文档库 最新最全的文档下载
当前位置:文档库 › 实验四 微程序控制器实验

实验四 微程序控制器实验

实验四 微程序控制器实验
实验四 微程序控制器实验

实验四微程序控制器实验

实验目的

1、深入理解微程序控制器的功能和组成结构;

2、学习教学计算机各类指令的指令格式、寻址方式及执行流程;

3、学习微程序控制器的设计过程和相关技术。

实验内容

1、分析基本指令的执行流程,在教学机上验证其对应的微指令;

2、设计几条指令的功能、格式和指令流程,并在教学计算机上进行测试。

实验要求

1、实验之前,认真准备,对于该实验的基本原理、微指令格式、以及相关机器指令的微程序等内容预先做好分析和设计;

2、实验过程中,应认真进行实验操作,仔细思考实验有关内容,把难点内容通过实验理解清楚,争取最好的实验效果;

3、实验之后,应认真思考,写出实验总结,包括实验中遇到的主要问题和分析、解决方法。

实验学时

4学时

实验原理

1、TEC-XP教学机的控制器基本原理

TEX-XP教学机中包含组合控制逻辑和微程序控制逻辑两种不同结构的控制器。本实验中使用的是微程序控制器,与微程序控制器相关的机器结构如图4-1所示。控制器中使用程序计数器PC跟踪机器指令的执行,使用PC中的内容访存获取机器指令,得到的机器指令送入控制器中的指令寄存器IR暂存,并由微程序控制器分析执行,执行过程中的所有控制信号均由微程序控制器中的微命令寄存器μIR发出。

图4-1 TEC-XP教学机的基本结构

TEC-XP教学机的微程序控制器详细内部结构如图4-2所示。该控制器中包含指令寄存器IR(存放当前执行的指令)、地址映射部件(确定不同指令对应的微程序入口地址)、微程序定序器Am2910(根据微指令中的下址字段和判断测试条件,产生下一条微指令的地址)、条件判定线路(用于微程序流向控制)、控制存储器CM(包含所有的微指令)、微指令寄存器μIR(存放当前微指令的操作控制字段)等部件。

图4-2 微程序控制器内部结构

微程序控制器的工作过程是:对于指令寄存器IR中的机器指令,由地址映射部件产生该指令所对应微程序的入口地址,通过Am2910送给控制存储器。取出的一条微指令送入微指令寄存器,其中的微命令字段用于发出控制信号,控制各部件的执行,下址字段与条件判定线路的各测试信号一起送给Am2910,由其确定下条微指令的地址,继续执行。

2、地址映射部件

地址映射部件,即微指令地址映射部件,它是由一片E2PROM构成的,一般称为MAPROM。指令寄存器IR将其中的高8位指令操作码送给MAPROM,MAPROM根据操作码与微地址之间的映射关系,给出该指令对应微程序的入口地址。

TEC-XP教学机中的指令操作码与微地址之间的映射关系如附录表4-1所示。

3、TEC-XP教学机的微指令格式

TEC-XP教学机的微指令共48位,由16位的下址字段和32位的操作控制字段形成,其格式如图4-3所示。

图4-3 TEC-XP教学机的微指令格式

(1)下址字段

a)8位的微下址

用于给出下一条将要执行的微指令的地址。微程序顺序执行,即把已增1后的微指

令地址作为下地址

b)4位的测试控制码CI3~0

用于决定微程序中的微指令寻址方式(顺序寻址、跳跃寻址)。本实验中只使用到

0000(初始化,使微下址=0)、0010(指令功能分支,做MAPROM映射)、0011

(条件转移,由SCC决定是否转移)、1110(顺序寻址,将当前微地址加1作为微

下址)这四个命令码。

c)4位的转移条件编码SCC3~0

当CI3~0=0011时,由这四位编码决定转移判断测试的条件,若选中条件满足,则

使用微下址寻址下一条微指令,否则做顺序寻址,同CI3~0=1110。

下址字段的这3部分控制信号与形成微地址的关系详如附录表4-2所示。

(2)操作控制字段

a)MIQ、REQ、WE

这3位控制信号用于对存储器或I/O接口进行读写操作时的控制。具体定义如附录

表4-3所示。

b)I8-I6、I5-I3、I2-I0、A口和B口、SST2-0:具体定义参考实验二。

c)SSH、SCI1-0:本实验中控制方式如附录表4-3所示。

d)DC1

用于选择把哪一组数据发送到CPU的内部总线(IB)上。在微指令执行过程中,

若不使用内部总线,则通常将其设置为000,可认为是无效状态。

e)DC2

用于控制数据接收及相关的内部功能。

DC1和DC2的控制方式如附录表4-4所示。

4、控制存储器

控制存储器字长48位,用来存放TEC-XP教学机的所有微指令。硬件实现时,是使用两片EEPROM芯片(58C64)存放16位下地址字段信息,而32位操作控制字段信息存放在MACH器件内。

每次读控制存储器时,从这三个芯片中读出一条微指令。48位的微指令寄存器也分为两段,即16位的下地址信息,和32位的微命令信息。

5、A、B、C、D组指令执行流程

TEC-XP教学计算机中,按照每条指令的功能和实际的执行步骤,将指令分成了A、B、C、D共4组,每条指令的所属组详见具体的指令描述。

A组中的指令执行时,一般只是完成通用寄存器间的数据运算或传送,在取指后可一步完成。

B组中的指令,一般需要完成一次内存或I/O读、写操作,在取指后可两步完成:第一步把要使用的地址传送到地址寄存器AR中,第二步执行内存或I/O读写操作。

C组中的指令,在取指后可三步完成:其中CALR在用两步读写内存后,第三步执行寄存器间的数据传递;而其它指令在第一步置地址寄存器ARH、ARL,第二步读内存(即取地址操作数)、计算内存地址、置地址寄存器ARH、ARL,第三步读、写内存。

D组中的指令,完成两次读、写内存操作,在取指之后可四步完成。

TEC-XP教学机的基本指令、扩展指令执行流程分别由附录中图4-4和4-5给出。

6、TEC-XP教学机的数据通路与微命令的关系

微指令的操作控制字段直接用于控制TEC-XP教学机中的各个执行部件,顺序控制字段分别送微程序控制器中的微地址寄存器和转移控制逻辑,用于产生微下址,寻址微指令。图4-4中给出了微指令中的各个字段与TEC-XP教学机数据通路的对应关系,可帮助理解微指令的应用。

图4-4 TEC-XP教学机的数据通路与微命令

实验步骤

请根据每个步骤的详细要求,完成本实验内容。

1、设定工作方式

接通TEC-XP教学机的电源,将功能开关拨为11010,即设为单步、手动执行指令,使用微程序控制器,联机操作。

2、验证A组基本指令——加法指令ADD R0,R1的微程序

根据如下所示的ADD指令格式,可得到指令ADD R0 , R1的机器代码为00000000 00000001,其中高8位为ADD指令的操作码(详见代码表4-1),接下来的两个4位分别对应R0和R1寄存器。

先按下RESET按键,复位系统,然后通过16位的数据开关SW拨入指令代码,再按下RESET按键,此时指示灯Microp亮,其它灯全灭。

注意:在本实验中,选择的是微程序控制器,Microp指示灯会一直点亮。

由附录图4-5所示的基本指令流程可知,加法指令ADD R0 , R1的整个指令周期包含6

个CPU周期,其中前3个CPU周期是取指阶段,所有指令都是一样的,第4个CPU周期用于指令操作码的地址映射,第5个CPU周期完成加法指令的功能,第6个CPU周期用于判断是否需要执行中断周期,从而决定该加法指令执行结束后的流向。该加法指令的微程序如表4-6所示。

在完成以上设置后,接下来每次按下START按键,控制器就会执行一条微指令,请在实验前看懂以下微指令,在实验中验证每条微指令,并记录每条微指令执行时微地址、微下址指示灯的状态。

表4-6 加法指令ADD R0 , R1的微程序

微地址操作功能下址CI3~0SCC3

~0

MR

W

I2~0I8~3B口A口SST SSH\SCI DC

2

DC

1

00H 0→PC、

DI#=0 00H 1110 0000 100 001 011

001

0101 0101 000 001 111 00

01H PC→AR、

PC+1→PC 00H 1110 0000 100 011 010

000

0101 0101 000 001 011 00

02H MEM→IR 00H 1110 0000 001 000 001

000 0000 0000 000 000 00

1

00

03H /MAP 00H 0010 0000 100 000 001

000 0000 0000 000 000 00

00

04H R0+R1→R

0 30H 0011 0000 100 001 011

000

0000 0001 001 000 00

00

30H STR→Q、

CC#=INT# 3AH 0011 0010 100 111 000

000

0000 0000 000 000 00

011

(1)公操作微指令(0→PC、DI#=0)

该微指令在控制存储器中位于第一个单元,即微地址为00H,是程序运行时的初始操作。本实验中由于是脱机单步运行状态,因此每条指令执行时都需要该微指令。

该操作中的PC清零是通过运算器的PC本身相减得到的,因此这里与运算器相关的控制信号应选择I2~0=001(选择A、B锁存器输入)、I8~6=011(F→B,结果保存到B口指定寄存器)、I5~3=001(S-R,减法运算)、B口=0101(指定R5,即PC)、A口=0101(指定R5,即PC)、SST=000(标志位保持不变)、SSH SCI=001(减法运算的最低位进位Cin=1)。

该操作中不需要访存,或访问IO,因此MRW为100(无读写)。DC1无用,选择000。

本条微指令的另一个操作DI#=0,使用DC2=111,选择关中断实现。

本条微指令执行完成后应进入指令的取指周期,因此要转向执行PC→AR微指令,因此,CI应选择1110(顺序寻址),则下条微指令的地址应在本条微指令地址(00H)的基础上加1,即01H。顺序寻址方式下,SCC无效,直接写0000。

(2)送指令地址微指令(PC→AR、PC+1→PC)

本条微指令首先要做的是PC→AR的操作,这里使用A口地址指定PC,即0101,并设置I8~6=010(使A口指定内容输出到内部总线上),DC2=011(指定AR接收内部总线上的数据)。

本条微指令中要完成的PC+1→PC,仍然通过运算器做加法,加上Cin来实现,故控制信号I2~0=011(选择0、B数据),B口=0101(B口指定PC),I8~6=010(F→B,运算结果送PC),I5~3=000(加法运算),SST=000(标志位保持不变)、SSH SCI=001(增量运算中使用

最低进位位Cin提供加数)。

该操作中不需要访存,或访问IO,因此MRW为100(无读写)。DC1无用,选择000。

本条微指令将所要访问主存单元的地址送给AR,则接下来应从主存中读出机器指令字,即本条微指令之后的微指令一定是MEM→IR,因此,CI应选择1110(顺序寻址),则下条微指令的地址应在本条微指令地址(01H)的基础上加1,即02H。顺序寻址方式下,SCC 无效,直接写0000。

(3)读指令字微指令(MEM→IR)

本条微指令需要做访存读取机器指令,因此运算器相关的命令可设置无效,即I2~0=000,I8~6=001,I5~3=010,A口=0000,B口=0000,SST=000(标志位保持不变)、SSH SCI=000。

访存获取的指令字应存放于指令寄存器IR中,因此,MRW=001(内存读),DC2=001(IR接收)。DC1无用,选择000。

本条微指令执行后,控制器应进行操作码的译码,做微地址映射,因此,CI应选择1110(顺序寻址),则下条微指令的地址应在本条微指令地址(02H)的基础上加1,即03H。顺序寻址方式下,SCC无效,直接写0000。

注意:以上3条微指令是适用于所有指令的取指操作的。

(4)地址映射微指令(/MAP)

本条微指令主要是由地址映射部件,根据指令操作码给出对应的指令周期微程序的入口地址,故,本条微指令中有关运算器和访存的控制信号均无效,即I2~0=000,I8~6=001,I5~3=010,A口=0000,B口=0000,SST=000(标志位保持不变),SSH SCI=000,DC1=000,DC2=000。

微地址的映射用CI的2号命令控制,即CI3~0=0010(指令功能分支),SCC3~0=0000(必转)。下址字段无效,写00H。根据地址映射表4-1可知,ADD指令的微程序入口地址为04H,故该微指令执行后,下址指示灯显示为0000 0100。

(5)加法微指令(R0+R1→R0)

本条微指令主要完成两个通用寄存器的加法运算,由实验二可知,运算器相关的控制信号为:I2~0=001(选择AB口数据),I8~6=011(F→B),I5~3=000(加法运算),A口=0001(R1作为源操作数),B口=0000(R0作为目的操作数),SST=001(运算影响标志位),SSH SCI=000(Cin=0)。

本条微指令无访存控制,因此DC1=000,DC2=000。

本条微指令执行结束时,ADD指令功能已完成,即指令的执行周期完成,按照指令周期的流程,这里需要检查系统是否有中断请求。因此,本条微指令执行结束即应转向中断判断微指令,CI3~0=0011码(条件转移),SCC3~0=0000(必转),下址字段给出中断判断微指令的地址,30H。

(6)中断判断微指令(STR→Q、CC#=INT#)

本条微指令用于判断当前系统是否有中断请求,若有,则转去处理中断(地址为3AH 的微指令),否则顺序执行下一条机器指令(地址为31H的微指令)。因此,CI3~0=0011码(条件转移),所依据的条件应为SCC3~0=0010(若有中断请求时转移),下址=3AH。

在进行中断判断时,需要使用到标志位状态,因此,本条微指令需要做的另一个操作是DC1=011(将标志位送到内部总线上),用以判断中断。

3、验证B组基本指令——传送指令MVRD R0,D的微程序

指令MVRD是将立即数传送到指定寄存器的数据传送类指令,该指令是双字长双操作数指令。其指令格式如下所示,则指令MVRD R0 , D的机器代码的高16位为10001000 00000000,其中高8位为MVRD指令的操作码(详见代码表4-1),接下来的4位对应目的寄存器R0。本次实验中,只是验证指令的微程序,至于该指令所传送的数据D可采用存储单元中的随机值。

先按下RESET按键,复位系统,然后通过16位的数据开关SW拨入指令代码,再按下RESET按键,此时指示灯Microp亮,其它灯全灭。

由附录图4-5所示的基本指令流程可知,传送指令MVRD R0 , D的指令周期共包含7个CPU周期,比A组指令在执行阶段多一个CPU周期,主要用于访存获取操作数。这里MVRD的源操作数是立即数寻址方式,其值保存于指令的第二个字上,而TEC-XP教学机是16位机,在取指阶段仅读出该指令的第一个字,所以,在访存取操作数时应使用PC中的地址寻址存储单元,执行1DH的微指令。该传送指令的微程序如表4-6所示。

在完成以上设置后,接下来每次按下START按键,控制器就会执行一条微指令,请在实验前看懂以下微指令,在实验中验证每条微指令。

表4-6 传送指令MVRD R0 , D的微程序

微地址操作功能下址CI3~0SCC3

~0

MR

W

I2~0I8~3B口A口SST SSH\SCI DC

2

DC

1

00H 0→PC、

DI#=0 00H 1110 0000 100 001 011

001

0101 0101 000 001 111 00

01H PC→AR、

PC+1→PC 00H 1110 0000 100 011 010

000

0101 0101 000 001 011 00

02H MEM→IR 00H 1110 0000 001 000 001

000 0000 0000 000 000 00

1

00

03H /MAP 00H 0010 0000 100 000 001

000 0000 0000 000 000 00

00

1DH PC→AR、

PC+1→PC

、CC#=0 1CH 0011 0000 100 011 010

000

0101 0101 000 001 011 00

1CH MEM→

DR、CC#=0 30H 0011 0000 001 111 011

000

0000 0000 000 000 00

00

30H STR→Q、

CC#=INT# 3AH 0011 0010 100 111 000

000

0000 0000 000 000 00

011

在传送指令MVRD R0 , D执行过程中,前3条取指相关的微指令和最后1条中断处理微指令与ADD之前完全相同,这里只对不同的3条微指令进行介绍。

(1)地址映射微指令(/MAP)

本条微指令主要是由地址映射部件,根据指令操作码给出对应的指令周期微程序的入口地址,故,本条微指令中有关运算器和访存的控制信号均无效,即I2~0=000,I8~6=001,I5~3=010,

A口=0000,B口=0000,SST=000(标志位保持不变),SSH SCI=000,DC1=000,DC2=000。

微地址的映射用CI的2号命令控制,即CI3~0=0010(指令功能分支),SCC3~0=0000(必转)。下址字段无效,写00H。根据地址映射表4-1可知,MVRD指令的微程序入口地址为1DH,故该微指令执行后,下址指示灯显示为0001 1101。

(2)取机器指令的第二个字节微指令(PC→AR、PC+1→PC、CC#=0)

由于MVRD指令是双字指令,在取指阶段仅从主存中取得了指令中包含操作码的高字部分,这里要执行该指令时,必须获取指令的第二个字数据,即指令中的16位立即数。因此,在完成地址映射后,应执行该微指令,再次读取主存。

本条微指令的执行与取指阶段PC→AR、PC+1→PC微指令的操作控制部分完全相同,但顺序控制部分,根据指令的执行流程可知,下条微指令应将使用主存中读得的立即数给目的寄存器赋值。因此CI3~0=0011(条件转移),SCC3~0=0010(必转),所要转向的地址由下址字段给出,即1CH。

(3)访存赋值微指令(MEM→DR、CC#=0)

本条微指令是将存储单元中读得的立即数给目的寄存器赋值。这里使用运算器D+0→R 操作实现,其中D为从存储单元中读出的操作数。因此,MRW=001(内存读),I2~0=111(选择外部数据D和0),I8~6=011(F→B),I5~3=000(加法),A口未用,B口=0000(指定目的寄存器R0),SST=000(标志位保持不变),SSH SCI=000(Cin=0)。

本条微指令中DC1=000(无效),DC2=000(无操作)。

本条微指令执行结束时,MVRD指令功能已完成,即指令的执行周期完成,按照指令周期的流程,这里需要检查系统是否有中断请求。因此,本条微指令执行结束即应转向中断判断微指令,CI3~0=0011码(条件转移),SCC3~0=0000(必转),下址字段给出中断判断微指令的地址,30H。

4、分析D组基本指令——子程序调用指令CALA ADR的微程序

指令CALA是将立即数传送到指定寄存器的数据传送类指令,该指令是双字长双操作数指令。其指令格式如下所示,则指令CALA ADR的机器代码的高16位为11001110 00000000,其中高8位为CALA指令的操作码(详见代码表4-1),接下来的4位对应目的寄存器R0。本次实验中,只是验证指令的微程序,至于该指令所用到的直接地址可采用存储单元中的随机值。

先按下RESET按键,复位系统,然后通过16位的数据开关SW拨入指令代码,再按下RESET按键,此时指示灯Microp亮,其它灯全灭。

由附录图4-5所示的基本指令流程可知,子程序调用指令CALA ADR的指令周期共包含9个CPU周期,执行阶段比B类指令多用2个CPU周期。CALA指令的微程序如表4-7所示。在完成以上设置后,接下来每次按下START按键,控制器就会执行一条微指令,请在实验前完成对表4-7中每条微指令的分析,在实验中验证,并分析每条微指令的具体功能。

表4-7 子程序调用指令CALA ADR的微程序

微地址操作功能下址CI3~0SCC3

~0

MR

W

I2~0I8~3B口A口SST SSH\SCI DC

2

DC

1

00H 0→PC、00H 1110 0000 100 001 011 0101 0101 000 001 111 00

DI#=0 001 0

01H PC→AR、

PC+1→PC 00H 1110 0000 100 011 010

000

0101 0101 000 001 011 00

02H MEM→IR 00H 1110 0000 001 000 001

000 0000 0000 000 000 00

1

00

03H /MAP 00H 0010 0000 100 000 001

000 0000 0000 000 000 00

00

1FH PC→AR、

PC+1→PC 00H 1110 0000 100 011 010

000

0101 0101 000 001 011 00

20H MEM→Q 00H 1110 0000 001 111 000

000 0000 0000 000 000 00

00

21H SP-1→SP、

SP→AR 00H 1110 0000 100 011 011

001

0100 0000 000 000 011 00

22H PC→

MEM、

Q→PC、

CC#=0 30H 0011 0000 000 010 010

000

0101 0101 000 000 00

00

1

30H STR→Q、

CC#=INT# 3AH 0011 0010 100 111 000

000

0000 0000 000 000 00

011

5、设计扩展指令ADC、STC、LDRA、CALR的微程序

TEC-XP教学机支持动态微程序设计,即允许用户把自己设计的微程序写入控制存储器中,当扩展指令需要执行时,直接从控制存储器中读取对应的微指令执行即可。但写控制存储器时,需要用到硬件描述语言VHDL,故在本次实验中,对于扩展实验直接采用出厂已设计好的扩展指令进行验证。

扩展指令ADC、STC、LDRA、CALR的执行周期相关微指令如表4-8所示,请在实验时以单步方式进行验证。

表4-8 若干扩展指令的执行周期微程序

指令微地

址操作功

CI3~0SCC3

~0

MR

W

I2~0I8~3B口A口SST SSH\SCI DC

2

DC

1

ADC 50H DR+SR

+CF→

DR 30H 0011 0000 100 001 011

000

0000 0000 001 010 00

00

STC 57H 1→CF 30H 0011 0000 100 000 001

000 0000 0000 100 000 00

00

LDR A 5BH PC→A

R

PC+1→

PC

00H 1110 0000 100 011 010

000

0101 0101 000 001 011 00

5CH MEM→

AR

1C

H

0011 0000 001 111 001

000

0000 0000 000 000 011 00

CAL R 64H SP-1→S

P

00H 1110 0000 100 011 011

001

0100 0000 000 000 011 00

SP→AR

65H PC→M

EM 00H 1110 0000 000 100 001

000

0000 0101 000 000 00

00

1

66H SR→PC 30H 0011 0000 100 100 011

000 0101 0000 000 000 00

00

6、测试扩展指令

扩展指令在使用时与基本指令不同,基本指令可以在监控环境下使用汇编命令A以汇编指令格式输入存储单元中,而扩展指令只能使用存储单元修改命令E以机器指令的形式写入存储单元中。相关扩展指令的操作码编码见表4-1。

(1)设置功能开关

测试扩展指令之前,先将TEC-XP的功能开关设置为00010,即连续运行程序、采用微程序控制器、联机、16位机。运行“D:\大板可编程器件内容\”路径下的PCEC16.EXE文件,进入TEC-XP的监控环境。

(2)测试STC、ADC指令

①将如下测试程序段输入到主存2000H开始的存储区域中。

MVRD R0 , 0101

MVRD R1 , 1010

*STC

*ADC R0 , R1

RET

注意:带*号的指令为扩展指令,只能使用E命令写入,请先对照指令的操作码编码表4-1和指令格式写出对应指令的机器代码。

②使用如下格式的G命令连续运行该程序段:

G 2000↙

③使用如下格式的R命令察看寄存器的内容:

R↙

可观察到运行结果应为R0=1112,R1=1010。

(3)测试CALR 指令

对CALR指令的测试需要设计一个有读写内存和子程序调用指令的程序。下面使用一个功能是读出内存中的字符,将其显示到显示器的屏幕上,转换为小写字母后再写回存储器原存储区域的程序进行测试。

①从地址2080H开始输入下列主程序段:

MVRD R3 , 6

MVRD R2 , 20F0

LDRR R0 , [R2]

MVRD R8 , 2100

*CALR R8

DEC R3

JRZ 208C

INC R2

JR 2084

RET

②从地址2100H开始输入下列子程序段:

OUT 80

MVRD R1 , 20

ADD R0 , R1

STRR [R2] , R0

IN 81

SHR R0

JRNC 2105

RET

③使用E命令将‘A’~‘F’这6个字符送入到存储单元20F0H~20F5H中。

④使用如下格式的G命令连续运行2080H中的程序段:

G 2080↙

屏幕显示运行结果为:

ABCDEF

56

⑤使用如下格式的D命令,查看20F0H~20F5H单元中的内容:

D 20F0↙

屏幕上显示查看结果应为:

0061 0062 0063 0064 0065 0066

(4)测试指令LDRA

编写一个使用LDRA指令将存储单元2100H和2101H中的内容通过R0输出的程序段,测试扩展指令LDRA的功能。

①从地址2000H开始输入下列程序段:

*LDRA R0 , [2100]

OUT 80

IN 81

SHR R0

JRNC 2003

*LDRA R0 , [2101]

OUT 80

RET

②使用E命令将要显示的两个字符“A”、“B”写入存储单元2100H和2101H中。

③在如下格式的G命令,连续运行以上程序段:

G 2000↙

屏幕上将会显示预设置字符‘A’、‘B’。

实验报告要求

本次实验需完成实验报告一份,本次实验报告内容写出以下两个内容:

1、D组基本指令——程序调用指令CALA的微程序分析;

2、扩展指令LDRA的设计和测试。

附录

表4-1 指令机器编码和微程序入口地址对应表

指令操作码编码微程序入口地址

基本指令ADD DR , SR 0000 0000 04H SUB DR , SR 0000 0001 05H AND DR , SR 0000 0010 06H OR DR , SR 0000 0110 07H XOR DR , SR 0000 0100 08H CMP DR , SR 0000 0011 09H TEST DR , SR 0000 0101 0AH MVRR DR , SR 0000 0111 0BH INC DR 0000 1001 0CH DEC DR 0000 1000 0DH SHL DR 0000 1010 0EH SHR DR 0000 1011 0FH JRC OFFSET 0100 0100 10H JRNC OFFSET 0100 0101 10H JRZ OFFSET 0100 0110 10H JRNZ OFFSET 0100 0111 10H JR OFFSET 0100 0001 11H IN PORT 1000 0010 12H OUT PORT 1000 0110 12H PSHF 1000 0100 15H PUSH DR 1000 0101 15H POP DR 1000 0111 17H POPF 1000 1100 17H STRR [DR] , SR 1000 0011 19H LORR DR , [SR] 1000 0001 1BH MVRD DR , DATA 1000 1000 1DH JMPA ADR 1000 0000 1EH CALA ADR 1100 1110 1FH RET 1000 1110 23H

扩展ADC DR , SR 0010 0000 50H SBB DR , SR 0010 0001 51H NOT DR 0010 1101 52H ASR DR 0010 1100 53H RCL DR 0010 1010 54H RCR DR 0010 1011 55H CLC 0110 1100 56H STC 0110 1101 57H

指 令

EI 0110 1110 58H DI 0110 1111 59H JMPR SR 0110 0000 5AH LDRA DR , [ADR] 1110 0100 5BH LDRX DR , OFFSET[SR] 1110 0101 5DH STRA [ADR] , SR 1110 0111 5FH STRX DR , OFFSET[SR] 1110 0110 61H CALR SR 1110 0000 64H IRET

1110 1111 67H JRS OFFSET 0110 0100 69H JRNS OFFSET

0110 0101

69H

表4-2 微指令中的下址确定

CI 3~0 SCC 3~0 判断条件

微下址 0000 0000(无效) 00H 0010

0000(无效)

MAP 映射 映射获得

0011

0000

必转

微下址字段值 0010 有中断请求时转移

微下址字段值/顺序寻址 0100 JRC 、JRNC 、JRZ 、JRNZ 指令测试

微下址字段值/顺序寻址 0101 JRS 、JRNS 指令测试

微下址字段值/顺序寻址 0110 IN 指令测试 微下址字段值/顺序寻址 0111

入出栈指令测试

微下址字段值/顺序寻址

1110 0000(无效)

顺序寻址

表4-3 MEW 信号功能 表4-4 SSH 和SCI 控制信号

表4-5 DC1和DC2控制方式

图4-5 基本指令流程图

图4-6 扩展指令流程

图4-7 微指令表

注:该表中的微指令为56位的,只需要将每条微指令的MRW 、I2~0、I8~6、I5~3、SST 、SSH 、DC2、DC1这8个字段的首位0除去即为48位的微指令。

微程序控制器的设计与实现

微程序控制器的设计与实现 一、设计目的 1、巩固和深刻理解“计算机组成原理”课程所讲解的原理, 加深对计算机各模块协同工作的认识。 2、掌握微程序设计的思想和具体流程、操作方法。 3、培养学生独立工作和创新思维的能力,取得设计与调试的 实践经验。 4、尝试利用编程实现微程序指令的识别和解释的工作流程。 二、设计内容 按照要求设计一指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接寻址、立即数寻址等五种寻址方式。 三、设计具体要求 1、仔细复习所学过的理论知识,掌握微程序设计的思想,并根、 据掌握的理论写出要设计的指令系统的微程序流程。指令系统至少要包括六条指令,具有上述功能和寻址方式。 2、根据微操作流程及给定的微指令格式写出相应的微程序 3、将所设计的微程序在虚拟环境中运行调试程序,并给出测试思 路和具体程序段 4、撰写课程设计报告。

四、设计环境 1、伟福COP2000型组成原理实验仪,COP2000虚拟软件。 2、VC开发环境或者Java开发环境。 五、设计方案 (1)设计思想 编写一个指令系统,根据所编写的指令的功能来设计相应的微程序。首先利用MOV传送指令来给寄存器和累加器传送立即数,实现立即数寻址;利用寄存器寻址方式,用ADDC指令对两者进行相加运算;利用寄存器间接寻址方式,用SUB指令实现减运算;利用累加器寻址方式,用CPL指令实现对累加器寻址;利用存储器寻址方式,用JMP 指令实现程序的无条件跳转。这样,所要设计的指令系统的功能就全部实现了。 (2)微指令格式 采用水平微指令格式的设计,一次能定义并执行多个并行操作微命令的微指令,叫做水平型微指令。其一般格式如下: 按照控制字段的编码方法不同,水平型微指令又分为三种:全水平型(不译法)微指令,字段译码法水平型微指令,以及直接和译码相混合的水平型微指令。 (3)24个微指令的意义 COP2000 模型机包括了一个标准CPU 所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右

硬件基础-微程序控制器实验报告

大学 HUNAN UNIVERSITY 硬件基础实验2 实验报告 一、实验预习 1.书中的图形实现微程序控制器,中间的映射逻辑究竟是怎么实现的? 答:但出现分支时,预设端信号由IR决定。IR为1时信号有效,输出为1. 通过IR的值映射为下址的低三位,从而产生下址。 2.书中设计用到了强写强读,为什么要设计这个功能? 答:满足用户因为没有初始化mif文件时输入数据的需要。

二、实验目的 微程序控制器实验的主要任务:生成CPU里的控制信号,并使程序按正确的顺序执行。核心部分是ROM,存放机器指令的微程序。 1、掌握微程序控制器的组成、工作原理; 2、掌握微程序控制器的基本概念和术语:微命令、微操作、微指令、微 程序等; 3、掌握微指令、微程序的设计及调试方法; 4、通过单步运行若干条微指令,深入理解微程序控制器的工作原理; 二、实验电路 图1 附:电路图过大,请放大观察详情 三、实验原理 将机器指令的操作(从取指到执行)分解为若干个更基本的微操作序列,并将有关的控制信息(微命令)以微码的形式编成微指令输入到控制存储器中。这样,每条机器指令将与一段微程序对应,取出微指令就产生微命令,以实现机器指令要求的信息传送与加工。

四、实验步骤及概述 1)设计状态机部分 a、编写VHDL代码如下 LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY zhuangtaiji IS PORT ( reset : IN STD_LOGIC := '0'; clock : IN STD_LOGIC; qd : IN STD_LOGIC := '0'; dp : IN STD_LOGIC := '0'; tj : IN STD_LOGIC := '0'; t1 : OUT STD_LOGIC; t2 : OUT STD_LOGIC; t3 : OUT STD_LOGIC; t4 : OUT STD_LOGIC ); END zhuangtaiji; ARCHITECTURE BEHAVIOR OF zhuangtaiji IS TYPE type_fstate IS (idle,st1,s_st2,st4,st2,st3,s_st4,s_st3); SIGNAL fstate : type_fstate; SIGNAL reg_fstate : type_fstate; BEGIN PROCESS (clock,reset,reg_fstate) BEGIN IF (reset='1') THEN fstate <= idle; ELSIF (clock='1' AND clock'event) THEN fstate <= reg_fstate; END IF; END PROCESS; PROCESS (fstate,qd,dp,tj) BEGIN t1 <= '0'; t2 <= '0'; t3 <= '0'; t4 <= '0'; CASE fstate IS WHEN idle => IF (NOT((qd = '1'))) THEN reg_fstate <= st1;

微程序控制器实验

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成原理 项目名称微程序控制器实验 班级

学号 姓名 同组人员 实验日期 一、实验目的与要求 实验目的 (1)掌握微程序控制器的组成原理 (2)掌握微程序控制器的编制、写入,观察微程序的运行过程 实验要求 (1)实验之前,应认真准备,写出实验步骤和具体设计内容,否则实验效率会很低,一次实验时间根本无法完成实验任务,即使基本做对了,也很难说懂得了些什么重要教学内容; (2)应在实验前掌握所有控制信号的作用,写出实验预习报告并带入实验室; (3)实验过程中,应认真进行实验操作,既不要因为粗心造成短路等事故而损坏设备,又要仔细思考实验有关内容,把自己想不明白的问题通过实验理解清楚; (4)实验之后,应认真思考总结,写出实验报告,包括实验步骤和具体实验结果,遇到的问题和分析与解决思路。还应写出自己的心得体会,也可以对教学实验提出新的建议等。实验报告要交给教师评阅后并给出实验成绩; 二、实验逻辑原理图与分析 画实验逻辑原理图

逻辑原理图分析 微程序控制器的基本任务是完成当前指令的翻译个执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。 它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示成为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,称为控制存储器。 三、数据通路图及分析(画出数据通路图并作出分析) (1)连接实验线路,检查无误后接通电源。如果有警报声响起,说明有总线竞争现象,应关闭电源,检查连线,直至错误排除。 (2)对微控制器进行读写操作,分两种情况:手动读写和联机读写。 1、手动读写

微程序控制器实验2

实 验 项 目 微程序控制器实验实验时间2015年10月31日 实验目的(1) 掌握微程序控制器的组成原理。 (2) 掌握微程序的编制、写入,观察微程序的运行过程。 实 验 设 备 PC机一台,TD-CMA实验系统一套 实验原理 微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,称为控制存储器,微程序控制器原理框图如图3-2-1 所示。 控制器是严格按照系统时序来工作的,因而时序控制对于控制器的设计是非常重要的,从前面的实验可以很清楚地了解时序电路的工作原理,本实验所用的时序由时序单元来提供,分为四拍TS1、TS2、TS3、TS4,时序单元的介绍见附录2。 微程序控制器的组成见图3-2-2,其中控制存储器采用3 片2816 的E2PROM,具有掉电保 护功能,微命令寄存器18 位,用两片8D 触发器(273)和一片4D(175)触发器组成。微地址寄存器6 位,用三片正沿触发的双D 触发器(74)组成,它们带有清“0”端和预置端。在不判别测试的情况下,T2 时刻打入微地址寄存器的内容即为下一条微指令地址。当T4 时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。

在实验平台中设有一组编程控制开关KK3、KK4、KK5(位于时序与操作台单元),可实现对存储器(包括存储器和控制存储器)的三种操作:编程、校验、运行。考虑到对于存储器(包括存储器和控制存储器)的操作大多集中在一个地址连续的存储空间中,实验平台提供了便利 的手动操作方式。以向00H 单元中写入332211 为例,对于控制存储器进行编辑的具体操作步骤如下:首先将KK1 拨至‘停止’档、KK3 拨至‘编程’档、KK4 拨至‘控存’档、KK5 拨至 ‘置数’档,由CON 单元的SD05——SD00 开关给出需要编辑的控存单元首地址(000000),IN 单元开关给出该控存单元数据的低8 位(00010001),连续两次按动时序与操作台单元的开关ST(第一次按动后MC 单元低8 位显示该单元以前存储的数据,第二次按动后显示当前改动的数据),此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M7——M0 显示当前数据(00010001)。然后将KK5 拨至‘加1’档,IN 单元开关给出该控存单元数据的中8 位(00100010),连续两次按动开关ST,完成对该控存单元中8 位数据的修改,此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M15——M8 显示当前数据(00100010);再由IN 单元开关给出该控存单元数据的高8 位(00110011),连续两次按动开关ST,完成对该控存单元高8 位数据的修改此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M23——M16 显示当前数据(00110011)。此时被编辑的控存单元地址会自动加1(01H),由IN 单元开关依次给出该控存单元数据的低8 位、中8 位和高8 位配合每次开关ST 的两次按动,即可完成对后续单元的编辑。

数电实验触发器及其应用

数电实验触发器及其应用 数字电子技术实验报告 实验三: 触发器及其应用 一、实验目的: 1、熟悉基本RS触发器,D触发器的功能测试。 2、了解触发器的两种触发方式(脉冲电平触发和脉冲边沿触发)及触发特点 3、熟悉触发器的实际应用。 二、实验设备: 1 、数字电路实验箱; 2、数字双综示波器; 3、指示灯; 4、74LS00、74LS74。 三、实验原理: 1、触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序 电路的最基本逻辑单元,也是数字逻辑电路中一种重要的单元电路。在数字系统和计算机中有着广泛的应用。触发器具有两个稳定状态,即“0”和“ 1 ”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。触发器有集成触发器和门电路(主要是“与非门” )组成的触发器。 按其功能可分为有RS触发器、JK触发器、D触发器、T功能等触发器。触发方式有电平触发和边沿触发两种。 2、基本RS触发器是最基本的触发器,可由两个与非门交叉耦合构成。 基本RS触发器具有置“ 0”、置“ 1”和“保持”三种功能。基本RS触发器

也可以用二个“或非门”组成,此时为高电平触发有效。 3、D触发器在CP的前沿发生翻转,触发器的次态取决于CP脉冲上升沿n+1来到之前D端的状态,即Q = D。因此,它具有置“ 0”和“T两种功能。由于在CP=1期间电路具有阻塞作用,在CP=1期间,D端数据结构变RS化,不会影响触发器的输出状态。和分别是置“ 0”端和置“ 1” DD 端,不需要强迫置“ 0”和置“ 1”时,都应是高电平。74LS74(CC4013, 74LS74(CC4042均为上升沿触发器。以下为74LS74的引脚图和逻辑图。 馬LD 1CP 1云IQ LQ GM) 四、实验原理图和实验结果: 设计实验: 1、一个水塔液位显示控制示意图,虚线表示水位。传感器A、B被水浸沿时

实验四常规型微程序控制器组成实验

实验四常规型微程序控制器组成实验 一、实验目的 掌握时序发生器的组成原理。 掌握微程序控制器的组成原理。 二、实验电路 时序发生器 本实验所用的时序电路见图。电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。 图时序信号发生器 本次实验不涉及硬连线控制器,因此时序发生器中产生W1-W3的部分也可根据需要放到硬连线控制器实验中介绍。 产生时序信号T1-T4的功能集成在图中左边的一片GAL22V10中,另外它还产生节拍信号 W1-W3的控制时钟CLK1。该芯片的逻辑功能用ABEL语言实现。其源程序如下:MODULE TIMER1 TITLE 'CLOCK GENERATOR T1-T4' CLK = .C.; "INPUT MF, CLR, QD, DP, TJ, DB PIN 1..6; W3 PIN 7; "OUTPUT T1, T2, T3, T4 PIN 15..18 ISTYPE 'REG'; CLK1 PIN 14 ISTYPE 'COM'; QD1, QD2, QDR PIN ISTYPE 'REG';

ACT PIN ISTYPE 'COM'; S = [T1, T2, T3, T4, QD1, QD2, QDR]; EQUATIONS QD1 := QD; QD2 := QD1; ACT = QD1 & !QD2; QDR := CLR & QD # CLR & QDR; T1 := CLR & T4 & ACT # CLR & T4 & ! (DP # TJ # DB & W3) & QDR; T2 := CLR & T1; T3 := CLR & T2; T4 := !CLR # T3 # T4 & !ACT & (DP #TJ# DB& W3) # !QDR; CLK1 = T1 # !CLR & MF; = MF; END 节拍电位信号W1-W3只在硬连线控制器中使用,产生W信号的功能集成在右边一片GAL22V10中,用ABEL语言实现。其源程序如下: MODULE TIMER2 .; "INPUT CLK1, CLR, SKIP PIN 1..3; "OUTPUT W1, W2, W3 PIN 16..18 ISTYPE 'REG'; W = [W1, W2, W3];

微程序控制器的基本原理

微程序控制器的基本原理 1、控制存储器:控制存储器是微程序控制器中的核心部件,通常由只读存储器ROM 器件实现,简称控存。 2、微指令:控制存储器中的一个存储单元(字)表示了某一条指令的某一操作步骤的控制信号,以及下一步骤的有关信息,称该字为微指令。 作用:准确提供了指令执行中的每一步要用的操作信号及下一微指令的地址。 3、微程序:全部微指令的集合称为微程序。 4、微程序控制器的基本工作原理:根据IR(指令寄存器)中的操作码,找到与之对应的控存中的一段微程序的入口地址,并按指令功能所确定的次序,逐条从控制存储器中读出微指令,以驱动计算机各部件正确运行。 5、得到下一条微指令的地址的有关技术:要保证微指令的逐条执行,就必须在本条微指令的执行过程中,能得到下一条微指令的地址。 形成下条微指令地址(简称下地址)可能有下列五种情况: ①下地址为本条微指令地址加1; ②微程序必转某一微地址,可在微指令中给出该微地址值; ③根据状态标志位,选择顺序执行或转向某一地址; ④微子程序的调用及返回控制,要用到微堆栈; ⑤根据条件判断转向多条微指令地址中的某一地址,比③更复杂的情况。 如:若C=1,转移到 A1 微地址; 若S=1,转移到 A2 微地址; 若Z=1,转移到 B1 微地址; 这种情况,在微指令中直接给出多个下地址是不现实的,应找出更合理的解决方案。

微指令的格式和内容: 下地址字段控制命令字段 补充:微指令编码的方法 (1)直接表示法(水平型微指令):操作控制字段中的每一位带代表一个微操作控制信号。如教学实验计算机的微指令56位 (2)编码表示法(垂直型微指令):把一组相斥性的微命令信号组成一个小组,通过小组字段译码器对每一个微命令信号进行译码。 (3)混合表示法:将直接表示法与编码表示法相混合使用。 下地址字段的内容 得到下地址的方法 由指令操作码得到 微指令顺序执行 在微指令下地址字段中表示清楚: 使用哪种方法 哪个判断条件,

微程序控制器实验审批稿

微程序控制器实验 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

评语: 课中检查完成的题号及题数: 课后完成的题号与题数: 成绩: 自评成绩: 实验报告 实验名称:微程序控制器实验 日 期: 班级:学号: 姓 名: 一、实验目的: 1.掌握微程序控制器的组成原理。 2.掌握微程序的编制、写入,观察微程序的运行过程。 二、实验内容: 1.了解如何将微码加载到微控存中,了解指令并运行。 2.通过微程序控制器实验能得简单运算结果。 3.设计并修改电路,编写用微程序实现存储器中两个单字节十六进制数的加法运算,结果输出至OUT单元。 三、项目要求及分析: 要求:操作数由IN单元输入至MEM,在由MEM中读出操作数并在ALU中运算。 四、具体实现: 1. 按图1-3-10 所示连接实验线路,仔细查线无误后接通电源。如果有‘滴’报警声,说明总线有竞争现象,应关闭电源,检查接线,直到错误排除。

图1-3-10 实验接线图 2. 对微控器进行读写操作,分两种情况:手动读写和联机读写。 1) 手动读写 进行手动读或是写,都需要手动给出地址,系统专门安排了一个ADDR 单元,做为地址输入。ADDR 单元原理如图1-3-11 所示,可以看出本单元实为一个加减计数器。当开关为‘加1’档时,在T2 的下沿计数器进行加1 计数,当开关为‘减1’档时,在T2 的下沿计数器进行减1计数,当开关置为‘置数’档时,计数器置初值,其作用相当于直通,SA7…SA0 的输出值就是二进制开关组的值。 在实验中选择什么档位,取决于写入数据的地址是否连续,如果是连续地址,选 择‘加1’或是‘减1’档会方便一些。如果是离散地址,选择‘置数’档会方便一些。

实验四 D触发器及其应用

实验四D触发器及其应用 一、实验目的 1、熟悉D触发器的逻辑功能; 2、掌握用D触发器构成分频器的方法; 3、掌握简单时序逻辑电路的设计方法。 二、实验设备 1、数字电路实验箱 2、数字双踪示波器 3、函数信号发生器 4、集成电路:74LS00 5、集成电路:74LS74 74LS74 ?74LS74:双D触发器(上升沿触发的边沿D触发器) ?引脚的定义: 三.实验原理 时序逻辑电路: ?1、时序逻辑电路:任一时刻的输出信号不但取决于当时的输入信号,而且还取决于 电路原来的状态,与以前的输入有关。 ?2、同步时序电路 ?3、异步时序电路 D触发器 ? 1 、触发器:一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最

基本逻辑单元,也是数字逻辑电路中一种重要的单元电路。 2、D触发器在时钟脉冲CP的前沿(正跳变0→1)发生翻转,触发器的次态取决于 CP脉冲上升沿到来之前D端的状态。 四、实验内容 1、用74LS74(1片)构成二分频器、四分频器,并用示波器观察波形; 2、实现如图所示时序脉冲(74LS74和74LS00各1片) 五.实验结果 1.用74LS74(1片)构成二分频器、四分频器,并用示波器观察波形; 在CP1端加入1KHz,峰峰值为5.00V,平均值为2.50V的连续方波,并用示波器观察CP,1Q,2Q各点的波形 得到的二分频波形结果为:

得到的四分频结果为: 2、实现如图所示时序脉冲(74LS74和74LS00各1片)

2. 特征方程 3. 电路图 +1101+101 ' 10 ' =====n n n n n n Q Q D Q Q D F Q Q F F CP =?

微程序控制器实验报告 (2)

组成原理No、4实验--- 微程序控制器实验 组员: 组号:21号 时间:周二5、6节?

【实验目的】 (1)掌握时序发生器的组成原理。 (2)掌握微程序控制器的组成原理。 (3)掌握微程序的编制、写入、观察微程序的运行情况 【实验设备】 TDN-CM++, 【实验原理】 微程序控制器的基本任务就是完成当前指令的翻译与执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输与各种处理操作。它的执行方法就就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。微程序存储在一种专用的存储器中,该存储器称为控制存储器。 实验所用的时序控制电路框图如图1 所示, 可产生四个等间隔的时序信号TS1~TS4。在 图1中,为时钟信号,由实验台左上方的 方波信号源提供,可产生频率及脉宽可调额 方波信号;STEP就是来自实验板上方中部的 一个二进制开关STEP的模拟信号;START 键就是来自实验板上方左部的一个微动开关 START的按键信号。当STEP开关为EXEC(0)时,一旦按下START启动键,时序信号TS1~TS4将周而复始地发送出去。当STEP为STEP(1)时,按下START启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机了。利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。另外,如果STEP开关置“STEP”,会使机器停机,CLR开关执行1→0→1操作可以使时序清零。时序状态图如下图所示。 ?由于时序电路的内部线路已经连好,因此只需将时序电路与方波信号源连接,即将时序电路的时钟脉冲输入端接至方波信号发生器输入端H23上,按动启动 键START后,就可产生时序信号TS1~TS4、时序电路的CLR已接至CLR 模拟开关上。 ?编程开关具有三种状态:PROM(编程)、READ(校验)与RUN(运行)。 微指令格式如 下: 【实验步骤】

实验四 微程序控制器原理实验

2015 年 5 月 24 日 课程名称:计算机组成原理实验名称:微程序控制器原理实验 班级:学号:姓名: 指导教师评定:_________________ 签名:_____________________ 一、实验目的: 1.掌握微程序控制器的组成及工作过程; 2.通过用单步方式执行若干条微指令的实验,理解微程序控制器的工作原理。 二、预习要求: 1.复习微程序控制器工作原理; 2.预习本电路中所用到的各种芯片的技术资料。 三、实验设备: EL-JY-II型计算机组成原理实验系统一台,连接线若干。 四、电路组成: 微程序控制器的原理图见图4-1(a)、4-1(b)、4-1(c)。 图4-1(a)控制存储器电路

图4-1(b)微地址形成电路 图4-1(c)微指令译码电路 以上电路除一片三态输出8D触发器74LS374、三片EFPROM2816和一片三态门74LS245,其余逻辑控制电路均集成于EP1K10内部。28C16、74LS374、74LS245

芯片的技术资料分别见图4-2~图4-4. 图4-2(a )28C16引脚 图4-2(b ) 28C16引脚说明 工作方式 /CE /OE /WE 输入/输出 读 后 备 字 节 写 字节擦除 写 禁 止 写 禁 止 输出禁止 L L H H × × L H L L 12V L × × H × L × × H × 数据输出 高 阻 数据输入 高 阻 高 阻 高 阻 高 阻 图4-2(c )28C16工作方式选择 图4-5(a )74LS374引脚 图4-5(b )74LS374功能

图4-8(a)74LS245引脚图4-8(b)74LS245功能 五、工作原理: 1.写入微指令 在写入状态下,图4-1(a)中K2须为高电平状态,K3必须接至脉冲/T1端,否则无法写入。MS1-MS24为24位写入微代码,由24位微代码开关(此次实验采用开关方式)。uA5-uA0为写入微地址,采用开关方式则由微地址开关提供。K1须接低电平使74LS374有效,在脉冲T1时刻,uAJ1的数据被锁存形成微地址(如图4-1(b)所示),同时写脉冲将24位微代码写入当前微地址中(如图4-1(a)所示)。 2.读出微指令 在写入状态下,图4-1(a)中K2须为低电平状态,K3须接至高电平。 K1须接低电平使74LS374有效,在脉冲T1时刻,uAJ1的数据被锁存形成微地址uA5-uA0(如图4-1(b)所示),同时将当前微地址的24位微代码由MS1-MS24输出。 3.运行微指令 在运行状态下,K2接低电平,K3接高电平。K1接高电平。使控制存储器2816处于读出状态,74LS374无效因而微地址由微程序内部产生。在脉冲T1时刻,当前地址的微代码由MS1-MS24输出;T2时刻将MS24-MS7打入18位寄存器中,然后译码输出各种控制信号(如图4-1(c)所示,控制信号功能见实验五);在同一时刻MS6-MS1被锁存,然后在T3时刻,由指令译码器输出的SA5-SA0将其中某几个触发器的输出端强制置位,从而形成新的微地址uA5-uA0,这就是将要运行的下一条微代码的地址。当下一个脉冲T1来到

触发器的使用实验报告

实验II、触发器及其应用 一、实验目的 1、掌握基本RS、JK、D和T触发器的逻辑功能 2、掌握集成触发器的逻辑功能及使用方法 3、熟悉触发器之间相互转换的方法 二、实验原理 触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 如图1为两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。基本RS触发器具有置“0”、置“1”和“保持”三种功能。通常称为置“1” 段,因为=0(=1)时触发器被置为“1”;为置“0”端,因为=0(=1)时触发器被置“0”,当==1时状态保持;==0时,触发器状态不定,应避免此种情况发生,表1为基本RS 触发器的状态表。 图1、基本RS触发器 表1、基本RS触发器功能表 输入输出 0 1 1 0 1 0 0 1 1 1 0 0 不定不定 基本RS 2、JK触发器

在输入信号为双端的情况下,JK触发器的功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降沿出发的边沿触发器。引脚功能及逻辑符号如图2所示。 图2、74LS112双JK触发器引脚排列及逻辑符号 JK触发器的状态方程为:=J+ J和K是数据输入端,是触发器状态更新的依据,若J、K有两个或者两个以上输入端时,组成“与”的关系。和为两个互补输出端。通常把=0,=1的状态定为触发器“0” 状态;而把=1,=0定为“1”状态。下降沿触发JK触发器功能表如表2所示。 表2、JK触发器功能表 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 3、D触发器 在输入信号为单端的情况下,D触发器用起来最为方便,其状态方程为=D,其输出状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D端的状态,D触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。有很多种型号可供各种用途的需要而选用。如双D 74LS74、四D 74LS175、六D 74LS174等。 下图为双D774LS74的引脚排列及逻辑符号。功能表如表3.

微程序控制器与组合逻辑控制器的区别

微程序控制器的基本原理详细图解 1、控制存储器:控制存储器是微程序控制器中的核心部件,通常由只读存储器ROM器件实现,简称控存。 2、微指令:控制存储器中的一个存储单元(字)表示了某一条指令的某一操作步骤的控制信号,以及下一步骤的有关信息,称该字为微指令。 作用:准确提供了指令执行中的每一步要用的操作信号及下一微指令的地址。 3、微程序:全部微指令的集合称为微程序。 4、微程序控制器的基本工作原理:根据IR(指令寄存器)中的操作码,找到与之对应的控存中的一段微程序的入口地址,并按指令功能所确定的次序,逐条从控制存储器中读出微指令,以驱动计算机各部件正确运行。 5、得到下一条微指令的地址的有关技术:要保证微指令的逐条执行,就必须在本条微指令的执行过程中,能得到下一条微指令的地址。 形成下条微指令地址(简称下地址)可能有下列五种情况: ①下地址为本条微指令地址加1; ②微程序必转某一微地址,可在微指令中给出该微地址值; ③根据状态标志位,选择顺序执行或转向某一地址; ④微子程序的调用及返回控制,要用到微堆栈; ⑤根据条件判断转向多条微指令地址中的某一地址,比③更复杂的情况。 如:若C=1,转移到 A1 微地址; 若S=1,转移到 A2 微地址; 若Z=1,转移到 B1 微地址; 这种情况,在微指令中直接给出多个下地址是不现实的,应找出更合理的解决方案。

计算机的微程序控制器和组合逻辑控制器(硬连线)在组成和运行原理上有何 相同和不同之处?它们各有哪些优缺点? 答:微程序的控制器和组合逻辑的控制器是计算机中两种不同类型的控制器。 共同点:①基本功能都是提供计算机各个部件协同运行所需要的控制信号;②组成部分都有程序计数器PC,指令寄存器IR;③都分成几个执行步骤完成每一条指令的具体功能。 不同点:主要表现在处理指令执行步骤的办法,提供控制信号的方案不一样。微程序的控制器是通过微指令地址的衔接区分指令执行步骤,应提供的控制信号从控制存储器中读出,并经过一个微指令寄存器送到被控制部件。组合逻辑控制器是用节拍发生器指明指令执行步骤,用组合逻辑电路直接给出应提供的控制信号。 微程序的控制器的优点是设计与实现简单些,易用于实现系列计算机产品的控制器,理论上可实现动态微程序设计,缺点是运行速度要慢一些。 组合逻辑控制器的优点是运行速度明显地快,缺点是设计与实现复杂些,但随着EDA 工具的成熟,该缺点已得到很大缓解。 组合逻辑控制器和微程序控制器2011-2-15 来源:深圳市恒益机电设备有限公司>>进入该公司展台组合逻辑控制器和微程序控制器,两种控制器各有长处和短处。组合逻辑控制器设计麻烦,结构复杂,一旦设计完成,就不能再修改或扩充,但它的速度快。微程序控制器设计方便,结构简单,修改或扩充都方便,修改一条机器指令的功能,只需重编所对应的微程序;要增加一条机器指令,只需在控制存储器中增加一段微程序,但是,它是通过执行一段微程。具体对比如下:组合逻辑控制器又称硬布线控制器,由逻辑电路构成,完全靠硬件来实现指令的功能。 组合逻辑控制器的设计步骤 ①设计机器的指令系统:规定指令的种类、指令的条数以及每一条指令的格式和功能。

实验四 基本RS触发器和D触发器

实验四基本RS触发器和D触发器 一、实验目的 1.熟悉并验证触发器的逻辑功能; 2.掌握RS和D触发器的使用方法和逻辑功能的测试方法。 二、实验预习要求 1.预习触发器的相关内容; 2.熟悉触发器功能测试表格。 三、实验原理 触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最基本逻辑单元。触发器具有两个稳定状态,即“0”和“1”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。 1.基本RS触发器 图实验4.1 基本RS触发 器 图实验4.1为由两个与非门交叉耦合构成的基本RS触发器。基本RS触发器具有置“0”、置“1”和“保持”三种功能。通常称为置“1”端,因为=0时触发器被置“1”;端为置“0”端,因为=0时触发器被置“0”;当 = =1时,触发器状态保持。基本RS触发器也可以用两个“或非门”组成,此时为高电平有效置位触发器。 2. D触发器

D 触发器的状态方程为:Qn+1=D。其状态的更新发生在CP脉冲的边沿,74LS74(CC4013)、74LS175(CC4042)等均为上升沿触发,故又称之为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D端的状态。D触发器应用很广,可用做数字信号的寄存、移位寄存、分频和波形发生器等。 四、实验仪器设备 1、TPE-AD数字实验箱1台 2、双D触发器74LS74 2片 3、四两输入集成与非门74LS00 1片 4、双通道示波器 1台 五、实验内容及方法 1.测试基本RS触发器的逻辑功能 按图实验4.1连接电路,用两个与非门组成基本RS触发器,输入端、接逻辑开关的输出口,输出端Q、接逻辑电平显示灯输入接口,按表实验4.1的要求测试并记录。 表实验4.1 RS触发器的逻辑功能 1 10 1 0 0 1 1 0 10 1 0 1 0 1 0 1 0 0 1 1 2.测试D触发器的逻辑功能。 (1)测试、的复位、置位功能。

计算机组成原理微程序控制器

任课教师:张芳、许建龙 《计算机组成原理》 (2013-2014学年第2学期) 实 验 报 告 学号: 姓名: 班级:

微程序控制器实验报告 一、实验目的: 1)了解TEC-2机控制器部件的组成 2)熟练掌握56位微指令中各字段的含义 3)可以通过微码自己用监控程序编程序,实现两数相加和相减,以及更复杂 的操作 二、实验仪器: 主机一台 三、简要原理: 1.TEC-2机的控制器部件的组成 TEC-2机控制器部件的关键内容包括: (1)由7片LS6116随机读写存储器芯片组成的56位字长的微程序控制存储器,用于存放TEC-2机的微程序。其内容在刚加电时不定,加电后将首先从2片ROM(LS2716芯片)中读出固化的、用于实现53条机器指令的微程序,经组织后写入这一控制存储器,这一过程称为装入微码。装入完成后,将从监控程序的零地址执行指令,完成TEC-2机的启动过程。这之后,还可以用LDMC指令按规定的办法向控制存储器写入新的微程序,以实现新的机器指令。从简化逻辑框图上可以看到,控制存储器的地址为μRA9~μRA0,读出的信息送微指令流水线寄存器PLR。 (2)微指令寄存器PLR由7片8位的寄存器芯片(6片LS374和1片LS273)组成,用于存放当前微指令的内容,更具体的说明将在后面给出。 (3)微程序定序器AM2910芯片(其内部结构、引脚信号和运行原理等稍候详细说明),是微程序控制器中非常关键、也是稍微难懂一点的部分。在学习中要正确理解。它的核心功能是依据机器的运行状态与当前微指令的有关内容等,正确地形成下一条微指令的地址,以保证微程序按要求的微指令序列关系自动地逐条衔接执行。 (4)程序计数器PC和当前指令地址寄存器IP,是用运算器通用寄存器组中的两个选定的寄存器R5和R6实现的,这在图上见不到。 (5)指令寄存器IR,用于存放当前正在执行的指令内容。 (6)为AM2910提供输入地址信号的配套线路,包括: ①由两片LS2716 ROM芯片组成的MAPROM,它将指令寄存器中的操作码转换成一段微程序的入口地址;

触发器及其应用实验报告 - 图文-

实验报告 一、实验目的和任务 1. 掌握基本RS、JK、T和D触发器的逻辑功能。 2. 掌握集成触发器的功能和使用方法。 3. 熟悉触发器之间相互转换的方法。 二、实验原理介绍 触发器是能够存储1位二进制码的逻辑电路,它有两个互补输出端,其输出状态不仅与输入有关,而且还与原先的输出状态有关。触发器有两个稳定状态,用以表示逻辑状态"1"和"0飞在二定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图14-1为由两个与非门交叉祸合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。 基本RS触发器具有置"0"、置"1"和保持三种功能。通常称s为置"1"端,因为 s=0时触发器被置"1"; R为置"0"端,因为R=0时触发器被置"0"。当S=R=1时状态保持,当S=R=0时为不定状态,应当避免这种状态。

基本RS触发器也可以用两个"或非门"组成,此时为高电平有效。 S Q S Q Q 卫R Q (a(b 图14-1 二与非门组成的基本RS触发器 (a逻辑图(b逻辑符号 基本RS触发器的逻辑符号见图14-1(b,二输入端的边框外侧都画有小圆圈,这是因为置1与置。都是低电平有效。 2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚逻辑图如图14-2所示;JK触发器的状态方程为: Q,,+1=J Q"+K Q 3 5

J Q CLK K B Q 图14-2JK触发器的引脚逻辑图 其中,J和IK是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成"与"的关系。Q和Q为两个互补输入端。通常把Q=O、Q=1的状态定为触发器"0"状态;而把Q=l,Q=0 定为"}"状态。 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 CC4027是CMOS双JK触发器,其功能与74LS112相同,但采用上升沿触发,R、S端为高电平

D触发器及其应用实验报告

实验五D触发器及其应用 实验人员:班号:学号: 一、实验目的 1、熟悉D触发器的逻辑功能; 2、掌握用D触发器构成分频器的方法; 3、掌握简单时序逻辑电路的设计 二、实验设备 74LS00 ,74LS74,数字电路实验箱,数字双踪示波器,函数信号发生器 三、实验内容 1、用74LS74(1片)构成二分频器、四分频器,并用示波器观察波形; 74LS74是双D触发器(上升沿触发的边沿D触发器),其管脚图如下: 其功能表如下: ○1构成二分频器:用一片74LS74即可构成二分频器。实验电路图如下:

○2构成四分频器:需要用到两片74LS74。实验电路图如下: 2、实现如图所示时序脉冲(用74LS74和74LS00各1片来实现) 将欲实现功能列出真值表如下:

Q 1n+1=Q 0n =D 1 Q 0n+1=Q 1n ????=D 0 F ′=Q 1n Q 0n ???? F =F ′?CP 连接电路图如下: 四、实验结果 1、用74LS74(1片)构成二分频器、四分频器。示波器显示波形如下: ○ 1二分频器: ○ 2四分频器:

2、实现时序脉冲。示波器显示波形如下: 五、故障排除 在做“用74LS74(1片)构成二分频器、四分频器”时,连接上示波器后,发现通道二总显示的是类似于电容放电的波形,但表现出了二分频。反复排查问题均没有发现原因。最后换了一根连接示波器的线,便得到了理想的结果。 在示波器使用时想要用U盘保存电路波形,不会操作。后来在询问了同学之后才知道只需要按“print”就好。 六、心得体会 通过此次实验,我更深入地领悟了触发器的原理和用法,还复习了示波器的用法,还学会了如何保存示波器波形。

微程序控制器实验报告

微程序控制器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、实验目的 1、通过实验,进一步理解微程序控制器的组成结构。理解微程序控制器的控 制原理 2、加深理解微程序控制器的工作原理。掌握指令流程与功能 3、理解掌握微程序控制器的设计思路与方法 二、实验内容与步骤 1、微程序控制器的组成原理 控制存储器:实现整个指令系统的所有微程序,一般指令系统是规定的由高速半导体存储器构成,容量视机器指令系统而定,取决于微程序的个数,其长度就是微指令字的长度。 微指令寄存器:存放从控存读出的当前微指令。微操作控制字段将操作控制信号送到控制信号线上,微地址字段指出下一条微地址的形成。 微地址寄存器:存放将要访问的下一条微指令地址 地址转移逻辑:形成将要执行的微指令地址,形成方式: 取指令公操作所对应的微程序一般从控存的0地址开始,所以微程序的人口地址0是由硬件控制的。当出现分支时,通过判别测试字段、微地址字段、和执行部件的反馈信息形成后即微地址。 Cpu设计步骤: 1.拟定指令系统 2.确定总体结构(数据通路) 3.安排时序

4.拟定指令流程。根据指令系统,写出对应所有机器指令的全部微操作机器 节拍安排,然后列出操作时间表 5.确定微指令的控制方式、下地址形成方式、微指令格式及微指令字长,编 写全部的微指令的代码,最后将编写的微指令放入控制存储器中。 微程序控制器的设计步骤 (1)设计微程序 确定微程序流程图,也就是控制算法流程图。 (2)确定微指令格式 微指令格式中的操作控制字段取决于执行部件的子系统需要多少微指令。假定采用直接控制方式,执行部件需要10个微命令,则操作控制字段需要10位。 测试判别字段取决于微程序流程图中有多少处分支转移。假定有3处分支,则测试判别字段需要3位。 下址字段取决于微程序流程图的规模。假定微程序共用50条微指令,则下址字段至少需要6位。这是因为ROM地址译码时,26=64,6位地址可容纳64条微指令。 (3)将微程序编译成二进制代码 (4)微程序写入控制存储器 (5)设计硬件电路 三、实验现象 --CPU 头文件 cpu_defs LIBRARY IEEE; USE cpu_defs IS --定义程序包,包头,包体

实验四 常规型微程序控制器组成实验

实验员述职报告 实验四常规型微程序控制器组成实验 一、实验目的 1.掌握时序发生器的组成原理。 2.掌握微程序控制器的组成原理。 二、实验电路 1.时序发生器 本实验所用的时序电路见图3.4。电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。 图3.4 时序信号发生器 本次实验不涉及硬连线控制器,因此时序发生器中产生W1-W3的部分也可根据需要放到硬连线控制器实验中介绍。 产生时序信号T1-T4的功能集成在图中左边的一片GAL22V10中,另外它还产生节拍信号W1-W3的控制时钟CLK1。该芯片的逻辑功能用ABEL语言实现。其源程序如下:MODULE TIMER1 TITLE 'CLOCK GENERATOR T1-T4' CLK = .C.; "INPUT MF, CLR, QD, DP, TJ, DB PIN 1..6; W3 PIN 7; "OUTPUT T1, T2, T3, T4 PIN 15..18 ISTYPE 'REG'; CLK1 PIN 14 ISTYPE 'COM'; 常用软件课程设计

实验员述职报告 QD1, QD2, QDR PIN ISTYPE 'REG'; ACT PIN ISTYPE 'COM'; S = [T1, T2, T3, T4, QD1, QD2, QDR]; EQUATIONS QD1 := QD; QD2 := QD1; ACT = QD1 & !QD2; QDR := CLR & QD # CLR & QDR; T1 := CLR & T4 & ACT # CLR & T4 & ! (DP # TJ # DB & W3) & QDR; T2 := CLR & T1; T3 := CLR & T2; T4 := !CLR # T3 # T4 & !ACT & (DP #TJ# DB& W3) # !QDR; CLK1 = T1 # !CLR & MF; S.CLK = MF; END 节拍电位信号W1-W3只在硬连线控制器中使用,产生W信号的功能集成在右边一片GAL22V10中,用ABEL语言实现。其源程序如下: MODULE TIMER2 //头部 TITLE 'CLOCK GENERATOR W1-W3' DECLARATIONS //说明部 CLK = .C.; "INPUT CLK1, CLR, SKIP PIN 1..3; "OUTPUT W1, W2, W3 PIN 16..18 ISTYPE 'REG'; W = [W1, W2, W3]; EQUATIONS //逻辑描述部 W1 := CLR & W3; W2 := CLR & W1 & !SKIP; W3 := !CLR # W2 # W1 & SKIP; W.CLK = CLK1; END TIMER2 //结束部 左边GAL的时钟输入MF是晶振的输出,频率为500KHz。T1-T4的脉宽为2μs。CLR实际上是控制台的CLR#信号,因为ABEL语言的书写关系改为CLR,仍为低有效。CLR#=0将系统复位,此时时序停在T4、W3,微程序地址为000000B。建议每次实验台加电后,先按CLR#复位一次。实验台上CLR#到时序电路的连接已连好。 对时序发生器TJ输入引脚的连接要慎重,当不需要暂停微程序的运行时,将它接地;常用软件课程设计

相关文档
相关文档 最新文档