文档库 最新最全的文档下载
当前位置:文档库 › 信号处理及应用实验说明书(2)

信号处理及应用实验说明书(2)

信号处理及应用实验说明书(2)

信号处理及应用实验说明书

实验二数字滤波器实验

1)实验目的

熟悉设计IIR数字滤波器的原理与方法,掌握用窗函数法设计FIR数字滤波器的原理与方法。

2)实验设备

①THKSS-E型信号与系统实验箱

②DSP仿真器及DSP模块

③示波器

④导线:2根长线、1根短线

3)实验原理

1.无限冲击响应和有限冲击响应数字滤波器的基础理论。

2.模拟滤波器原理

3.双线性变换的设计原理

4.数字滤波器系数的确定方法

4)实验步骤

1.将DSP实验模块放在实验箱的合适位置,并正确完成计算机、DSP仿真器和DSP实验模块(J101)、实验箱的连接,如下图所示。

2.运行CCS3.31软件。用Project/Open打开IIR目录下的“ExpIIR.pjt”工程文件;双击“Source”可查看各源程序,认真阅读并理解各程序。

3.加载“Exp IIR.out”,单击“Run”运行程序。

4.用真有效值数字万用表观察测试点SIN 点的信号输入和OUT 点的信号输出幅值。改变输入信号的频率和幅度观察实验结果,分析产生结果的原因。(该滤波器截止频率为1k)

5.FIR实验的文件为“FIR”目录下的“ExpFIR.pjt”工程文件(该滤波器截止频率为1.2k)。

5)实验报告

1.用窗函数法设计FIR滤波器有哪几个步骤?

2.双线性变换法设计IIR滤波器与冲击响应不变法设计IIR滤波器的区别。

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验二

实验报告(本科) 学号 2015141443002 姓名柏冲 专业通信工程 日期 2017/12/4 实验题目时域采样和频域采样 一、实验目的

时域采样理论与频域采样理论是数字信号处理中重要的理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使得采样后的信号不丢失信息;要求掌握频率采样会引起时域周期化的概念,以及频域采样定理及其对频域采样点数选择的指导作用。 二、实验过程 附:源程序 (1)时域采样 Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=1000; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[(xnt)] subplot(3,2,1); stem(xnt,'.'); %调用编绘图函数stem绘制序列图 box on;title('(a) Fs=1000Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,2);stem(fk,abs(Xk),'.');title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]); % Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。 Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=300; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); M1=fix(M); Xk=T*fft(xnt,M1); %M点FFT[(xnt)] subplot(3,2,3); stem(xnt,'.'); %调用自编绘图函数stem绘制序列图 box on;title('(b) Fs=300Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,4);stem(fk,abs(Xk),'.');title('(b) T*FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]); Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) Fs=200; T=1/Fs; M=Tp*Fs; n=0:M-1; A=444.128; a=pi*50*2^0.5; omega=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(omega*n*T); M2=fix(M);

数字信号处理实验指导手册【模板】

数字信号处理实验指导手册 西安文理学院 机械电子工程系

目录 实验一离散时间信号 (2) 实验二时域采样定理 (7) 实验三离散时间系统 (10) 实验四线性卷积与圆周卷积 (13) 实验五用FFT作谱分析 (16) 实验六用双线性变换法设计IIR数字滤波器 (18) 实验七 FIR滤波器设计 (20)

实验一离散时间信号 【实验目的】 用MATLAB实现离散时间信号的表示和运算,掌握MATLAB的基本命令和编程方法,为后续实验打基础。 【实验原理】 在数字信号处理中,所有的信号都是离散时间信号,因此应首先解决在MATLAB中如何表示离散信号。 设一模拟信号经A/D变换后,得到序列信号 由于MATLAB对下标的约定为从1开始递增,因此要表示,一般应采用两个矢量,如:这表示了一个含9个采样点的矢量: 【实验内容】 熟悉下面序列(信号)的产生方法及相关运算 1、单位采样序列 2、单位阶跃序列 3、信号翻转 4、信号相加 5、信号折叠 6、信号移位 【参考程序】 单位采样序列 1、impluse1.m (图1-1) n=10; x=zeros(1,n);

x(1)=1; plot(x,'*'); 2、impluse2.m(图1-2) n=-5:5; x=[n==0]; stem(x,'*'); 3、impluse3.m(图1-3) n=1:10; n0=3; x=[(n-n0)==1]; plot(x,'*'); 单位阶跃序列 1、steps1.m(图1-4) n=10; x=ones(1,n); plot(x,'*'); 2、steps2.m(图1-5) n=10; x=ones(1,n); x(1)=0;

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理实验2

实验2 离散时间系统的时域分析 一、实验目的 (1)加深对时域信号抽样与恢复的基本原理的理解; (2)掌握应用线性卷积求解离散时间系统响应的基本方法; (3)掌握求解离散时间系统冲击响应和频率响应程序的编写方法,了解常用子函数。 二、实验内容 1. 已知一个连续时间信号()t f t f t f 006sin 3 12sin ππ+ =,Hz f 10=,取最高有限带宽频率 05f f m =。 分别显示原连续时间信号波形和()() m s m s m s m s m s f f f f f f f f f f =<==>2, 2,32三种情况下抽样信号波形,并尝试用内插公式重建原信号。 脚本文件如下: f0=1; fm=5*f0; t=0:0.01:5; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(7,1,1) figure(1) plot(t,f) for i=1:3 fs=i*fm; ts=1/fs; t1=0:ts:5; f1=sin(2*pi*f0*t1)+1/3*sin(6*pi*f0*t1); subplot(7,1,i+1); stem(t1,f1,'filled'); f1i=interp1(t1,f1,ti,'spline'); subplot(7,1,i+4) plot(ti,f1i) end 抽样图像及内插后图像:

2. 在MATLAB 中利用内部函数conv 来计算两个有限长序列的卷积。给出两个序列,试求其卷积结果。 ()[]()[] ()()() n h n x n y n n h n n x *=≤≤-=≤≤--=519,14,11,20,5,7,181 38,6,3,9,5 脚本文件: n1=-3:1; x=[5,9,3,6,-8]; n2=-1:5; h=[18,7,5,20,11,14,9]; n=-4:6; y=conv(x,h); stem(n,y);

数字信号处理实验二FFT频谱分析

实验三:用FFT 对信号作频谱分析 10.3.1 实验指导 1.实验目的 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。 2. 实验原理 用FFT 对信号作频谱分析是学习数字信号处理的重要容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 3.实验步骤及容 (1)对以下序列进行谱分析。 ?? ? ??≤≤-≤≤-=?? ? ??≤≤-≤≤+==其它n n n n n n x 其它n n n n n n x n R n x ,07 4, 330,4)(,074, 830,1)() ()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。 并进行对比、分析和讨论。 (2)对以下周期序列进行谱分析。 4() cos 4 x n n π = 5()cos(/4)cos(/8)x n n n ππ=+ 选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。 (3)对模拟周期信号进行谱分析 6() cos8cos16cos20x t t t t πππ=++ 选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。 4.思考题 (1)对于周期序列,如果周期不知道,如何用FFT 进行谱分析? (2)如何选择FFT 的变换区间?(包括非周期信号和周期信号)

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

数字信号处理实验2

常见离散信号的 M ATLAB 产生和图形显示 姓名: 刘雷明 学号:222015327012037 一、实验目的 (1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法。 (2)加深对常用离散时间信号的理解。 (3)掌握简单的绘图命令。 (4)掌握线性卷积的计算机编程方法。 二、实验原理与方法 1)单位抽样序列 ?1 n = 0 δ (n ) = ? n ≠ 0 ?0 如果δ (n ) 在时间轴上延迟了 k 个单位,得到δ (n - k ) 即: 1 n = k δ (n - k ) = ? n ≠ 0 ?0 (2)单位阶跃序列 ?1 n ≥ 0 u (n ) = ? n < 0 ?0 ?1 0 ≤ n ≤ N -1 (3)矩形序列 R N (n ) = ? ?0 其他 (4)正弦序列 x (n ) = A sin(wn +?) (5)复正弦序列 x (n ) = e jwn

(6)指数序列 x(n)= a n (7)线性时不变系统的响应为如下的卷积计算式: ∞ y(n)= x (n)* h(n)=∑x(m)h(n - m) m=-∞ 三、实验内容及步骤 (1)复习常用离散时间信号的有关内容。 (2)编制程序产生上述 6 种序列(长度可输入确定,对(4) (5) (6)中的参数可自行选择),并绘出其图形。 (3)已知系统的单位脉冲响应h(n)=0.9n u(n),输入信号x(n)= R10 (n),试用卷积法求解系统的输出y(n),并绘出x(n) ~ n 、h(n) ~ n 及y(n) ~ n 图 形。 四、实验结果 一:

二:

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

数字信号处理书上实验1.2.3.4

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MA TLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)=0.8n0≤n≤15 b) x(n)=e(0.2+3j)n0≤n≤15 c) x(n)=3cos(0.125πn+0.2π)+2sin(0.25πn+0.1π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x16(n)=x(n+16),绘出四个周期。 e) 将c)中的x(n)扩展为以10为周期的函数x10(n)=x(n+10),绘出四个周期。 clear all; N=0:15; % a) x(n)=0.8n 0≤n≤15 xa=0.8.^N;

matlab数字信号处理实验指导

电工电子实验中心实验指导书 数字信号处理 实验教程 二○○九年三月

高等学校电工电子实验系列 数字信号处理实验教程 主编石海霞周玉荣 攀枝花学院电气信息工程学院 电工电子实验中心

内容简介 数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固验证基本理论知识,了解并体会数字信号处理的CAD手段和方法,锻炼初学者用计算机和MATLAB语言及其工具箱函数解决数字信号处理算法的仿真和滤波器设计问题的能力。 本实验指导书结合数字信号处理的基本理论和基本内容设计了八个上机实验,每个实验对应一个主题内容,包括常见离散信号的MATLAB产生和图形显示、离散时间系统的时域分析、离散时间信号的DTFT、离散时间信号的Z变换、离散傅立叶变换DFT、快速傅立叶变换FFT及其应用、基于MATLAB的IIR和FIR数字滤波器设计等。此外,在附录中,还简单介绍了MATLAB的基本用法。每个实验中,均给出了实验方法和步骤,还有部分的MATLAB程序,通过实验可以使学生掌握数字信号处理的基本原理和方法。

目录 绪论 (1) 实验一常见离散信号的MATLAB产生和图形显示 (2) 实验二离散时间系统的时域分析 (6) 实验三离散时间信号的DTFT (9) 实验四离散时间信号的Z变换 (14) 实验五离散傅立叶变换DFT (18) 实验六快速傅立叶变换FFT及其应用 (24) 实验七基于MATLAB的IIR数字滤波器设计 (30) 实验八基于MATLAB的FIR数字滤波器设计 (33) 附录 (37) 参考文献 (40)

绪论 绪论 随着电子技术迅速地向数字化发展,《数字信号处理》越来越成为广大理工科,特别是IT领域的学生和技术人员的必修内容。 数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。而且随着各种电子技术及计算机技术的飞速发展,数字信号处理的理论和技术还在不断丰富和完善,新的理论和技术层出不穷。目前数字信号处理已广泛地应用在语音、雷达、声纳、地震、图象、通信、控制、生物医学、遥感遥测、地质勘探、航空航天、故障检测、自动化仪表等领域。 数字信号处理是一门理论和实践、原理和应用结合紧密的课程,由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。Matlab是1984年美国Math Works公司的产品,MATLAB 语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。从1996年后,美国新出版的信号处理教材就没有一本是不用MATLAB的。 本实验指导书结合数字信号处理的基本理论和基本内容,用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。

数字信号处理实验八

实验报告 实验名称:FIR数字滤波器设计及应用 课程名称____数字信号处理________ 院系部:电气与电子工程专业班级:信息1002 学生姓名:王萌学号: 11012000219同组人:实验台号: 指导教师:范杰清成绩: 实验日期: 华北电力大学

一、实验目的 加深理解 FIR 数字滤波器的时域特性和频域特性,掌握FIR 数字 滤波器的设计原理与设计方法,以及FIR 数字滤波器的应用。 二、 实验原理 FIR 数字滤波器可以设计成具有线性相位,在数据通信、图像处理、 语音信号处理等实际应用领域得到广泛应用。 M 阶FIR 数字滤波器的系统函数为: FIR 数字滤波器的单位脉冲响应h [k ]是长度为M +1的有限长因果序列。当满足对称条件时,该FIR 数字滤波器具有线性相位。FIR 数字滤波器设计方法主要有窗口法、频率取样法及优化设计法。 MATLAB 中提供的常用FIR 数字滤波器设计函数有: fir1 窗函数法设计FIR 数字滤波器(低通、高通、带通、 带阻、多频带滤波器) fir2 频率取样法设计FIR 数字滤波器:任意频率响应 firls FIR 数字滤波器设计:指定频率响应 firrcos 升余弦型 FIR 数字滤波器设计 intfilt 内插FIR 数字滤波器设计 kaiserord 凯塞(Kaiser)窗函数设计法的阶数估计 firpm Parks-McClellan 算法实现FIR 数字滤波器优化设计 firpmord Parks-McClellan 数字滤波器的阶数选择 cremez 复系数非线性相位FIR 等波纹滤波器设计 1、 窗口法设计FIR 数字滤波器 fir1函数可以很容易地实现FIR 数字滤波器窗口法设计。 可设计低通、高通、带通、带阻滤波器、多频带滤波器。 k M k z k h z H -=∑=][)(0

数字信号处理实验二

实验二离散时间系统的时域分析实验室名称: 实验时间:

六、实验记录(数据、图表、波形、程序等) Q2、1 程序代码: %产生输入信号 n = 0:100; s1 = cos(2*pi*0、05*n); %一个低频正弦 s2 = cos(2*pi*0、47*n); %一个高频正弦 x = s1+s2; %滑动平均滤波器的实现 M = input('Desired length of the filter = '); num = ones(1,M); y = filter(num,1,x)/M; clf; %显示输入与输出信号 subplot(2,2,1); plot(n, s1); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Signal #1'); subplot(2,2,2); plot(n, s2); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Signal #2'); subplot(2,2,3); plot(n, x); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Input Signal'); subplot(2,2,4); plot(n, y); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Output Signal'); axis; 显示结果:

数字信号处理上机实验答案(全)1

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一 系统响应及系统稳定性。 实验二 时域采样与频域采样。 实验三 用FFT 对信号作频谱分析。 实验四 IIR 数字滤波器设计及软件实现。 实验五 FIR 数字滤波器设计与软件实现 实验六 应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 10.1 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握 求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞→n 时,系统的输出。如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤 (1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv 函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。 (2)给定一个低通滤波器的差分方程为

数字信号处理 实验一

数字信号处理实验一 序列的绘图 一、实验目的: 1.了解MATLAB的实验环境; 2.充分熟悉subplot函数的使用; 3.能够画出单位脉冲序列及单位阶跃序列的图形; 4.能够画出矩形序列及正弦序列的图形。 二、实验步骤: 1.打开MATLAB,了解三个区域(工作区、命令区、历史记录区)的作用; 2.用help查找subplot函数的使用情况; 3.编辑并生成函数impseq.m(单位脉冲序列) function [x,n] = impseq(n0,n1,n2) % 产生 x(n) = delta(n-n0); n1 <= n,n0 <= n2 % [x,n] = impseq(n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('参数必须满足 n1 <= n0 <= n2') end n = [n1:n2]; %x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))]; x = [(n-n0) == 0]; 以及函数stepseq.m(单位阶跃序列) function [x,n] = stepseq(n0,n1,n2) % 产生 x(n) = u(n-n0); n1 <= n0 <= n2 % [x,n] = stepseq(n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('参数必须满足n1 <= n0 <= n2') end n = [n1:n2]; %x = [zeros(1,(n0-n1)), ones(1,(n2-n0+1))]; x = [(n-n0) >= 0]; 主函数test1.m n=[-5:5];

相关文档