文档库 最新最全的文档下载
当前位置:文档库 › AC-DC换流器

AC-DC换流器

AC-DC换流器
AC-DC换流器

阅读报告 AC/DC换流器

换流器(Converter)概念:是由单个或多个换流桥组成的进行交、直流转换的设备。

换流器的功能:实现交流-直流-整流器(Rectifer)的变换。当触发角 <90°时,换流器运行于整流工况,叫整流器。

在电力电子技术的许多应用领域中,通常需要将工频的正弦交流电能变换为直流电能,即AC/DC转换。AC/DC换流器,又称为整流器,是通过半导体开关器件(如SCR、GTO、GTR、IGBT和功率MOSFET等)的开通和关断作用,把交流电能变换成直流电能的一种电力电子变换器。

晶闸管换流阀的通断条件:换流阀的阳极电位必须高于阴极电位(即:阀电压必须是正向的)或在控制极加上触发所需的脉冲时导通;阀电流减小到零,且阀电压保持一段时间等于零或为负,使阀元件内多余载流子消失时关断。

按结构分可分为单桥(6脉动)和多桥(12脉动及以上)。6脉动换流器是三相桥式换流回路而12脉动换流器是由两个交流侧电压相位差30°的6脉动换流器所组成的。巨大多数直流输电工程均采用12脉动换流器,用于直流输电的电力换流器都采用三相桥式接线。

12脉动换流器:两个6脉动换流单元在直流侧串联而在交流侧并联。换流变阀侧接线方式,必须一个为星形接线,另一个为三角形接线。改善谐波性能,交流侧和逆变侧可只分别配备12k± 1次和12k次的滤波器,从而可简化滤波装置,缩小占地面积,降低换流站造价。

AC/DC换流器的应用

1. 高压直流输电:相比于交流输电,直流输电有许多优点,适合远距离,大功率输电。进行直流输电的首要任务是将工频的交流电能转换为直流电能,即AC/DC转换,然后经过直流线路输送到另一端,再经过DC/AC转换,变为工频交流电能。由于我们要通过换流器对电能的传输进行控制,在直流输电中所用的是可控的AC/DC换流器。

2. 作为直流电源。在需要直流电源的场合,通过AC/DC换流器将交流电能变换为直流电能作为直流电源。比如作为直流电机的电源,作为电池的充电电源,直流电器设备的驱动电源等。

3. 非工频交流电源。为了产生不同于工频的交流电源,首先要将工频交流电能转换为直流电能,即AC/DC转换,再通过DC/AC转换产生不同频率的交流电能。所以

AC/DC换流器应用在第一步,将交流电源电能为直流电能,由于不需要对直流电能进

行精确控制,通常采用的是不可控整流器或半可控整流器。应用非工频交流电源的场合主要有:

(1)变频调速。由于感应电机的转速和输入电源的频率成比例,通过

改变交流电源的频率就可以改变感应电机的频率。

(2)感应加热。通过交流电源高频变化,在金属内部产生涡流,产生

热量加热金属。

(3)电镀。

参考书目

浙江大学发电教研室,直流输电,新一版,北京:水利电力出版社,1985。

[苏] 波谢,直流输电结线及运行方式,华北电力学院直流输电研究室译,北京:水利电力出版社,1979。

武汉大学,换流器基本理论及特性方程。

张一工,肖湘宁.现代电力电子技术原理与应用[M].北京:科学出版社,2003.

汤广福.基于电压源和换流器的高压直流输电技术[M].中国电力出版社,2010.

石新春,王毅.电力电子技术[M].中国电力出版社,2003.

800kV特高压直流系统换流器控制

±800kV特高压直流系统换流器控制 马为民 (北京网联直流工程技术公司,北京100005) 摘 要:±800kV特高压直流系统采用双12脉动换流器串联的接线方式,为研究对其实施有效控制的方法,采用EM TDC仿真分析了双串联换流器的基本控制原理、投切单一换流器和其它各种故障后换流器的控制特性。结果表明,双换流器串联的直流系统仍可采用整流侧换流器控制直流电流,逆变侧换流器控制直流电压的基本运行控制策略。当对换流器独立控制时,加入误差消除环节能有效控制发散现象,保证特高压直流系统的稳定运行和各种故障下的运行性能。 关键词:特高压;直流;换流器;控制;稳定运行 中图分类号:TM721.1文献标识码:A文章编号:100326520(2006)0920071204 Converter Control in800kV DC T ransmission System MA Weimin (Beijing Wanglian HVDC Engineering Technology Co.,Lt d,Beijing100005,China) Abstract:Two122pulse converters in series will be applied in the recent±800kV DC transmission projects in China. The basic control strategy for the double converters in series has been illustrated and analyzed in this paper.As many other HVDC systems,the basic operation control strategy of±800kV DC transmission system is that DC cur2 rent is controlled by two rectifiers simultaneously during normal operation while DC voltage is controlled by two in2 verters themselves or OL TC of inverters.The simulation results by EM TDC program demonstrate that independent control for each converter without inter2communication between them on this strategy can insure the performance of the system to operate symmetrically during steady operation and to response properly under fault conditions as vari2 ons AC and DC faults.It is discovered that the inherent unbalance between two controllers of converters in series will lead to control shift at steady statement.For example,one of controllers is working at min.control angle as5°and the other one at some larger angle.The error elimination part should be included into control chain to avoid such control shift.As an essential method to improve the availability of HVDC system with two converters in series the by2pass switch is usually applied to the converter.The sequence control of fault converter isolating by by2pass switch and the de2blocking of isolated converter is also simulated in this paper without any reduction and interruption of DC power. K ey w ords:U HV;DC;converter;control;stable operation 0 引 言 换流器控制是直流控制系统[124]的核心环节之一。特高压直流系统[5]采用双12脉动换流器串联的接线方式[6,7],为提高系统的可靠性和可用率,需对串联的各换流器进行独立控制和考虑2个换流器控制系统间的相互影响。本文提出采用双换流器串联直流系统的基本运行控制策略,并在稳态和各种故障条件下对系统的性能进行校验[8210]。 1 基本控制策略和稳态运行控制 1.1 基本运行控制策略 双12脉动换流器串联特高压直流系统可采用类似三常、三广等直流系统的运行控制策略[11]。逆变侧的有载调压开关控制直流电压,稳态时逆变器的熄弧角γ保持恒定,整流器通过调节触发角α控制直流电流。整流侧的有载调压开关将整流器的α控制在αN±2.5°以内(αN为正常运行触发角)。当α超过此范围,有载调压开关动作,使α回到上述范围内。 正常运行为定直流功率控制模式,原理为: I d=P Rref/U d,m,(1)其中U d,m为整流侧平流电抗器直流线路端极线对中性线的直流电压。正常运行αN=15°,γ=18°。1.2 串联换流器的控制 串联换流器中每个整流器各自独立进行电流控制,电流指令见式(1),每个逆变器也独立实现定熄弧角控制。2个串联的逆变器通过各自的有载调压开关控制和定熄弧角控制,自动形成直流极电压的平均分配,其间不需其它协调控制。2个串联的整流器各自实现定电流控制,其间也不需其它协调控制。控制原理见图1。 ? 1 7 ? 第32卷第9期 2006年 9月 高 电 压 技 术 High Voltage Engineering Vol.32No.9 Sep. 2006

换流变压器与交流系统的主变压器比较

换流变压器与交流系统的主变压器比较 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1>包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在较优的状态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1 换流变压器的特点以及对保护带来的影响

1.1 短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2 直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。 1.3 谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n 1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

DALI控制镇流器调光

荧光灯电子镇流器数字调光方案研究 作者:王守志毛兴武 关键词:镇流器,数字调光,微控制器,数字可寻址照明接口(DALI) 摘要:基于调光镇流器控制器IR21592的数字调光电子镇流器设计方案,含有一个通用电压输入的有源PFC电路,同时包含一个微控制器及连接到数字可寻址照明接口(DALI)的隔离电路。在介绍数字调光原理的基础上,给出了36W/T8荧光灯数字调光电子镇流器电路。 O 引言 可调光荧光灯电于镇流器具有明显的节电效果,故在近几年中得到了迅速发展和应用。荧光灯是一种低压气体放电灯,是非电阻性负载。因此,荧光灯调光控制技术要比白炽灯调光复杂得多。荧光灯调光技术分模拟调光和数字调光两种类型。对于紧凑型节能灯台灯的调光,通常采用模拟技术。而对于用于家庭、办公室、商场、车间等场所照明的调光荧光灯,则采用数字调光方案。数字调光电子镇流器,代表了该照明电器未来发展的方向。 荧光灯调光通过调节灯管功率实现。灯功率调节又有两种方法:一种是调节频率改变镇流器输出级LC网络的阻抗来调节灯电流,从而改变灯功率和灯亮度;另一种是通过凋节灯电流与灯电压之间的相位,来调节灯功率。IR公司生产的调光镇流器IR21592/IR21593,则采用相位调光方案。 1 数字可寻址照明接口(DALI) 数字可调光电子镇流器需利用DALI。数字可寻址照明接口(DALI)国际标准prIEC929,是一种在两线网络上去接口照明装置的通信协议和方法。DALI协议为16位,支持高达64个镇流器各自的寻址,16组群被播散到整个照明网络上。除协议之外,DALI还支持光衰减、对数调光、现场实况和故障检测。 对于全部照明环境,DALI允许不同的控制和管理。DALI利用同一个控制系统,可以控制(发送和接收)64个不同的电子镇流器。发射指令既可以到达单个镇流器,也可以到达一组镇流器,并实现从100%到l%的调光范围。通过数字控制,可根据不同的照明需要精密调节光电平。DALI包含256个亮度等级和一个对数调光曲线,如图l所示。在较低的光电平上易于更好地控制,而且对人的眼睛也更加敏感。

电子镇流器控制芯片IR2156

电子镇流器控制芯片IR2156 1 引言 IR2156是IR公司最新推出的多功能、低成本电子镇流器控制芯片,它由一个高压半桥门极驱动器和一个频率可调振荡器组成。具有预热频率和运行频率可调,预热时间可调,死区时间可调,以及过流门限可调等特性。完善的保护性能,诸如灯管触发失败保护,灯丝故障保护以及自动重启动功能都设计在其中。IR2156具有DIP14及SOIC14两种封装。图1是 其内部原理框图。 图1 IR2156内部原理框图 2 主要电气特性 2.1 主要电气特性 主要电气特性见表1。除非另有说明,一般情况下:

V CC=V BS=V BIAS=14V±0.25V,V VDC=OPEN,R T=39.0kΩ,R PH=100.0kΩ,C T=470pF,V CPH=0.0V, V CS=0.0V,V SD=0.0V,C LO,HO=1000pF,T a=25℃。 表1 主要电气参数 注1:该芯片内部VCC与COM之间设有15.6V稳压管,注意该脚不能直接外加电压源。详 细参数见IR2156数据表。

2.2 推荐工作条件 推荐工作条件见表2。 表2 推荐工作条件 注2:VCC引线要有足够的电流使内部的15.6V的稳压管能够稳住电压。 3 IR2156管脚排列及功能 器件管脚排列见图2,管脚功能见表3。 表3 管脚功能

图2管脚排列 4 功能简介 4.1 欠压关断(UVLO)模式 欠压关断模式是当供电电压V CC低于IC的开启门限电压时,IC不工作。IR2156的欠压关断模式要求供电电流最小保持在200μA以上,保证IC正常工作并驱动高低端输出。图3为典型的从直流母线馈电和从镇流器输出级充电泵共同为IR2156供电的例子。通过供电电阻(R SUPPLY)的电流一部分作为启动电流流入IC,其余给启动电容(C VCC)充电。电阻应能供应两倍的最大启动电流,以保证镇流器在低电压输入下启动。一旦VCC脚电容电压到达启动门限,且SD脚电压低于4.5V,则IC开始工作,HO,LO振荡。由于IC工作电流增大,电 容开始放电见图4。

金卤灯电子镇流器的新型控制方法)

一种金卤灯电子镇流器的新型控制方法 2007-04-09 嵌入式在线收藏 | 打印 提出了一种两级无声谐振金卤灯电子镇流器的新型控制方法。镇流器包括功率因数校正、一个带降压功能的半桥逆变电路和点火电路。这种新型的控制方法使灯工作于400Hz的低频方波工作状态,保证不出现声谐振的发生。还提出了一种新颖且简单的方法,克服了逆变电路换向瞬间的电流过冲问题,降低了灯工作电流的波峰系数。70W金卤灯电子镇流器的样机验证了这种控制方法的可行性 引言 现今,高强度气体放电灯由于它的发光效率高、色温好、寿命长等优点,已经被广泛地应用于广场、道路照明等场合。而其中的金属卤化物灯由于拥有诸多优点更被认为是最好的人造光源之一。但是,由于金卤灯的负阻特性和特殊的启动要求,必须和与之相匹配的镇流器共同使用。对比于传统的电感式镇流器,电子镇流器有着许多优点,对它的研究和开发也是电力电子行业的一大热点。 为了确保金卤灯不出现声谐振,电子镇流器一般工作于低频方波状态。传统的低频方波电子镇流器包括3级结构:功率因数校正电路、降压电路和全桥逆变电路。这种结构非常复杂而且造成了镇流器的成本昂贵。简化电路、降低成本已经成为如今研究的重点。一种方法就是把前两级功率因数校正和降压电路组成一级。这种方法可以减小镇流器的体积,但是可能伴随带来的问题就是降低了功率因数校正电路的表现,增加了开关器件的应力等不利因素。另一种方法就是把降压电路和逆变电路组合在一起。这种方法可以降低镇流器的体积和成本,但是控制方法可能相对复杂。 组合降压电路和半桥逆变电路在一起的方案是现在比较流行而且可行的方法。因为这种方式的电路相对最为简单,成本最低。为了促进这种方案的广泛应用,简化它的控制方法,克服这种电路的缺点,提高它的可靠性就成为研究的重点。 本文对此种电路提出了一种新型控制方法,并且提出一种简单有效的方法克服此电路在输出电流换向时发生的电流过冲问题,降低了波峰系数。 1 电路描述 电路的结构框图如图1所示。

超高压直流系统中的换流变压器保护

编号:AQ-JS-02392 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 超高压直流系统中的换流变压 器保护 Converter transformer protection in UHVDC System

超高压直流系统中的换流变压器保 护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

镇流器调光电路

______________________________________________________________________________________ 设计指南 基于IR2159可调光镇流器的1-10V隔离式电压控制 By Peter Green 相关标题 1)商业设计需要 2)普通应用方法 3)更加容易的方法 4)电路图 5)工作原理 基于 IR2159的调光镇流器的输出亮度是由0─5V 直流控制电压决定的,它为灯的闭环功率控制提供一个参考。输入电压低于0.5V时输出最小。有些已经预先设置好运行功率的镇流器对特殊的灯时,在预先设置功率以下运行并不令人满意, 这一点将随灯的型号不同而发生变化, 它依赖于灯管的长度、直径以及阴极效力, 在预先设置功率以上运行时,灯的功率将以线性从最小增加到最大。当运用IR2159相控技术时, 灯能够输出稳定的最小功率, 典型值为满功率的1%。 1.商业设计需要 在为商用镇流器设计电路时,控制电压为1-10VDC,电压低于1V时, 输出功率最小并且要求线性上升到10V。这个控制电压也必须与镇流器的主电路部分隔离,包括IR2159, 否则会使输入端控制电压成为热地, 这对镇流器用户是很危险的, 也可能损害与镇流器相连的调光装置。为了适应欧洲的低电压安全需要, 必须有4KV的隔离电压。 控制输入电路应能吸收灌电流, 当没有输入控制电压时将保持10V, 镇流器运行在最大输出。调光控制必须能使控制电压下降到1V以下,使镇流器能在整个范围内调光。所以必要通过1mA小的灌电流将电压拉至1V以下。这样可以使许多

______________________________________________________________________________________ 镇流器控制输入连接到一个能够单独提供200mA灌电流的调光控制源上, 因此它能够控制200个镇流器。 2.普通的应用方法 通过一个小的高频变压器可以实现隔离, 在变压器的非隔离侧有一个振荡器。给一次侧提供脉冲, 在二次侧会得到10V的脉冲, 这些脉冲被整流转换为直流, 然后附加的调光控制通过灌电流使电压降低。 这种方法会减小变压器一次侧峰值电压,而该电压能整流用作IC控制电压,这种方法被广泛使用, 由于较大的漏电感和其它不可预知的影响引起的振荡。在变压器的两侧很难得到线性关系的电压。 3.更加容易的方法 典型的直管灯电子镇流器在其输入部分都有一个升压变换器, 它是基于工业标准的低损耗功率因数校正IC ,为IR2159镇流器驱动部分产生400V直流总线电压。同时保持功率因数高于0.95 。这样,产品能够满足欧洲电源电流谐波标准EN61000-3-2 (C级) ,适应于所有功率超过25W的照明镇流器。下面的隔离技术利用镇流器的输入部分提供隔离电源电压, 在镇流器中如果没有有源PFC的电路,也可以从镇流器输出电感另加一个辅助绕组得到隔离的电源。 4.电路图 该电路给出了一个简单、可靠的方法提供隔离的1-10V直流控制电压。

直流输电换流变压器基础知识

第一章换流变结构 一、换流变概述 通常,我们把用于直流输电的主变压器称为换流变压器。它在交流电网与直流线路之间起连接和协调作用,将电能由交流系统传输到直流系统或由直流系统传输到交流系统。换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中换流、逆变两端接口的核心设备。 直流输电系统的接线方式有多种,目前常见的接线方式如图1-1所示。 图1-1 两个六脉冲换流桥构成一个单极十二脉动接线,这两个六脉冲换流桥分别由Yy与Yd联结的换流变压器供电。两个单极叠加在一起构成一个双极。每极所用的换流变压器可以由下述方式实现,两台三相双绕组变压器(一个Yy联结,一个Yd联结)或三台单相三绕

组变压器(一个网侧绕组和两个阀侧绕组,一个Y接,一个D接)或六台单相双绕组变压器(三个Yy 单相,三个Yd单相)。由建设规模的大小及直流电压等级可以确定换流变压器的大致型式。选择不同的型式主要受运输尺寸的限制,其次是考虑备用变容量的大小,当然,备用变容量越小越经济。 当直流输送容量较大时可采用每级两组基本换流单元的接线方式,此种接线方式有串联和并联两种方式。如目前在建的±800kv项目即采用了串联方式,其基本接线原理见图2。 800(HY) 600(HD) 400(L Y) 200(LD) 图1-2

图1-3 单相双绕组换流变压器外形 图1-4 单相三绕组换流变压器外形

图1-5 云广±800kV项目高端(800kV)换流变压器外形 二、绕组的常见类型 换流变中的绕组按照其连接的系统不同,通常可分为连接交流系统的网绕组及调压绕组;连接换流阀的阀绕组。绕组的排列方式通常有以下两种:铁心柱→阀绕组→网绕组→调压绕组;铁心柱→调压绕组→网绕组→阀绕组。 1.网绕组 目前,我公司的网绕组主要采用轴向纠结加连续式结构。与传统的纠结或内屏连续式不同,轴向纠结采用特殊的阶梯导线绕制n个双饼构成n/2个纠结单元。纠结绕制和换位示意见下图。

整流器工作原理

整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定 程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

换流变压器与电力变压器的比较分析标准版本

文件编号:RHD-QB-K5575 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 换流变压器与电力变压器的比较分析标准版本

换流变压器与电力变压器的比较分 析标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中的换流、逆变两端接口的核心设备。它的投入和安全运行是工程取得发电效益的关键和重要保证。换流变压器的关键作用,要求其具有高可靠性和高技术性能。因为有交、直流电场、磁场的共同作用,所以换流变压器的结构特殊、复杂,关键技术高难,对制造环境和加工质量要求严格。开展换流变压器设计制造关键技术的研究、攻克和制造条件改造工作,不断提高试验手段,将有利于全面掌握换流变压器的设计制造技术,实现换流

变压器国产化,填补国内空白。同时可促进国内交、直流输电设备设计制造水平的进一步提高和发展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔

镇流器控制与半桥驱动器IR2156的功能及应用

摘要:IR2156是IR公司推出的镇流器控制/半桥驱动器系列IC之一。它的主要特点是可对预热时间、预热频率、运行工作频率、死区时间以及过电流保护等进行编程控制,因而为设计人员提供了高度的灵活性。另外,IR2156内部还设计有灯轰击失败、灯失效保护及自动再启动等功能。 关键词:镇流器 控制 半桥驱动器 IR2156 1 概述 IR2156是美国IR公司继IR3253/IR2155/IR2157/IR2159之后推出的镇流器与半桥驱动器系列IC之一。与IR2156同时推出的系列专用IC还有IR21571/IR21591/IR2167等。IR2156采用14脚PDIP和SOIC两种封装,它所需外部元件少,适用性强。图1为IR2156的内部电路框图。 IR2156的主要特点如下: ●镇流器控制和半桥驱动器集成在同一片IC中; ●预热频率、预热时间、死区时间、同部点火斜坡、工作频率以及过电流保护门限等功能或参数均可编程设置。 ●具有DC总线欠压复位功能; ●具有关闭脚(SD脚)滞后功能,扰噪扰能力强; ●可微功率启动(150μA); ●Vcc脚可被内部15.6V的齐纳二极管钳位; ●全部引脚均具有闭锁抗噪与静电放电(ESD)保护功能。 IR2156的推荐工作条件如下: 高端浮置电源电压VBS:Vcc-0.7~15.6V; 稳态高端浮置电源偏移电压Vs:-1~600V; 电源电压Vcc:11.5~15.6V; 电源最大电流Icc:10mA; 关闭(SD)脚电流IDS:-1~1mA; 电流感测(CS)脚电流ICS:-1~1mA; 结温TJ:-40~125℃。 2 功能及原理 2.1 欠电压封锁(UVLO)模式 图2给出了IR2156的启动与电源电路及启动电容CVCC上的电压波形。当电路接通电源后,流经启动电阻RSUP的电流对CVCC充电。当CVCC上的充电电压按指数规律升高到IC脚Vcc的启动门限(Vccuv+=11.5V)以上,并且SD脚上的电压低于4.5V时,IC导通,振荡器启动,HO和LO脚输出占空比为50%的方波驱动电压。由于IC工作电流的增强,CVCC开始放电。在CVCC放电过程中,半桥输出信号经缓冲电容CSNUB和二极管DCP1整流后,又对CVCC充电。但电荷泵充电不会使CVCC上的电压降至IC关断门限(VCCUV-=9.5V)以下,因为,IC脚Vcc上的电压会被Vcc脚内的齐纳二极管钳位于15.6V,在IR2156驱动下,当外部低端开关管M2导通而使高端开关M1截止时,CVCC通过自举二极管DBOOT对自举电容CBOOT充电。当M1导通而M2关断时,DBOOT反向偏置,CBOOT作为高端驱动器CMOS电路的电源。当Vcc脚电压降至UVLO门限 (Vccuv-=9.5V)以下时,振荡器截止,HO与LO脚均输出低电平。 2.2 预热(PH)模式 IR2156启动后,首先输出一个带50%占空比的预热频率fPH,其死区时间由CT脚外部的定时电容CT及内部电容(RDr)来设定。图3所示的镇流器预热及点火电阻简图。在预热期间,IC内部的5μA的电流源对CPH脚外部预热时间电容CPH充电,CS脚上的过电流保护功能不起作用,预热频率由IC外部并联电阻RT和RPH及CT决定 。CT充电与放电发生于Vcc/3与3Vcc/5之间。CT充电依靠RT与RPH并联组合电阻通过内部开关S1(MOSFET)连接到Vcc来实现。从Vcc/3到3Vcc/5的这段充电时间是输出栅极驱动器的按时(on time)导通时间。一旦CT脚上电压超过3Vcc/5,S1断开,CT通过内部电阻RDT与开关S3放电(到COM)。从3Vcc/5 到Vcc/3的CT放电时间是HO与LO两路输出的死区时间。只要CT放电到Vcc/3以下,S3(MOSFET)就接通,以

换流变压器与电力变压器的比较分析示范文本

换流变压器与电力变压器的比较分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

换流变压器与电力变压器的比较分析示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 换流变压器是超高压直流输电工程中至关重要的关键 设备,是交、直流输电系统中的换流、逆变两端接口的核 心设备。它的投入和安全运行是工程取得发电效益的关键 和重要保证。换流变压器的关键作用,要求其具有高可靠 性和高技术性能。因为有交、直流电场、磁场的共同作 用,所以换流变压器的结构特殊、复杂,关键技术高难, 对制造环境和加工质量要求严格。开展换流变压器设计制 造关键技术的研究、攻克和制造条件改造工作,不断提高 试验手段,将有利于全面掌握换流变压器的设计制造技 术,实现换流变压器国产化,填补国内空白。同时可促进 国内交、直流输电设备设计制造水平的进一步提高和发

展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;?换流变压器的漏抗可起到限制故障电流的作用;?对沿着交流线路侵入到换流站的

单片机镇流器路灯控制器电路设计 工作原理 结构框图.

单片机镇流器路灯控制器电路设计+工作原理+结构框图 单片机镇流器路灯控制器电路设计+工作原理+结构框图主函数是一个不断遍历E2PROM寻找需要发送的数据块,和判断是否需要向上位机模块发送应答帧的循环过程。前者是通过不断遍历位寻址区查寻标志位f_sending、 f_ack 、f_nack是否被置为1来实现的。后者是当接收到上位机模块的短信数据时所需执行的操作指令。一旦遍历到数据块需要发送,或者实时接收到了上位机模块发送来的短信数据,主函数将快速转到时钟中断服务程序来调用SHELL函数,完成数据块或者应答帧的发送。实际上无论是数据块的发送还是应答帧的发送,都是针对GSM模块不同返回参数的处理过程。另外,主函数在完成单片机和GSM模块的初始化后,将立即开放串口中断,实时接收GSM模块返回的参数以及上位机模块发来的短信数据。系统运行时,上位机模块首先发送一个应答帧给下位机模块,从而启动下位机模块的运行。应答帧可以是确认帧,也可以是非确认帧,这可以事先约定。程序的开头检验是否收到应答帧,有两个意图。其一,当系统启动时作为下位机模块的启动信号;其二,当下位机模块正常运行时,在发送完短信后,下位机模块需要判断上位机模块是否收到了短信,判断的依据就是上位机模块是否返回应答帧。根据应答帧的内容,下位机模块将决定是继续发送下一帧数据还是重新发送上一帧。按照双方通信约定的协议,如果超过了最大延时T1,下位机模块也将重发上一帧,重发的过程也是时钟中断服务程序调用SHELL函数的过程。 3.42 GSM返回参数的处理-SHELL函数 SHELL函数是进入时钟中断程序时被调用的,该函数是对GSM模块返回参数进行处理的函数。根据系统设计的要求,需要对GSM模块进行下列操作:呼叫对方模块号码、发送数据、阅读短信、删除短信。基于以上操作指令,如果操作成功GSM模块会分别返回不同的参数:>、+CMGS、 +CMGR、OK,根据接收到的不同参数,下位机模块将转向不同的操作步骤,判断并改变标志位的值。比如,如果某时刻接收到>,这表明呼叫对方模块号码获得成功,接下来需要发送数据,这时SHELL函数将检查发送不同数据所代表的标志位f_sending、f_ack、f_nack,从而决定需要发送何种类型的数据。如果 f_sending=1,需要发送E2PROM中的某个数据块;如果f_ack=1,需要发送确认帧,告诉对方已经成功接收到了对方发送的数据;如果f_nack=1,需要发送非确认帧,表明本方接收到的数据是错误的,并等待对方重新发送上一帧数据。需要说明的是,在同一时刻这三个标志位只有其中之一等于1,这是双方通信的半双工协议所强行约定的。对于其余三个返回参数,处理思想基本类似,在此不一一罗列。无耻悲鄙下流的网.学^网总是抄六-维~论,文.网如果操作失败,模块返回ERROR,也有三种可能的情况,分别是发短信出错、阅读短信出错、删除短信出错。SHELL函数将检查上述操作的标志位是否为1,并根据标志位的情况重新发送该AT指令。还有一个返回参数比较特殊,即在等待接收返回参数的过程中接收到了+CMTI。这不是本方主动操作获得的返回参数,而是表明上位机模块此刻有短信数据到来。SHELL函数将首先提取短信数据在SIM 卡中的存放序号,并将此序号存放到单片机2的指定单元中,然后根据序号发送阅读短信指令。如果没有接收到任何GSM模块返回的参数,即字符缓冲区中字符个数为0,发生这种情况有两种可能。其一,当单片机和模块初始化完毕

超高压直流系统中的换流变压器保护(一)

超高压直流系统中的换流变压器保护(一) 论文作者:李海英,陈松林,张宏波,文继峰,郑玉平,沈国荣 摘要:介绍了超高压直流输电系统中的换流变压器保护,分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想、相应的保护原理与方案 关键词:换流变压器比率差动谐波 0引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。 1.3谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n+1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。 1.4调压分接头 为了使直流系统运行在最优的工况,减少交流系统电压扰动对直流系统的影响,换流变压器都具有较大范围的利用分接头调整电压的功能。例如:三峡到常州工程三峡侧换流变压器档位范围+25/-5,每档调节范围1.25%。因此保护设计时要考虑分接头调整带来的影响,如正常运行时变比的变化等。 1.5直流系统的特殊运行工况 由于直流控制系统的特殊调节作用,使换流变压器遇到的运行工况以及故障情况不同于普通

特高压直流输电换流阀短路保护原理及特性研究

特高压直流输电换流阀短路保护原理及特性研究 发表时间:2018-09-11T15:20:17.627Z 来源:《基层建设》2018年第20期作者:冯育杰金石炜陈兆兴夏鹏侯宇[导读] 摘要:随着特高压直流输电(UHVDC)技术的发展,直流输电已经成为了远距离大容量输电的主要模式,直流输电已得到了越来越广泛的应用。 国网辽宁省电力有限公司检修分公司辽宁省鞍山市 114000 摘要:随着特高压直流输电(UHVDC)技术的发展,直流输电已经成为了远距离大容量输电的主要模式,直流输电已得到了越来越广泛的应用。在大电网时代,直流输电不仅成为交流输电的一种有力补充,而且成为了电力系统中最具有重要经济和技术意义的环节之一,成为了国内电力科研工作者研究的重要方向。换流器是高压直流输电系统中最为关键、复杂且昂贵的元件,其故障形式和机理、保护配置和 原理与交流系统有着很大的不同。关键词:特高压;直流输电;换流阀;短路保护;原理;分析 1导言 特高压直流输电系统以其更远的输送距离,更大的输送功率,更大区域的非同步互联,更低的功率损耗,灵活的功率调节,更低的线路造价等优势而被越来越多的应用在电力传输领域。特高压直流输电换流阀的本体,作为关键设备,其运行稳定性、安全性、可靠性是通过设计、制造、安装、调试的全过程质量控制才能得以实现的。特高压直流输电换流阀的安装过程,是换流阀从图纸和零部件完成到实体阀的最后关键阶段,需要对整个安装过程中影响特高压换流阀性能的关键节点进行合理控制,才能彻底保证特高压换流阀的优良品质,实现更好的长期稳定运行。 2阀短路保护(VSCP)检测原理为了保护换流阀免受由于换流变压器压器直流侧短路造成的过应力破坏,特高压直流输电系统中均设置了阀短路保护;该保护主要通过测量换流变压器压器阀侧电流(IVY,IVD)和直流极母线电流(IDC1/2P)和中性线电流(IDC1/2N),并计算出最大的换流变压器压器电流和最大的直流电流,正常运行时这2个值是平衡的。当换流变压器压器阀侧电流幅值高于直流电流则可作为阀短路或其他相间短路的判据,在交流侧电流过大时,换流器被立即跳闸。 3特高压直流输电换流阀特高压直流输电工程通常采用双极十二脉动换流器单元系统,电压等级在±800kV及以上,电流可以从4000A到最高6250A。该特高压双极直流输电系统包括2个完整的可独立输电的单极直流系统,即极1直流系统和极2直流系统。每个完整的单极系统包含2个单极换流器单元,分别安装在整流换流站和逆变换流站。每个换流站内的单极换流器单元由2个12脉动阀组串联组成。一个阀厅仅包含一个12脉动阀组。因此每个换流站共分四个独立阀厅,即极1高压阀厅、极1低压阀厅、极2高压阀厅、极2低压阀厅。锡盟站换流阀设备由西安西电电力系统有限公司自主制造,换流阀采用空气绝缘、水冷却的户内悬吊式双重阀结构。每个阀厅换流阀阀组由6个双重阀阀塔组成。根据电流流向不同,双重阀阀塔分为2种结构,即电流上结构和电流下结构。阀侧星形接法的3相双重阀阀塔是其中一种结构,阀侧三角形接法的3相双重阀阀塔是另一种结构。每个阀厅换流阀阀组通过冷却水管、管母金具、光纤分别与换流阀冷却系统、换流变压器、换流阀控制单元对应连接。在换流阀整体设计中,综合考虑了各种相关的复杂因素,如过电压与绝缘配合、阀电子电路单元抗电磁干扰、主回路电气件合理布局和散热、换流阀的防火和抗震等要求、机械性能和电气性能要求、安装维护便捷要求等,按特定装配工艺,将换流阀的各个组成部件通过标准化作业组装在一起,具有安装快捷,维护方便的特点,有效保证了换流阀和整个直流输电系统的稳定性、可靠性及安全性。 4RTDS仿真分析利用RTDS仿真系统对酒泉—湖南特高压直流输电工程中所配置的换流阀短路保护进行仿真试验及功能验证。相关系统参数如下:系统为双极全压大地回线方式运行,额定容量8000MW,直流线路额定电压为800kV,整流站交流系统电压为750kV,逆变站为525kV,其控制方式均为典型方式控制。模拟整流站极Ⅰ高端阀组Y/Y绕组阀桥臂100ms短路故障,IVD为低端阀组交流侧电流,IDNC为双极中性线电流,IDCP为极母线电流。故障发生后,在397ms时MAX(IVY,IVD)-MAX(IDC1/2P,IDC1/2N)>[0.5×ID_NOM+0.2×MAX(IDC1/2P,IDC1/2N)],整流站极Ⅰ高端阀组Y桥阀短路保护动作,故障电流最大21.6k A,使得整流站高端阀组执行换流器X闭锁,高端阀组隔离。逆变站换流阀过流保护(DCOCP)检测到故障电流大于动作定值,即Max(IVY,IVD,IDCN)>Iovc_set,经延时后高端阀组执行换流器Y闭锁,极Ⅰ高端阀组封脉冲闭锁,退出运行。逆变站故障发生后,换流变压器阀侧故障短路电流最大2.1kA,系统检测到换相失败,导致Y桥阀短路保护动作,逆变站高端阀组执行换流器X闭锁,高端阀组隔离。换流阀直流侧短路故障(全压0.1 p.u.功率情况下的故障7模拟:一是整流站(以高端阀组为例)在RTDS仿真系统中,模拟整流站极Ⅰ直流母线与双极中性线之间100 ms短路故障,仿真试验时,换流变压器阀侧故障短路电流峰值为19.2kA,Y桥阀短路保护动作,D桥阀短路保护动作,整流站高压阀组执行X闭锁,将高端阀组隔离。逆变站由于DCOCP动作导致高压阀组执行换流器Y闭锁,极Ⅰ高压阀组封脉冲闭锁,退出运行。二是逆变站(以低端阀组为例)在RTDS设置模拟逆变站极Ⅰ直流母线与双极中性线之间3s短路故障,换流变压器阀侧故障电流峰值达到5.4kA,逆变站低端换流器换相失败被检测到,延迟进行控制系统切换,然后双桥换相失败保护动作,极Ⅰ低端换流器执行换流器Y闭锁,换流器隔离。整流站在逆变站执行换流器Y闭锁后执行正常闭锁停运,极Ⅰ低端阀组封脉冲闭锁退出运行。三是仿真试验结果:首先换流阀发生阀短路故障时,其特征是交流侧交替发生两相短路和三相短路,由于流过故障阀的电流发生反向而导致其故障电流量剧烈增大,故障时具有交流侧电流激增,直流线路电压、电流和输送功率同时减小的现象。其次整流站发生阀短路故障时比逆变站严重得多,而逆变站发生阀短路故障同时将触发换相失败保护动作。最后当系统输送功率为额定功率时,阀侧故障电流可达到额定值的数倍,此时无论整流站或逆变站的差流很大,制动电流较小,保护可以可靠动作,而当系统输送功率为最小功率时,即0.1 p.u.时,由于整流站故障电流比逆变站故障电流大得多,使得整流站差流值较大,逆变站差流值较小,逆变站存在出现保护拒动的可能。 5结论 换流阀短路保护作为特高压直流输电工程控制保护中的重要组成部分,为避免换流阀因故障损坏提供了可靠保护。通过对该保护的配置及动作逻辑进行了分析并结合RTDS验证了该工程所配置的换流阀保护具有较高的灵敏性及可靠性,本文的分析结论对该工程的后续建设及研究具有一定的技术支撑和参考意义。参考文献:

相关文档