存在的带负电荷的蛋白质、纤维素等微粒相互作用,能够使引起果汁和酒液混浊的蛋白质、单宁等胶态颗粒絮凝沉淀下来而达到澄清目的。壳聚糖来源广泛,成本低,无毒无味,处理后形成的果胶果肉沉淀也可加工成食品[3],是一种值得推广的化学澄清剂。

黄原胶是由野油菜黄单胞杆菌分泌的一种胞外酸性多糖,1969年正式被美国FDA批准为食品添加剂。在食品工业中,黄原胶可作为稳定剂、乳化剂、增稠剂、分散剂和品质改良剂等[4]。尽管鲜有文献报导黄原胶在绿茶汁澄清上的应用,但它却被认为是食品分散体系中非常有效的絮凝剂,可以将食品分散体系中的颗粒物絮凝出来[5]。

绿茶汁的浑浊称作冷后浑,是由茶汤中的茶多酚、咖啡碱、蛋白质、少量多糖以及疏水性脂质、叶绿素、金属离子等物质间相互作用而形成浑浊沉淀的复杂过程;另外,某些成分的溶解度变化、微生物因素均可引起冷后浑形成,其中蛋白质-多酚-咖啡碱类混浊是冷后浑现象的主要原因[6]。至今尚无满意的方法解决茶汁冷后浑现象。目前茶叶界公认比较理想的办法是先将茶汤冷却到4e左右,让其在低温下充分形成/茶乳酪0,滤去/茶乳酪0再进行后续加工[7]。本研究拟将黄原胶和壳聚糖复配使用结合低温沉淀法解决绿茶汁的澄清问题,为绿茶深加工提供技术支持和理论依据。

1材料与方法

111材料与设备

绿茶:福建安溪新美茶叶加工公司;壳聚糖:白色粉末,脱乙酰度>92%,黏度55m Pa# s,上海源聚生物科技有限公司;黄原胶:黄色粉末,型号BP9270,1%黏度1200~1400mPa#s,山东中轩股份有限公司;其他药品均为国产分析纯。

SGZ-3数显浊度仪:上海悦丰仪器仪表有限公司;CR-400色差计:日本KON I C AM I N OLTA 公司;HH-4恒温水浴锅:富华仪器有限公司; TDL-5-A低速大容量离心机:上海安亭科学仪器厂。

112实验方法

11211壳聚糖和黄原胶溶液的制备要点

将黄原胶和壳聚糖分别配制成10g/L的溶液。黄原胶在使用前加热到60e搅匀备用。配制壳聚糖溶液时加入1%的乙酸。在稀酸中壳聚糖会出现慢慢水解现象,故壳聚糖最好随用随兑[6]。11212茶叶汁的制备要点

取绿茶片,加入茶叶重量12倍的90e去离子水,并在90e水浴中恒温15m in,然后用200目的滤布过滤,再经滤纸过滤,得茶汁,冷却至室温待用[1]。

11213工艺流程

茶叶的浸提y加入壳聚糖溶液y搅匀y加入热的黄原胶溶液y搅匀y4e静置y滤去絮凝物y离心y取上清液进行分析

11214绿茶汁浊度的检测方法

绿茶汁浊度的测定取30mL绿茶汁于30mL的样品池内测定,以Nehe l o浊度单位,NTU表示。11215色差值测定方法

取一定量的样品置于色差计所配量具中,通过白板校准,直接将样品放置于光源下,读取色差计显示的数值b*,b*值表示物质的黄度,b *值越大越偏向黄色。

11216单因素实验

以浊度为指标,分别研究壳聚糖和黄原胶的比例(在p H410,时间1h)对绿茶汁澄清效果的影响;绿茶汁的p H(在壳聚糖B黄原胶= 7B3,时间1h,)对绿茶汁澄清效果的影响;壳聚糖和黄原胶处理时间(壳聚糖B黄原胶= 7B3,p H410)对绿茶汁澄清效果的影响。11217正交实验

为获得最佳效果,在单因素实验基础上,以绿茶汁的浊度为指标,进行正交分析。采用3因素3水平表进行正交设计。

196

开发应用中国食品添加剂

Ch i n a Food Add itives

表1 正交实验因素水平表

Tab le 1 Factor and leve l of orthogonal exper i m en t

水平

因 素

pH A 壳聚糖B 黄原胶(g /L B g /L)

B 处理时间(m i n)

C 14102B 85524111B 9603

412

3B 7

65

2 结果与分析

211 壳聚糖和黄原胶的比例对绿茶汁浊度的影响

在溶液中加入总量为012%的澄清剂,调节

壳聚糖和黄原胶的比例。为与其它所有添加剂处理效果进行比较,测定了未加任何澄清剂的绿茶汁的浊度。实验表明,用壳聚糖和黄原胶澄清绿茶汁时,其用量对澄清效果有很大影响。加入壳

聚糖,绿茶汁中会有大量细小的悬浮颗粒产生,一段时间后细小颗粒不断增大并逐步下沉;此时再加入黄原胶,在绿茶汁的表面会形成一些漂浮的絮凝物。当壳聚糖含量较大时,几乎没有絮凝物的形成;而仅仅加入黄原胶时,溶液上只是漂浮一层悬浮物,绿茶汁较为混浊。

从图1中可以看出,不加任何澄清剂处理的绿茶汁在4e 时浊度是4711NTU,而加了壳聚糖和黄原胶的绿茶汁最小浊度只有1127NTU,可见

澄清剂对绿茶汁有非常好的澄清效果。

图1 壳聚糖和黄原胶的比例对绿茶汁浊度的影响

F ig 1 E ffec ts of ratio be t ween ch itosan and xan than on green tea c l arification

当壳聚糖/黄原胶比值为5B 5时,果胶浊度达到最大3718,与不加澄清剂的浊度相似,说明此时澄清剂并未发挥作用。随着壳聚糖对黄原胶的比例的增加,茶汁的浊度也越来越小,低于10NTU 。但壳聚糖对黄原胶的比例也不是越大越好。若只加壳聚糖,浊度为1214。其中可能的机理是剩余的壳聚糖大分子相互联结,悬浮在绿茶汁中,反而会影响澄清效果。目前壳聚糖/黄原胶澄清绿茶汁的机理还不太清楚,一般认为壳聚糖和黄原胶能在溶液中形成交联状的网状结构,与蛋白质、多酚形成络合物,将其分离出来。而绿茶汁的混浊主要原因之一就是蛋白质与多酚类

物质作用产生的。凝胶状的物质形成于水的表面,说明壳聚糖和黄原胶可以在溶液中形成凝胶[8]。

212 绿茶汁p H 值对绿茶汁浊度的影响

由于pH 值对于黄原胶流变性质的影响较小,黄原胶溶液的黏度在pH 值3~11范围内基本保持稳定。黄原胶溶液在较低pH 值下,能长期保持稳定,但绿茶汁p H 值对壳聚糖澄清效果影响很大。这是因为不同p H 值对壳聚糖和绿茶汁中的蛋白质的带电性有决定性影响,从而影响壳聚糖对蛋白质之间的络合效果及绿茶汁中胶体物质的稳定性。因此必须考虑到壳聚糖和黄原胶在不

197

中国食品添加剂China Food Add iti v es

开发应用同pH 环境下的澄清效果。寇正福

[9]

指出,溶液的酸碱性对沉淀的形成有很大的影响。每一种蛋白质都有其最适宜的多酚沉淀点P max ,往往P m ax ?1的范围内沉淀出的多酚量最大。茶汤蛋白的等电点在p H 412,因此在此附近多酚和蛋白质反

应较完全。

图2 pH 对绿茶浊度的影响

F i g 2 E ffects of p H on green tea clar ificati on

图2是在壳聚糖B 黄原胶=7B 3,时间55m i n ,温度4e 时,绿茶汁p H 值对其浊度的影响。从图中可以看出,绿茶汁p H 值对透光率有很大的影响。p H 值在319~413范围内,绿茶汁的浊度随p H 的增大而变化不大且浊度很小。当p H 值为411时,浊度达到了最小值0154NTU 。p H 值大于413后,浊度随p H 增大而迅速增大。这是因为在p H 值为411时,生产的混浊沉淀量最大,因此离心后也最为澄清。

213 处理时间对绿茶汁浊度的影响

壳聚糖澄清绿茶汁的过程是吸附绿茶汁内呈阴离子基团的胶体物质的过程,因此在一定时间内,随着时间的延长吸附的胶体越多,得到的沉淀也越多,从而澄清效果越好

[10]

。但时间并不是

越长越好,多酚-蛋白质结合反应是可逆反应,经过一段时间后,反应基本完全,再延长时候效果已不明显。

从图3可以看出,当处理时间40~50m i n 时,绿茶汁的浊度值随时间的延长而迅速下降,当处理时间50~75m i n 时,浊度值变化缓慢,处理时间为40m i n 时,浊度高达3517NTU 。在55m i n 时浊度只有4103NTU 。但若继续延长作用时间,浊度的变化程度并不明显。说明该壳聚糖能在1个小时左右把绿茶汁中的大部分胶体

物质沉淀。

图3 时间对绿茶汁浊度的影响

Fig 3 E ffects of ti m e on green tea clarification

214 壳聚糖/黄原胶澄清绿茶汁的多因素正交实验分析

表2 多因素正交实验分析表

T ab le 2 R es u lts an al ysis of or thogonal experi m en t

编号A B C 浊度111141822122616231333178421211305223117562311169731301788321118393322185

K 1510732130021780K 2115833140731590K 3118202177321103R

31493

11107

11497

(下转第229页)

198

法规与标准动态中国食品添加剂

Ch i n a Food Add itives 中华人民共和国卫生部

公告

2009年第14号

为规范食品添加剂和新资源食品行政许可工作,根据5食品安全法6的有关规定,现公告如下:

一、申请食品添加剂新品种和食品添加剂扩大使用范围使用量的单位或者个人,在向卫生部审评机构提出申请时,应当提供产品质量规格要求、检验方法和该添加剂工艺确有必要的证明材料。申请时可不再提供省级卫生行政部门的初审意见。

二、仅限于保健食品原料的物品,不纳入新资源食品行政许可的受理和评审范围。

三、我部在受理食品添加剂和新资源食品申请后,将及时公开有关申请信息,并征求相关部门和行业协会意见。对缺乏食品工艺使用必要性的食品添加剂,我部将不予批准。

本公告自发布之日起施行。

二o o九年十月十三日

(上接第198页)

从表2可以看出,因素A的极差最大,其次是C,最后是B。所以决定实验结果因素的主次顺序是A>C>B。最适组合是A2C3B1,即时间是55m i n,壳聚糖黄原胶比例为7B3,茶的p H为411,验证试验结果表明此时浊度为0163NTU,与预计的结果完全吻合。同时,还测了此条件下绿茶汁的色差L*=40108,b*=20119,而未经处理的绿茶汁的色差L*=25111,b*=10162,说明澄清的绿茶汁不仅能呈现绿茶原汁的亮黄色还能提高绿茶汁的亮度。

3结论

(1)壳聚糖/黄原胶共同作用澄清绿茶汁比壳聚糖单一澄清效果好。

(2)单因素试验研究表明,壳聚糖和黄原胶的比例在7B3,绿茶汁的pH值319~413,处理时间55m i n以上,绿茶汁的澄清效果较好。

(3)通过构造壳聚糖和黄原胶共同作用澄清绿茶汁的3因素3水平试验,得出澄清绿茶汁的最佳工艺条件为时间55m i n,壳聚糖黄原胶比例7 B3,绿茶汁的p H值为411时,此时绿茶汁的浊度为0163NTU,类似纯水。

参考文献:

[1]丁志,王赞苗,等.壳聚糖在绿茶汁澄清中的应用研究

[J].中国食品添加剂,2003(4):90-92.

[2]江苏新医学院.中药大辞典(上)[M].上海:上海科学

技术出版社,1986.

[3]张文俊,匡银近.不同分子量壳聚糖对草莓绿茶汁的澄清作

用[J].孝感学院学报,2004,24(6):10-15.

[4]郭瑞,丁恩勇.黄原胶结构、性能与应用[J].日用化学工

业,2006,36(1):42-45.

[5]Kocz o K.,W as an D1T.,Bor w ankar R.R.Floccu l ation of

food d i spers i ons by gu m s:is otrop i c/an i sotrop i c d i spers i on separa-ti on by xanthan gum[J].Food H yd rocoll oids,1998(12):43 -53.

[6]安徽农学院.茶叶生物化学.[M].农业出版社,1990. [6]杨红.茶饮料冷后浑机理研究进展[J].福建茶业,2005,

(1):12-15.

[7]宁井铭,方世辉.茶饮料防沉淀技术研究进展[J].茶业通

报,2004,26(1):41-44.

[8]M arudova M.,M acdougall A.J.,Ri ng S.G.Pecti n-ch-i

tosan i n teracti ons and gel f or m ati on[J].Carbohyd r.Res.

2004,339:1933-1939.

[9]寇正福,刘坐镇.单宁酸与麦胶蛋白结合反应的研究[J].

酿酒科技,2003,(1):65-68.

[10]M lch l h lro Suganoa,Shu jiW atanabea.H ypocholesterole m ic Ac-

tion ofC h i tos ans w it h D i ff eren t V i scosity i n R ats[J].L i p i ds,

1998,23(3):187-191.

229

壳聚糖在国内外食品中的发展现状及其应用前景

壳聚糖在国内外食品中的发展现状及其应 用前景 摘要: 壳聚糖是一种可被生物体降解而对人体无毒的物质,不仅在食品领域有广泛的应用,在饲料行业、医药行业、以及环境保护等许多领域都有广泛的应用。本文主要概述了壳聚糖在国内外食品中的发展现状,并介绍了壳聚糖的性质、在食品中的应用及其化学改性,阐明了壳聚糖在食品开发方面的广阔前景。 关键词:壳聚糖,添加剂,改性,复合纳米粒子 Chitosan in the development situation of food at home and abroad and its application prospects Ma Zhengran Class 0804, School of Food of Science and Technology, Jiangnan University; 010******* Abstract: Chitosan is a biodegradable and non-toxic substances on the human body. It's not only widely use d in food industry, but also in feed industry, pharmaceutical industry, environmental protection a nd many other areas. This article is mainly about chitosan in the development situation of food at home and abroad,and describes the nature of chitosan, the application in food industry and che mical modification of chitosan and set out the broad development prospects of chitosan. Key words:chitosan; additives; modification; composite nanoparticles 引言 壳聚糖是自然界中唯一带正电荷、阳离子的膳食纤维,被称为挽救人类健康的神奇“电粉”。作为天然的可再生资源,壳聚糖具有广谱抗菌性、吸附性、成膜性、保湿性、生物可降解性、生物可相容性、无毒性以及极好的螯合能力,且能加速伤口愈合。大量应用实例证明,壳聚糖对人体的各项生理功能具有良好的调节作用,并显示出许多生命特征,如改善代谢内分泌功能,调节免疫功能;改善消化机能,降低胆固醇;调节人体酸碱平衡吸附,排除体内有害重金属;活化细胞,增强人体生命活力,延缓衰老等。近年来,随着食品工业的不断发展,国内外研究人员对壳聚糖的关注和重视也不断加强。本文主要论述壳聚糖在国内外食品工业中的各种研究应用及其发展前景。 1、壳聚糖的简介 甲壳素是一种带正电的碱性多糖,广泛存在于虾、蟹、昆虫的甲壳,以及真菌(酵母、霉菌)的细胞壁和植物(如蘑菇)的细胞壁中,是自然界中仅次于纤维素的第二大天然高分子化合物,是存在于自然界中唯一能够被生物降解的阳离子高分子材料。甲壳素经浓碱处理,脱去分子中的乙酰基后,转化为可溶性的脱乙酰甲壳素,又称壳聚糖(Chitosan),学名:几丁聚糖。其化学结构是由大部分氨基葡萄糖和少量的N一乙酰基葡萄糖通过β一1,4糖苷键连接起来的直链多糖。 分子式为:(C6H11NO4)n 结构: 2、壳聚糖在食品中的应用 2.1 抗菌剂

壳聚糖改性工艺的研究

壳聚糖改性工艺的研究 壳聚糖[是自然界中唯一大量存在的高分子碱性氨基多糖,与合成高分子材料相比,具有来源广泛、价格低廉、性质稳定、无刺激、无致敏、无致突变、良好的生物相容性和生物可降解性、低免疫原性以及生物活性等优点,已被广泛应用于工业、农业、生物工程、医药、食品、日化、污水处理、纺织印染等领域。壳聚糖不溶于普通溶剂,使其应用受到了一定限制,因此,对壳聚糖进行化学改性,提高其溶解性,并赋予其一些其他功能,扩大其应用领域成为了一个研究热点。 20116壳聚糖的结构和性质 1. 1壳聚糖的结构特性 壳聚糖具有复杂的双螺旋结构,其功能基团有氨基葡萄糖单元上的6位伯经基、3位仲羟基和2位氨基或一些N位乙酰氨基以及糖酐键,其结构式如图1所示。 1. 2.壳聚糖的一般理化性质 壳聚糖是生物界中惟一的一种碱性多糖,它是白色、无定型、半透明、略有珍珠光泽的固体,因原料和制备方法不同,其相对分子质量也从数十万至数百万不等。 1. 3壳聚糖的溶解性质 壳聚糖可溶于稀的盐酸、硝酸、醋酸等无机酸和大多数有机酸但不溶于稀硫酸和稀磷酸。影响壳聚糖溶解的主要因素有脱乙酰度、壳聚糖的相对分子质量、酸的种类等。 2壳聚糖的改性研究 由于壳聚糖自身性能的局限性,科研工作者对其进行了改性研究,通过控制反应条件在壳聚糖上引人其他基团来改变其理化性质[6]。本文将介绍壳聚糖改性的研究进展及应用,并对目前的一些改性方法进行了较全面的总结。 2. 1化学改性 壳聚糖分子上有许多经基和氨基,可通过对其进行分子设计实现可控化学修饰,从而改善壳聚糖本身性能的一些不足。根据壳聚糖的化学性质,可以从酰化、酯化、烷基化等几个方面对其进行化学改性。 2.1.1酸化改性 壳聚糖可与多种有机酸的衍生物如酸酐,酰卤等反应,可引人不同相对分子质量的脂肪族或芳香族的酰基进行改性。酰化反应既可在轻基上反应(O位酰化)生成酯,也可在氨基上反应(N位酞化)生成酰胺。酰化化改性后的产物的溶解度有所改善,它具有良好的生物相容性,是一种潜在的医用生物高分子材料。如脂肪族酰化化产物可作为生物相 容性材料,N一甲酰化产物可增强人造纤维的物理性能。

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.wendangku.net/doc/066287045.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.wendangku.net/doc/066287045.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

壳聚糖的应用研究进展(综述性论文)

绿色原料——壳聚糖的应用研究进展 09化学1班 XXX 指导老师:沈友教授 (惠州学院化学工程系,广东,惠州,516007) 摘要:本文综述了绿色原料壳聚糖的应用研究进展,着重介绍了壳聚糖在食品,水处理,生物药用,造纸业等方面的应用。 关键词:壳聚糖应用食品水处理 前言 原料在化学品的合成中非常重要,其可以成为影响一个化学品的制造、加工与使用的最大因素之一。如果一个化学品的原料对环境有负面的影响,则该化学品也很可能对环境具有净的负面影响。要实现绿色化学,在选择原料时应尽量使用对人体和环境无害的材料,避免使用枯竭或稀有的材料,尽量采用回收再生的原材料,采用易于提取、可循环利用的原材料,使用环境可降解的原材料。 自然界的有机物,数量最大的是纤维素,其次是蛋白质,排在第三位的是甲壳素,估计每年生物合成甲壳素100 亿t。甲壳素N-脱乙酰基的产物壳聚糖就是一种重要的绿色原料。 壳聚糖化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,壳聚糖的外观为白色或淡黄色半透明状固体, 略有珍珠光泽, 可溶于大多数稀酸如盐酸、醋酸、苯甲酸等溶液, 且溶于酸后,分子中氨基可与质子相结合, 而使自身带正电荷。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。壳聚糖无毒无害,具有良好的保湿性、润湿性,能防止静电; 化学稳定性良好, 但吸湿性较强, 遇水易分解。对壳聚糖进行化学改性, 得到的壳聚糖衍生物在许多物化性质方面都得到改善,其应用也更加受到关注。本文着重介绍了壳聚糖在食品,医药,水处理方面的应用进展。

改性壳聚糖富集研究综述范文【精编】

改性壳聚糖富集研究综述 摘要:壳聚糖及其衍生物是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。本文综合概述了壳聚糖的结构、性质、富集及其化学改性的方法,简单介绍了它们的应用领域。 关键词:壳聚糖;富集;化学改性;应用。 引言: 壳聚糖具有许多独特的化学物理性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。通过对甲壳质和壳聚糖进行化学修饰与改性来制备性能独特的衍生物已经成为当今世界应用开发的一个重要方面。 1、壳聚糖及其改性吸附剂 壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素N-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-D-葡萄糖。 壳聚糖本身的基本结构是葡萄糖胺聚合物,与纤维素类似。但因多了一个胺基,带有正电荷,所以使其化学性质较为活泼。且因其聚合分子结合键角度自然扭转之故,对于小分子或元素会发生凝集螫合作用。根据甲壳素脱乙酰化时的条件不同,壳聚糖的脱乙酰度和分子量不同,壳聚糖的分子量通常在几十万左右。但一般来说N-乙酰基脱去55%以上的就可称之为壳聚糖。 壳聚糖本身性质十分稳定,不会氧化或吸湿。鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、生物制药、水处理方面显示出非常诱人的应用价值。近年来,国内外对壳聚糖的开发研究十分活跃。 2、壳聚糖富集工艺的研究现状 由于壳聚糖吸附剂有以上的优点,学者们对其富集的工艺已经有了较为深入的研究。 李斌,崔慧[1]研究了以壳聚糖作富集柱,稀H2SO4为洗脱剂,稀NaOH 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量Cu(Ⅱ)的方法,于波长325nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。此法的优点在于简便、快速、选择性好、经济实用、效果良好。但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

壳聚糖改性研究与应用

壳聚糖改性研究与应用 赵朝霞(1142032224)四川大学化学学院2011级本科 摘要:甲壳素是一种天然多糖,脱除乙酰基的产物是壳聚糖,作为新型功能生物材料,它们已在水处理、日用化学品、生物工程和医药等领域得到了应用。本文综述了近年来关于壳聚糖改性研究进展,以及将其应用到医学、食品、化学工业等各个领域的概况,重点介绍了化学和物理修饰方法的应用研究。 关键词:壳聚糖化学改性与修饰物理改性与修饰功能材料 甲壳素的化学名称为(1,4)一2一乙酰氨基一2一脱氧一β—D—葡聚糖,它是通过β-1-4糖苷键相连的线性生物高分子,分子量从几十万到几百万。甲壳素脱除乙酰基后的产物是壳聚糖,其化学名称为(1,4)一2一氨基一2—脱氧—β一D—葡聚糖。甲壳素和壳聚糖具有与纤维素很相近的化学结构,它们的区别仅是在C位上的羟基分别被一个乙酰氨基和氨基所代替(如图) 但它们的化学性质却有较大差别。甲壳素和壳聚糖具有生物降解性、细胞亲和性和生物效应等许多独特的性质,尤其是含有游离氨基的壳聚糖,是天然多糖中唯一的碱性多糖[1-4]。因此,它们已在废水处理、食品工业、纺织、化工、日用化学品、农业、生物工程和医药等方面得到应用。 医药领域 聚乳酸一羟基乙酸共聚物(PLGA)微粒广泛用于蛋白、多肽、核酸等生物大分子给药。由于PL-GA纳米微球表面缺乏可用于共价修饰的基团,所以难以在表面负载生物活性物质如DNA、配体和疫苗等,不易于通过受体或抗体进行靶向给药。因此,人们尝试用不同方法将PLGA 表层包裹不同的聚合物以达到物理改性PLGA微球表面的目的。如阳离子表面修饰是基于PLGA表层负电荷而设计的,这种方式使PLGA的表面活化成为可能。将壳聚糖(CHS)选做纳米微球表面修饰材料是因为它具有阳离子电荷,生物可降解,黏膜黏附性等特性。阎晓霏等以溶菌酶为模型蛋白,将改性PLGA与溶菌酶通过化学键结合并以CHS修饰得到一种新型阳离子纳米微球,达到增大纳米微球的包封率、载药量并促进蛋白类药物吸收的目的[5]。 壳聚糖在医药测定方面也有着十分积极的作用。Zhang等[6]首先制备了壳聚糖包覆的CdSe /ZrKS量子点作为Her2/neu基因小分子干扰RNA(small interfering RNA,siRNA)的载体。并通过跟踪量子点的荧光信号证实药物载体靶向传送到乳腺肿瘤细胞,利用荧光索酶和酶联免疫分析验证导入细胞的siRNA的基因沉默效应。钟文英[7]等壳聚糖包覆的Ccrre量子点为荧光探针,基于荧光猝灭法建立了吉米沙星定量测定方法。以壳聚糖为载体合成新型疏水色谱填料[8],有效分离提纯枯草芽孢杆菌α一淀粉酶、鸡卵粘蛋白、AS 1.398中性蛋白酶以及伪单孢杆菌脂肪酶[9],以壳聚糖为载体的亲和吸附剂和壳聚糖固定化蛋白酶均具有广泛应用价值. 壳聚糖羧甲基化后,与磷酸钙生成螯合物,它可促进骨骼的矿化,在医药上可作为成骨的促进剂[10]。 二、化工领域 武美霞[11]等以壳聚糖为络合剂、稳定剂或保护剂,通过简单的化学还原法制备了具有超小尺寸的非晶态NiB.CS催化剂,并且使活性组分Ni分散均匀。壳聚糖修饰炭黑负载Pt—Au 催化剂,对原电极有相当好的物理极化学性质的改良作用。Sugunan[12]等认为,壳聚糖之所以能够捕获并起到稳定金纳米粒子的作用,一是由于两者之间存在静电作用;二是壳聚糖具有足够大的立体位阻效应,从而避免了金纳米粒子的聚集并能使金纳米粒子功能化。因此,

改性沥青现状及发展前景

改性沥青现状及发展前景 1、改性沥青应用现状 普通道路石油沥青,由于原油成分及炼制:工艺等原因,其含蜡量较高,导致其具有温度敏感性强,与石料的粘附性差,低温延度小等缺点。用其铺筑的沥青路面,夏季较软,易出现明显车辙壅包等病害;冬季较脆,易出现低温开裂等病害;混合料的抗疲劳性能,抗老化性能较差。同时,由于经济的快速发展,普通沥肯混合料已不能满足高等级道路和特殊地点的重交通,大轴载,快速安全运输的需要。 1.1 改性沥青的应用背景和现状 据相关资料,20世纪60年代以前,沥青路面仅用于城市道路和专用公路,沥青材料主要是煤沥青和用进口原油提炼的石油沥青。20世纪70年代前后,在全国范围内曾采用渣油吹氧稠化,掺配特立尼达(TLA)或阿尔巴尼亚稠沥青等改性的方法,提高结合料稠度,配制成200号沥青铺筑以表面处治为主的沥青面层。1985年国内开展 了沥青中掺丁苯,氯丁橡胶,废轮胎粉等改性沥青和掺金属皂等改善混合料性能的研究试验工作,取得了成功的经验。1992年NovophaltPE现场改性技术的引入,对改性沥青的推广应用起到了促进作用,使改性沥青从研究试验逐步发展到生产应用。 1.2影响改性沥青应用的因素 生产施工工艺在聚合物改性沥青的大规模应用中起到了关

键性的作用。无论是聚合物改性,物理改性还是采用不同的沥青加工工艺都会增加较大的工程成本,在国内经济不发达地区的应用会受到一定的制约。 2、改性沥青的研究现状 目前国内的研究重点在新的改性剂和沥青改性剂的加工工艺上还有一部分研究是面向工程应用的,即研究在沥青集料改性剂确定的情况下,找出合适的级配,最佳沥青用量和改性剂用量以满足实际工程的要求。我国研究改性沥青已有多年的历史,也取得了丰富的成果,但至今仍有两个问题没有很好地解决: (1)没有形成对改性沥青和改性性能统一的评价标准; (2)国内没有形成统一的研究体系。 改性沥青的研究是一项长期的复杂的系统工作,要想取得突破性成果必须综合各研究机构的优势,形成统一的研究体系,比如美国l987年~l992年的大型系统工程SHRP计划等等。而相对于国内,研究工作往往由各高等院校,科研院所独立完成,没有统一的研究规划,配套工作滞后。另外由于各部门的利益关系,沥青改性的关键技术往往是秘而不宣的,在一定程度上造成人财物的巨大浪费。 3、改性沥青的应用前景 由于普通沥青已不能适应现代化路面的要求,性能良好的改性沥青必将在高等级路面中起到越来越重要的作用 3.1 SBS改性沥青将获得更广泛的应用 研究表明,SBS改性的优越性突出表现在具有双向改性作用,

壳聚糖及其结构特点

第一章 绪 论 1.1 壳聚糖及其结构特点 壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。节肢类动物的干外壳约含20~50%甲壳素。自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。下图1-1是甲壳素和壳聚糖的结构: 图1-1 甲壳素、壳聚糖分子的结构示意图 Fig.1-1 The configuration schematic of chitin and chitosan 纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。 1.2 壳聚糖及其衍生物产品的应用 壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。 1.2.1 在环保中的应用 壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和 有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、3n n 甲壳素壳聚糖

壳聚糖特性及其应用

壳聚糖特性及其应用 作者简介:孔佳琦,女,本科,西北民族大学化工学院,专业:制药工程。 力芬,女,本科,西北民族大学化工学院,专业:环境工程。 摘要:壳聚糖是自然界中储量丰富天然高分子化合物,壳聚糖及其衍生物具有各种优良的性质,本文主要介绍了壳聚糖的特性以及其在不同方面的应用情况,为壳聚糖的研究发展提供依据和思路。 关键词:壳聚糖;特性;应用 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。纯甲壳素和纯壳聚糖都是一种白色或灰白色透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用围。本文就壳聚糖的特性和应用进行阐述,为其研究和发展提供依据和思路。

1.特性 1.1抗菌性。壳聚糖是唯一一种天然的弱碱性多糖在弱酸溶剂中易于溶解,溶解后的溶液中含有氨基(NH2+),这些氨基通过结合负电子来抑制细菌。壳聚糖的抗菌性会随着其浓度的增加而增强。壳聚糖对大肠杆菌、金黄色葡萄球菌等有较强的抑制作用。 1.2吸附性。壳聚糖具有很强的吸附功能,特别是对重金属离子的吸附如对铜、汞、铅等离子的吸收。壳聚糖的吸附活性可以有选择地发挥作用。当然还可以吸附胆固醇、甘油三酯、胆酸、油脂[1]等。 1.3保湿性。壳聚糖衍生物分子中有许多活泼的亲水极性基团如-OH、-COOH及-NH2,这些基团可以使其显示出保湿性。对于羧基化壳聚糖,其羟基的含量远大于其他衍生物,且羧基的亲水性所以能够结合更多的水分。因此羧基化壳聚糖的吸湿、保湿性也就明显高于其他类型的壳聚糖衍生物。 1.4成膜性。壳聚糖是线性高分子聚合物,理化性能稳定,可生物降解,粘合性好,成纤成膜性能优良。吴国杰[2]等人研究了壳聚糖膜的制备方法和性能,探讨了壳聚糖溶液成膜的最佳工艺条件。 1.5调节作用。壳聚糖可激活体具有免疫功能的淋巴细胞,使其能分辨正常细胞和癌细胞,并杀死癌细胞。还能调

SBS改性沥青的性能与应用

SBS改性沥青的性能与应用 摘要:我国高速公路建设自改革开放以来,经历了从无到有,从起步到建设成高速公路网的翻天覆地变化。与此同时,传统的普通沥青已经很难适应现代对公路的高标准要求,而改性沥青的研制与应用则较好地解决了这一问题。本文主要通过介绍SBS改性沥青在高温、低温条件下的抗车辙、抗裂性能,与水稳定性,抗滑能力等内容,比较得出其对于传统沥青在工程、经济、社会各方面的优越性,探究了加强对SBS改性沥青的学习,开展对SBS改性沥青深入的研究与推广其广泛应用的长远意义。 关键词:SBS改性沥青;改性沥青性能;改性沥青应用;沥青施工;工程效益;应用前景 1 前言 随着交通流量的增长、车载质量的增加以及高温和低温的作用,为适应道路路面的使用性能的要求,保证路面良好的使用状态,延长路面的使用寿命,就必须探寻更高性能的路面材料。SBS改性沥青混凝土具有很好的高温抗车辙能力,低温抗裂能力,改善了沥青的水稳定性,提高了路面的抗滑能力,增强了路面的承载能力,提高了沥青的抗氧化能力,是比较优良的路面材料。自上世纪40年代以来,国内外学者对各类改性沥青的性能进行了大量的研究工作,改性沥青技术得到了越来越多的重视。现有研究结果表明,与其他改性沥青相比,SBS(苯乙烯一丁二烯一苯乙烯)改性沥青的综合性能[1]更为突出,SBS改性沥青必将在未来很长的一段时间内得到更深入的研究和更广泛的应用。 2 SBS改性沥青简介 SBS属于苯乙烯类热塑性弹性体,是苯乙烯—丁二烯—苯乙烯三嵌段共聚物,SBS改性沥青是以基质沥青为原料,加入一定比例的SBS改性剂,通过剪切、搅拌等方法使SBS均匀地分散于沥青中,同时,加入一定比例的专属稳定剂,形成SBS共混材料,利用SBS良好的物理性能对沥青做改性处理。在良好的设计配合比和施工条件下,用SBS改性沥青铺筑的沥青混凝土路面有着传统沥青路面无法比拟的优越性能,具有很好的耐高温、抗低温能力以及较好的抗车辙能力和抗疲劳能力,并极大地改善沥青的水稳定性,提高了路面的抗滑性能。

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.wendangku.net/doc/066287045.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.wendangku.net/doc/066287045.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

壳聚糖开发应用现状(1)

天然产物提取分离技术 课程论文 题目壳聚糖开发应用现状 壳聚糖开发应用现状 摘要壳聚糖(chitosan)是一种由甲壳素脱乙酰基后的产物。壳聚糖及其衍生物具有优良的生理活性和功能保健作用。在食品,医药方面显示出非常诱人的应用价值。本文介绍它的特性,简单的化学法制作,并着重介绍壳聚糖在食品,药物制剂,生物技术以及其他方面的应用。最后介绍了国内外壳聚糖的市场现状及发展前景。

关键词壳聚糖脱乙酰甲壳质药物制剂生物技术 前言壳聚糖(Chitosan)又称脱乙酰甲壳质;可溶性甲壳质.是甲壳素脱去乙酰基后的产物。壳聚糖具有许多特殊的性能,如良好的生物降解性、生物相容性、无毒,无污染等。壳聚糖分子中的活性侧基为氨基。可酸化成盐。导入羧基官能团,取代合成侧链铵盐、混合醚、聚氧乙烯醚等等,制备具有水溶性、醇溶性、有机溶剂溶解性、表面活性以及纤维性等各种衍生物。壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺[(1-4)-2-氨基-B-D葡萄糖,自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。 1、壳聚糖的特性 壳聚糖是由大部分D-氨基葡萄糖和少量的N-乙酰-D-氨基葡萄糖组成,以β(1,4)糖苷健连接起来的直链多糖,化学名为(1,4)-2-氨基-2-脱氧-β-D-葡萄糖,其结构类似于纤维素。 壳聚糖因其独特的分子结构,是天然多糖中推一大量存在的碱性氨基多糖,因而具有一系列特殊功能性质。壳聚糖有αβγ三种构象,其分子键是以螺旋形式存在,α-型研究较多,因为这种构象的壳聚糖存在最多也最易制得。β-型则关注的相对较少,然而这种构象的特征是具有很弱的分子间作用力,并且被确定在不同的调节反应中会显示出比a-型更高的反应能够活性和对溶剂的更高的亲和力。在壳聚糖结构中存在四种类型的糖苷键,但由于C2-氨基或乙酰氢基的存在而使得糖苷键都较难水解。壳聚糖分子中含有羟基,乙酰氢基和氨基,决定了壳聚糖可进行多功能基化学反应。 2、壳聚糖的制备方法 这里介绍一下化学法生产工艺[1] 2.1、主要原料主要原料有虾蟹壳、4 %~6 %的工业盐酸、10 %和40 %氢氧化钠溶液、高锰酸钾、亚硫酸氢钠(工业级)、去离子水、水。 2.2、生产工艺要点 1)将剔除肉质的虾蟹壳加水煮沸抽提得到净甲壳; 2)将净甲壳加入4 %~6 %盐酸浸泡除去钙盐等 3)将除盐后的甲壳质加入质量百分比为10 %的氢氧化钠溶液煮沸,脱除蛋白质,得到粗品甲壳素。 4)将粗品甲壳素先用1 %高锰酸钾脱色漂白,再用2 %亚硫酸氢钠溶液还原,并洗净沥干,即得到不溶性甲壳素; 5)将不溶性甲壳素加于脱乙酰基反应釜内,用40 %氢氧化钠溶液(质量百分比)在80~100℃下进行脱乙酰基反应。反应终结后经洗净、脱水、烘干得可溶性壳聚糖产品。

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

浅谈壳聚糖的发展概况

浅谈壳聚糖的发展概况 关键词:壳聚糖;壳聚糖制备;壳聚糖应用 引语:本文介绍了壳聚糖的性质、制备以及着重介绍了壳聚糖在水处理、分析化学、纺织工业、膜材料、液晶材料、医学材料方面的应用。 1壳聚糖 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。同时,壳聚糖被作为增稠剂、被膜剂列入国家食品添加剂使用标准GB-2760。[1] 1.1物理属性 纯甲壳素和纯壳聚糖都是一种白色或灰白色半透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。生物体中甲壳素的相对分子质量为1×106~2×106,经提取后甲壳素的相对分子质量约为3×105~7×105,由甲壳素制取壳聚糖相对分子质量则更低,约2×105~5×105。在制造过程中甲壳素与壳聚糖相对分子质量的大小,一般用粘度高低的数值来表示。商品壳聚糖视其用途不同有三种不同的粘度,即高粘度产品为0.7~1Pa·s、中粘度产品为0.25~0.65Pa·s、低粘度产品<0.25Pa·s。制造纤维产品必须采用高粘度的甲壳素或壳聚糖。[2] 1.2化学性质 化学名:β-(1→4)-2-氨基-2-脱氧-D- 葡萄糖 分子式:(C6H11NO4)N

SBS改性沥青机理研究进展

S BS改性沥青机理研究进展 李双瑞,林 青,董声雄 (福州大学化学化工学院,福州 350002) 摘要:介绍了沥青的特性、苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)的性能,分析了S BS与基质沥青之间 的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展,指出机理主要分为物理共混和化学改性两 类:物理共混———S BS微粒受到沥青组分中油分的作用发生溶胀而均匀分散在沥青中,S BS与沥青之间没有发 生化学作用,只是一种分子间作用力;化学改性———加入添加剂使沥青和S BS之间发生加成、交联或接枝等化 学反应,形成较强的共价键或离子键,改善沥青的化学性质。提出化学改性是提高S BS改性沥青路用性能的重 要手段。 关键词:苯乙烯-丁二烯-苯乙烯嵌段共聚物;S BS改性沥青;改性机理 采用聚合物对道路沥青进行改性是提高和改善沥青混合料路用性能的一种重要措施[1~6]。近年来,在聚合物改性材料中,苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)以其优异的性能,成为世界上使用最为广泛的沥青改性剂[7~12]。对S BS改性沥青路用性能的研究[13~17]表明:采用S BS对沥青改性后,改性沥青的低温柔性和高温性能明显提高,温度敏感性大大降低。关于S BS改性沥青的机理,国内外科技人员进行了大量的研究,但并没有形成统一的理论。本文根据国内外相关文献,介绍了沥青和S BS的性能以及S BS在沥青中的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展。 1 沥青的特性 沥青是由多种化学成分极其复杂的烃类所组成。这些烃类为一些带有不同长短侧链的高度缩合的环烷烃和芳香烃,以及这些烃类的非金属元素衍生物[18]。按生产来源划分,沥青主要可分为地沥青(包括天然沥青与石油沥青)、焦油沥青、煤沥青、页岩沥青等。道路中各国目前生产和最常用的是石油沥青。石油沥青是原油加工的重质产品[19]。石油沥青的组分极为复杂,通常用溶剂将沥青通过色层分析法分成饱和分、芳香分、胶质和沥青质四个组分[18]。Hubbard2Stanfield法将沥青划分为油分、树脂和沥青质3个组分[19]。 油分是石油沥青中最轻的馏分,含量在45%~60%。油分是石油沥青可以流动的主要原因,其含量越多,软化点越低,粘度越小,使沥青具有柔软性和抗裂性。树脂的含量在15%~30%。树脂的存在使石油沥青有一定的可塑性、可流动性和粘结性,直接决定着石油沥青的延伸度和粘结力。沥青质是固体无定形物质,含量在5%~30%。沥青质是高分子化合物,它是石油沥青中分子量最高的组分,决定着石油沥青的塑性状态界限、自固态变为液态的程度、粘滞性、温度稳定性、硬度和软化点。此外,石油沥青中还含有一定数量的沥青酸、沥青酸酐、碳化物和似碳物。 沥青的主要结构为胶体结构,即以沥青质为核,表面层被树脂浸润包裹,而树脂又溶于油分中,形成沥青胶团,无数胶团彼此通过油质结合成胶体结构。当沥青中沥青质含量适当,并有较多的树脂作为保护物质时,它所组成的胶团之间有一定的吸引力,这种结构称之为溶胶-凝胶结构。大多数优质的路用沥青都属于这种胶体结构,具有粘弹性和触变性。当沥青质含量较高时,胶粒相互缠结,粘度大、塑性小、 基金项目:中法先进科技合作项目(PRAMX02208); 作者简介:李双瑞(1977-),女,河南南阳人,博士研究生,从事沥青材料改性的研究; 联系人,E2mail:sxdong2004@https://www.wendangku.net/doc/066287045.html,.

壳聚糖在水处理中的应用

壳聚糖基复合材料在水处理中的应用研究进展 田清源,费梦飞 山东农业大学化学与材料科学学院 摘要:介绍了壳聚糖的结构、性质及其在水处理中的应用原理,综述了壳聚糖与粘土、二氧化硅、无机高分子絮凝剂及其它无机材料复合得到的壳聚糖基复合材料在水处理中的应用研究进展,提出未来的发展应加强处理机理的研究、对重金属离子外的其它无机物和有机物的处理研究以及产业化应用研究。 壳聚糖(Chitosan,CTS)是唯一一种碱性天然多糖,是甲壳素经脱乙酰作用的产物。壳聚糖分子链上存在大量的氨基和羟基,具有很高的反应活性,同时还具有良好的生物相容性、无毒性和生物可降解性,此外,壳聚糖还是天然的高分子絮凝剂,作为吸附剂和絮凝剂在水处理领域具有很好的应用前景。鉴于壳聚糖在酸性溶液中易溶解、沉降慢、稳定性差,片状和粉状的壳聚糖使其再生、贮存很不方便,通常人们将其改性、交联制成如微球、多孔小珠等树脂产品,但是在乳化交联过程中,交联剂的用量直接影响着微球的机械性能和饱和吸附量,两者难以兼顾,因此,壳聚糖树脂微球的性能仍不够理想。近年来,随着聚合物/无机杂化材料研究的发展,壳聚糖/无机物复合材料的制备和性能的研究进展很快。无机物与壳聚糖的复合,一方面改善了壳聚糖材料的机械性能,另一方面又赋予壳聚糖新的功能,对于提高壳聚糖的应用价值意义重大[1]。作者在此对壳聚糖基复合材料在水处理方面的应用研究进展进行了综述。 1壳聚糖的结构和性质 壳聚糖是由β-(1→4)-2-氨基-2-脱氧-D-葡糖胺和β-(1→4)-2-乙酰氨基-2-脱氧-D-葡糖胺两种糖单元间隔连接而成的链状聚合物,分子量根据脱乙酰度的不同从数十万到数百万不等[2]。壳聚糖分子链上分布着大量羟基、N-乙酰氨基和氨基,形成各种分子内和分子间的氢键,不仅是配位作用和反应的位点,同时也形成了壳聚糖大分子的二级结构[3]。壳聚糖的结构式如图1所示。 图1壳聚糖的结构式 壳聚糖分子链上丰富的羟基和氨基基团,使其具有许多独特的化学和物理性质。例如,壳聚糖上的氨基使其呈一定的碱性,可以从溶液中结合氢离子,从而使壳聚糖成为带正电荷的聚电解质而溶于酸;壳聚糖分子中活泼的C2位氨基和C6位羟基,使其易于发生化学反应,可进行多种化学修饰,形成不同结构和性能的衍生物,从而拓宽了其应用领域。另外,作为一种生物高分子化合物,壳聚糖还具有优良的生物相容性和生物可降解性。 评价壳聚糖性能的两项重要指标是脱乙酰度和平均分子量,一般而言,脱乙酰度越高、平均分子量越小,壳聚糖的溶解性就越好[4,5]。壳聚糖独特的结构和性质,使其具有良好的粘合性、生物可降解性、生物相容性、再生性和抗菌性,因此,广泛应用于生物医学、药学、食品、造纸、纺织以及环保等领域。 2壳聚糖在水处理中的应用原理[6] 2.1吸附与絮凝作用 壳聚糖分子链上存在大量的氨基、羟基和N-乙酰氨基,使其可借助氢键、盐键形成网

发酵法生产壳聚糖的研究现状

发酵法生产壳聚糖的研究现状 甲壳素(chitin)学名为聚(1,4)-2-乙酰氨基-2-脱氧--D-葡萄糖,又名甲壳质、壳多糖、几丁质、蟹壳素、明角壳蛋白、虫膜质、不溶性甲壳质、聚乙酰氨基葡萄糖等,与纤维素相似。甲壳素是一种重要的天然高分子化合物,其结构与纤维素相似,也是多糖化合物中最重要的一种聚氨基葡萄糖。甲壳素因主要来源于节肢动物如虾、蟹等的甲壳而得名。它也广泛存在于低等植物如真菌、藻类的细胞壁中[1]。 壳聚糖(Chitosan,简称CTS)学名为聚(1,4)-2-氨基-2-脱氧--D-葡萄糖,是甲壳素脱乙酰化而得到的一种生物高分子,是甲壳素的主要衍生物,又称脱乙酰几丁质、聚甲壳糖、甲壳胺、聚氨基葡糖、可溶性甲壳素、粘性甲壳素等。甲壳素和壳聚糖是含氮的多糖类物质,也是自然界中唯一的天然碱性多糖,因此具有许多独特的生物活性。甲壳素的溶解性能较差,只能溶于浓无机酸且同时发生降解,而不溶于水、稀酸、稀碱及一般有机溶剂,从而限制了甲壳素的应用。通过脱乙酰化反应,使甲壳素转变为壳聚糖。由于甲壳素分子结构的规整性受到破坏,壳聚糖分子中有大量游离氨的存在,壳聚糖的溶解性能较甲壳素有了很大的改善,化学性质也较活泼,兼具有甲壳素的天然、无毒、生物相容性好与易于降解等优点,所以壳聚糖有十分良好的经济应用价值,其应用范围比甲壳素大得多[2,3]。 目前壳聚糖的主要来源还是从虾蟹壳中用酸碱加工提取,其制备存在着许多不足之处:提取过程需耗费大量的酸碱,腐蚀性强,劳动强度大;所排出的废液中的有机质很高,废液量很大,严重污染环境;用浓碱进行反应时,甲壳质的分子易降解,使分子量变小,黏度减少而影响产品质量和使用。由之,随着发酵技术的进步,用生物工程技术大规模生产甲壳素及壳聚糖将有可能成为大有前途的清洁生产方式。本文介绍了目前生产壳聚糖的几种发酵方法。 2生产壳聚糖的发酵方法 2.1从虾蟹壳中制备壳聚糖 目前提取壳聚糖和甲壳素主要是从虾蟹壳中用酸碱加工提取,但最近有人提出使用发酵方法从虾蟹壳中提取壳聚糖和甲壳素。其主要原理是利用菌丝体发酵产生的蛋白酶消耗蛋白质,以及发酵过程中微生物产生的酸消耗无机物,从而提取壳聚糖和甲壳素。 SiniT.K.,等[4]提出使用芽孢杆菌发酵产生的蛋白酶和酸降解虾壳中的蛋白质和无机物,其实验方法是将200g的虾壳切碎加入200mL含108CFU mL的芽孢杆菌在粗糖培养基中,密封发酵15d,在发酵过程中能够去除虾壳中84%的蛋白质和72%的无机物,待发酵完成后取出沉淀并清洗,再经过少量弱酸碱处理和脱乙酰,提取产物通过分析,其质量达到市场标准。 韩国的W.J.Jung,等[5]首次采用连续发酵法从蟹壳中提取甲壳素,分别使用副干酪乳杆菌和粘质沙雷氏菌进行两步发酵从蟹壳中提取甲壳素,将新鲜的蟹壳2.5g放入50ml10%的葡萄糖溶液中,在恒温培养振荡器中利用副干酪乳杆菌在30条件下发酵5d,恒温培养振荡器的转速为180r min,第一步发酵结束以后,过滤沉淀物并用蒸馏水清洗,再用粘质沙雷氏菌在同样条件下发酵7d,在发酵结束后去除无机物和蛋白 质的量各达到94.3%和68.9%。2.2黑曲霉生产壳聚糖 黑曲霉是发酵工业中常用的真菌,我国有悠久的培养和使用的历史,黑曲霉又是含甲壳素最多的真菌,因此研究和开发由黑曲霉生产壳聚糖和甲壳素的技术,对促进我国甲壳素和壳聚糖的生产发展具有十分重要的作用。曹健和殷蔚申[6]用黑曲霉发酵生产壳聚糖,得率为9.72%,其培养基为含葡萄糖、玉米浆培养液,另加入Mg2+,得到的壳聚糖,结果为相对分子量为8.02104,水分为8.38%,灰分为9.24%。2.3米根霉生产壳聚糖 米根霉培养条件简单,是生产乳酸发酵产品的菌种。米根霉细胞壁含有天然壳聚糖,可以通过发酵法直接进行提取,不需经浓碱脱乙酰步骤,利用米根霉发酵生产化产生品的厂家可利用发酵后的菌丝体提取壳聚糖,这不仅有利于企业开展综合利用提高经济效益,而且可以减少下持处理过程中菌丝体对环境的排放量。陈世年[7]选用米根霉作为菌种,在32下、220r min下

相关文档