文档库 最新最全的文档下载
当前位置:文档库 › 硬质合金刀具涂层

硬质合金刀具涂层

硬质合金刀具涂层
硬质合金刀具涂层

硬质合金刀具的涂层技术

[ 摘要]切削刀具表面涂层技术是近几十年应市场需求发展起来

的材料表面改性技术。采用涂层技术可有效提高切削刀具使用寿命,

使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。主

要介绍涂层硬质合金刀具涂层材料的特点、要求,涂层制备技术,分

析化学气相沉积法(CVD)、物理气相沉积法(PVD),单、复合涂层

制备方法及优缺点。

[关键字] 硬质合金涂层刀具;化学气相沉积法;物理气相沉积法;

现状及发展

引言

现代化的金属切削加工要求刀具具有高切削速度、高进给速度、

高可靠性、长寿命、高精度和良好的切削控制性。因此, 高水平、稳

定的刀具涂层技术越来越受到机械加工企业的青睐。。涂层技术是提

高切削效率, 降低加工成本的有效途径。刀具基体与硬质薄膜表层相

结合, 由于基体保持了良好的韧性和较高的强度, 硬质薄膜表层又

具有高耐磨性和低摩擦因数, 从而使刀具的性能显著提高, 而且,

随着涂层技术设备的日趋集成化、模块化和智能化, 涂层费用已比初

期下降1/2~ 2/3, 涂层刀具在刀具总量中所占的比例将会越来越大。

表面涂层硬质合金在基体硬质合金上, 用(CVD)化学气相沉积,

或(PVD)物理气相沉积等方法, 涂覆耐磨的TiC、TiN、Al2O3等薄

层, 形成表面涂层硬质合金。涂层硬质合金刀片均为可转位形式, 刚

机夹方法装夹在刀杆或刀体上使用。具有以下优点: 1) 表面涂层材

料具有很高的硬度和耐磨性, 故与未涂层刀片相比, 涂层硬质合金

可采用较高的切削速度, 或能在同样的切削速度下大幅度地提高刀

具耐用度。2)涂层材料与被加工材料之间的摩擦系数较小, 故切削力有一定减小, 比未涂层刀片约降低 5%左右。润滑薄膜具有良好的固

相润滑性能, 可有效地改善加工质量, 也适合于干式切削加工。3)

用涂层刀片加工, 已加工表面质量较好。 4) 涂层技术作为刀具制造的最终工序, 对刀具精度几乎没有影响, 并可进行重复涂层工艺。5)由于综合性能好, 涂层刀片有较好的通用性。一种牌号的刀片经常有较宽的适用范围。涂层切削刀具所带来的益处: 可大幅度提高切削刀具寿命; 有效地提高切削加工效率; 明显提高被加工工件的表面质量; 有效地减少刀具材料的消耗,降低加工成本; 减少冷却液的使用, 降低成本, 利于环境保护。

1 涂层材料的发展现状与趋势

1.1 涂层材料的特点

涂层的特点是涂层薄膜与刀具基体相结合, 提高刀具的耐磨性

而不降低基体的韧性, 从而降低刀具与工件的摩擦因数, 延长刀具

的使用寿命。此外, 由于涂层自身的热传导系数比刀具基体和加工材料低得多, 可以有效减少摩擦所产生的热量, 形成热屏蔽, 改变热

量的散失途经, 从而降低刀具与工件、刀具与切屑之间的热冲击和力冲击, 有效地改善了刀具的使用性能。

刀具涂层所起的作用表现为: 1) 在刀具与被切削材料之间形成

隔离层; 2)通过抑制从切削区到刀片的热传导来降低热冲击; 3)

有效减少摩擦力及摩擦热。刀具通过涂层处理, 实现固体润滑, 减少摩擦和粘结, 使刀具吸收热量减少, 从而可承受较高的切削温度。

刀具表面的硬质薄膜要求: 1) 硬度高, 耐磨性能好; 2)化学性能稳定, 不与工件材料发生化学反应; 3)耐热耐氧化, 摩擦因数低, 与基体附着牢固等。单一涂层材料很难全部达到上述技术要求。单一涂层向多元复合涂层的发展把不同的涂层材料所具有的优良特性结

合起来, 这些特性包括: 由中间层提供高的热稳定性, 由最上层提

供高硬度, 或者由软的或固态自润滑层的最上层提供低的摩擦因数。

1.2 国外刀具涂层技术的现状

刀具涂层技术通常可分为化学气相沉积(CVD)技术和物理气相沉积(PVD) 技术两大类。二十世纪六十年代以来,CVD 技术被广泛应用于硬质合金可转位刀具的表面处理。

PVD 技术出现于二十世纪七十年代末,由于其工艺处理温度可控

制在500 ℃以下,因此可作为最终处理工艺用于高速钢类刀具的涂层。工业发达国家自九十年代初就开始致力于硬质合金刀具PVD 涂层技

术的研究,至九十年代中期取得了突破性进展,PVD 涂层技术已普遍

应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。

经过几十年的研究和开发,各种刀具涂层工艺已广泛应用于硬质

合金和高速钢切削刀具。涂层工艺的主要发展阶段及应用领域见表1

表1 主要涂层工艺发展时段及应用领域

当前世界涂层技术的发展具有以下趋势:由于单一涂层材料难以满足提高刀具综合机械性能的要求,因此涂层成分将趋于多元化、复合化;为满足不同的切削加工要求,涂层成分将更为复杂、更具针对性;在复合涂层中,各单一成分涂层的厚度将越来越薄,并逐步趋于纳米化;涂层工艺温度将越来越低,刀具涂层工艺将向更合理的方向发展。

1.3 刀具涂层的分类

从PVD 技术的发展和应用角度, PVD涂层可按2 种方法进行分类。按成分对涂层区分通常可分为两大类, 即硬涂层和软涂层。硬涂层以TiN、T iCN、TiAlN 等为代表, 包括了单层薄膜和复合薄膜。软涂层薄膜的硬度相对较低, 通常为1000HV 左右。软涂层目前种类并不多, 以MoS2、碳基薄膜为主, 在切削加工领域内, 其目的是通过在硬涂层表面覆盖一层这种薄膜, 试图增加涂层表面的润滑性, 改善被加工

工件表面质量, 以满足某些应用领域的需要。

涂层的内部结构的变化已越来越多地影响着涂层刀具的应用效果。相同的涂层成分、不同的结构形式, 可以导致涂层刀具使用效果的截然不同。就目前PVD 技术的发展状况, 涂层薄膜结构大体可分类如下:

( 1) 单一层涂层:涂层由某一种化合物或固溶体薄膜构成, 理论上

讲在薄膜的纵向生长方向上涂层成分是恒定的,这种结构的涂层可称

之为普通涂层。

( 2) 复合涂层: 由多种不同功能( 特性) 薄膜组成的结构可以称之

为复合涂层结构膜, 其典型涂层为目前的硬涂层+ 软涂层, 每层薄

膜各具不同的特征, 从而使涂层更具良好的综合性能.

( 3) 梯度涂层: 涂层成分沿薄膜纵向生长方向逐步发生变化, 这种

变化可以是化合物各元素比例的变化, 如TiAlCN 中Ti、Al 含量的变化, 也可以由一种化合物逐渐过渡到另一种化合物。

( 4) 多层涂层:多层涂层由多种性能各异的薄膜叠加而成, 每层膜

化学组分基本恒定。

( 5) 纳米多层涂层:这种结构的涂层与多层涂层类似, 只是各层薄膜的尺寸为纳米数量级, 又可称为超显微结构。

( 6) 纳米复合结构涂层:纳米复合结构涂层。以( nc-Ti1- x AlxN) / (α-Si3N4) 纳米复合相结构薄膜为例, 在强等离子体作用下, 纳米TiAlN 晶体被镶嵌在非晶态的Si3N4 体内 , 当TiAlN 晶体尺寸小于10nm 时, 位错增殖源难于启动, 而非晶态相又可阻止晶体位错的迁移,即使在较高的应力下, 位错也不能穿越非晶态晶界。

随着涂层技术的进步, 硬质合金刀具涂层种类也在不断地增加, 从单一的化合物涂层朝着多元复杂化合物涂层发展。通过多次实验, 将单涂层与复合涂层硬质合金的刀具寿命作了比较。研究结果表明, 复合涂层刀具在提高切削性能方面效果是显著的。由于复合涂层综合利用各种涂层成分的优点, 使其获得更好的综合性能, 保证了非常

好的耐磨性和韧性, 并减少了摩擦力, 因而能减少积屑瘤的形成,

并具有抗机械冲击和抗热冲击性能, 刀具寿命可提高2倍以上。因此, 今后多层涂层刀片使用比例必将不断增加。

2 CVD涂层技术

C V

D 法是利用气态物质在固体表面发生化学反应, 生成固态沉积物的过程,即在硬质合金工具、模具基体上沉积TiC、TiCN 等涂层,反应进行的方向与各反应物的生成自由能及温度有关。但该过程中由于基体和涂层之间各元素的扩散和化学反应,容易在基体材料表面形成一层脱碳层(η相层, W3Co3C 或W6Co6C) 。虽然少量很薄的点状、

短线状η相层(小于012μm) 对提高涂层和基体之间的结合强度和耐磨损性能有利,但由于脱碳层硬度高、脆性大,能大幅降低涂层制品的抗弯强度和韧性,从而影响涂层制品的使用性能。特别是用于精加工的螺纹刀片,由于脱碳层的影响,往往更容易引起刀尖崩刃。所以在CVD 技术沉积涂层的过程中,应尽量减少脱碳层的产生。

2.1试验方法

(1)C VD 涂层工艺设计

本试验所选用的硬质合金材料为成都工具研究所生产的CP2 型

B8N2 - 3 刀片和标准试验条。选用以下四种CVD 涂层方案。

GY1 HT(TiC + TiCN + TiC + TiCN) 为高温涂层,每层涂层时间为20min。TiN 为900 ℃中温涂层,涂层时间为40min ;GY2 第一层中温TiN 涂层时间为20- 40min ,再升温按GY1 涂覆涂层;GY3 第一层MT -TiCN 为中温涂层,时间为30min ,高温涂层HT - (TiC+ TiCN + TiN) 每层涂层时间为40min ;GY4 所有涂层均为低于900 ℃的中温涂层, TiCN 涂层时间为40min ,TiN 涂层时间为50min。

表2 CVD 涂层工艺设定

(2)性能检测

采用划痕试验机检测涂层的结合强度;用DX-1000 型X射线衍射仪分别对涂层后的试样进行X衍射分析;采用日本奥林巴斯Gx71 光学显微镜观察涂层后的金相组织;每种涂层工艺放5 根试样条进行涂层,然后进行抗弯强度测定。

(3)结果分析与讨论

2.2 各CVD 涂层硬质合金刀片划痕实验结果与分析

划痕实验是在WS - 2000 涂层附着力自动划痕仪上进行。该设备主要采用声发射监听记录装置记录涂层破裂时的临界载荷LC ,并以此判断涂层的结合力大小。本检测采用连续加载方式,加载速度为100N/ m ,终止载荷为100N ,划痕长度为5mm。不同涂层工艺的临界载荷LC 见表3:

表3 不同涂层工艺的平均临界载荷

从表3可知,四种工艺涂层的结合强度都很高,都在8kg 左右,远远高于行业推荐的4kg在显微镜下观察划痕形貌都很好。 CVD 涂层后的XRD 结果与分析用DX- 1000 型X射线衍射仪分别对涂层后的试样进行X衍射分析。X 射线测试采用Cu 靶辐射线进行连续扫描方式,扫描角度2θ范围为28°- 69°,采样时间1s , 波长值1154184A。,管电

压40kV ,管电流25mA。各涂层工艺试样的η相三强峰峰强比见表4。由表4 可知,GY1η相峰强比最高,GY2、GY3η相峰强比有所降低,而GY4η相峰强比几乎为0。由于X射线衍射分析不但能定性的分析物相的存在,各相峰强比也能部分定量的反映物相的多少。

尽管CVD 涂层具有很好的耐磨性,但CVD 工艺亦有其先天缺陷:一是工艺处理温度高,易造成刀具材料抗弯强度下降;二是薄膜内部呈拉应力状态,易导致刀具使用时产生微裂纹;三是CVD 工艺排放的废气、废液会造成较大环境污染,与目前大力提倡的绿色制造观念相抵触,因此自九十年代中期以来,高温CVD 技术的发展和应用受到一定制约。

表4 各涂层工艺的η相三强峰峰强比

3 PVD涂层技术

通过气相反应过程,使蒸发或溅射出的金属原子或引入反应室的气体原子或离子发生气相反应,从而在刀具表面沉积出要求的化合物。

3.1 PVD刀具的涂层方法

目前: PVD刀具涂层的常用方法有以下几种:(1)低压电子束蒸发

(LEVV)法。此法能有效地离化蒸发的原子,离化率能达到50%.(2)阴极电弧沉积(CAD)法。此法是用电弧产生的火花从靶面蒸发材料,能有效离化蒸发原子和反应气体,离化率可达90%(离化率越高越容易形成与基附着力强的致密涂层) 。(3)三极管高压电子蒸发(THVEE)法。此法可通过改变工艺参数控制离化率,克服高压电子束离化截面小和离化效率低的缺点。(4) 非平衡磁控溅射(UMS)法。此法沉积速度快,能产生非常致密和附着力强的膜层;多靶磁控溅射系统可同时溅射多种靶源材料,有效地控制膜层的化学成分。(5)离子束协助沉积$427& 法。它是应用广泛的刀具涂层方法,可有效沉积种种涂层。此法沉积之前,需对衬底进行溅射以去除基体表面的氧化层,从而提高涂层质量,使膜层与基体的结合更为牢固。(6)动力学离子束混合(DIM)法。此法是用低能溅射源对靶源材料进行轰击、溅射和沉积,再通过高能离子注入法对基体进行注入混合,从而获得更高结合强度的涂层,是当今国际竞相开发和应用的重点。

3.2 PVD刀具的涂层

物理气相沉积法(PVD)是通过气相反应过程使蒸发或溅射出来的金属原子发生气相反应, 从而在刀具表面沉积出所要求的化合物。其机理是在真空条件下, 用物理的方法(蒸发或溅射等物理形式)将涂

层材料汽化成原子、分子或电离成离子, 通过气相过程在硬质合金的表面沉积成涂层。可细分为以下几个步骤: 1) 使涂层材料通过蒸发、升华和分解等成为涂层源材料的汽化过程; 2) 涂层材料中的原子、分子或离子迁移到硬质合金表面的迁移过程, 这一过程伴随着一系

列复杂的变化过程, 如原子、分子或离子之间可能发生碰撞产生离化、复合、反应以及能量和运动方向的改变; 3) 原子、分子或离子在硬质合金表面的吸附、堆集、形核和长大以至最终形成涂层。PVD涂技

术能制备氮化钛、碳氮化钛、铝钛氮化合物以及各种难熔金属的碳化物和氮化物等涂层。

PVD技术不仅提高了膜层与刀具基体材料的结合强度,而且涂层成分也由TiN发展到TiC、TiCN、ZrN、CrN、MoS2、TiAlCN、TiN-AlN、TiAlCN、CNX等多元复合涂层。据国外文献报道,现已成功研制出多

种纳米级涂层,涂层与基体结合强度高,涂层膜的硬度已接近立方氮化硼(CBN),抗氧化性能好、抗剥离性强,可显著改善刀具表面粗糙度。

物理气相沉积涂层具有如下优点: 1) 涂层沉积温度低, 一般在600e 以下, 对刀具材料的抗弯强度影响很小; 2)涂层内部的应力状态是压应力, 更适应于硬质合金精密复杂刀具的涂层;3)对环境不造成污染, 符合目前绿色工艺、绿色制造的发展动向; 4)随着纳米涂

层的出现, PVD涂层刀具质量显著提高, 不仅具有结合强度高、硬度

高和抗氧化性能好等优点, 还能有效地控制精密刀具刃口形状及精度。

虽然物理气相沉积涂层具有以上优点, 但还是存在如下一些缺陷: 1) 涂层设备复杂、工艺要求高、涂层时间长, 使得刀具的成本

增加; 2)生产的刀具抗冲击性能、硬度和均匀性比CVD 技术生产的

刀具差, 使用寿命也比CVD技术生产的刀具短; 3)涂层的刀具几何形

状单一, 使用领域受限; 4) 易产生内应力和微裂纹, 原因是涂层与基体在冷却时收缩率不同。

当今,世界PVD刀具涂层技术的发展有以下趋势:(1)涂层成分趋于多元化、复合化。(2)为满足不同的切削加工要求,涂层成分将更加复杂、更有针对性。(3)涂层工艺温度越来越低。(4)在复合涂层中,各单一成分涂层的厚度越来越薄,并逐步趋于纳米化。

4 结论

随着切削加工要求的不断提高和被加工材料的升级, 以及全球

绿色环保的发展趋势, 现代刀具涂层和涂层技术得到了极大的发展。当前, 世界涂层技术的发展具有以下趋势: 1 )涂层种类不断更新, 由于单一涂层材料难以满足提高刀具综合机械性能的要求, 因此涂

层成分将趋于多元化和复合化, 以获取高耐磨、低摩擦因数、热稳定性好和抗氧化能力强等良好的综合性能; 2)涂层工艺不断改进, 日趋复杂化和多样化, 逐渐向低温涂层、物理( PVD)、化学( CVD) 复合涂层工艺发展, 与之相适应的涂层工艺设备也日趋集成化、模块化和智能化, 但PVD、MTCVD工艺仍为刀具涂层制备的主流技术。

参考文献

1郭文国内外硬质台金刀具材料的发展及应用前景 2002年第12期

2 赵海波国内外切削刀具涂层技术发展综述 2002年第36卷№2

3 宋洪刚涂层技术对硬质合金材料形成脱碳层(η相层) 影响分析

2010年第44卷№5

4 康勃现代刀具涂层制备技术的研究现状 Vo.l 37 No. 2 Apr. 2008

5 周彬 PVD 技术在刀具上的应用和发展 No.2 (SUM No.77)

6 徐涛清 PVD 和CVD 涂层在切削刀具上的应用四院47所

7 魏莎莎单涂层与复合涂层硬质合金刀具性能对比第6 期(总第135

期)2005 年12 月

8 曾祥才复合化学气相沉积法制备厚膜α-Al2O3 涂层硬质合金刀

9 李忠厚,刀具PVD 涂层技术的发展工具技术,1999(2); 3~6

10 马文存,等. 气相沉积应用技术[M] . 北京:机械工业出版

社,2006 ,10.

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

硬质合金刀具涂层

硬质合金刀具的涂层技术 [ 摘要]切削刀具表面涂层技术是近几十年应市场需求发展起来 的材料表面改性技术。采用涂层技术可有效提高切削刀具使用寿命, 使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。主 要介绍涂层硬质合金刀具涂层材料的特点、要求,涂层制备技术,分 析化学气相沉积法(CVD)、物理气相沉积法(PVD),单、复合涂层 制备方法及优缺点。 [关键字] 硬质合金涂层刀具;化学气相沉积法;物理气相沉积法; 现状及发展 引言 现代化的金属切削加工要求刀具具有高切削速度、高进给速度、 高可靠性、长寿命、高精度和良好的切削控制性。因此, 高水平、稳 定的刀具涂层技术越来越受到机械加工企业的青睐。。涂层技术是提 高切削效率, 降低加工成本的有效途径。刀具基体与硬质薄膜表层相 结合, 由于基体保持了良好的韧性和较高的强度, 硬质薄膜表层又 具有高耐磨性和低摩擦因数, 从而使刀具的性能显著提高, 而且, 随着涂层技术设备的日趋集成化、模块化和智能化, 涂层费用已比初 期下降1/2~ 2/3, 涂层刀具在刀具总量中所占的比例将会越来越大。 表面涂层硬质合金在基体硬质合金上, 用(CVD)化学气相沉积, 或(PVD)物理气相沉积等方法, 涂覆耐磨的TiC、TiN、Al2O3等薄 层, 形成表面涂层硬质合金。涂层硬质合金刀片均为可转位形式, 刚

机夹方法装夹在刀杆或刀体上使用。具有以下优点: 1) 表面涂层材 料具有很高的硬度和耐磨性, 故与未涂层刀片相比, 涂层硬质合金 可采用较高的切削速度, 或能在同样的切削速度下大幅度地提高刀 具耐用度。2)涂层材料与被加工材料之间的摩擦系数较小, 故切削力有一定减小, 比未涂层刀片约降低 5%左右。润滑薄膜具有良好的固 相润滑性能, 可有效地改善加工质量, 也适合于干式切削加工。3) 用涂层刀片加工, 已加工表面质量较好。 4) 涂层技术作为刀具制造的最终工序, 对刀具精度几乎没有影响, 并可进行重复涂层工艺。5)由于综合性能好, 涂层刀片有较好的通用性。一种牌号的刀片经常有较宽的适用范围。涂层切削刀具所带来的益处: 可大幅度提高切削刀具寿命; 有效地提高切削加工效率; 明显提高被加工工件的表面质量; 有效地减少刀具材料的消耗,降低加工成本; 减少冷却液的使用, 降低成本, 利于环境保护。 1 涂层材料的发展现状与趋势 1.1 涂层材料的特点 涂层的特点是涂层薄膜与刀具基体相结合, 提高刀具的耐磨性 而不降低基体的韧性, 从而降低刀具与工件的摩擦因数, 延长刀具 的使用寿命。此外, 由于涂层自身的热传导系数比刀具基体和加工材料低得多, 可以有效减少摩擦所产生的热量, 形成热屏蔽, 改变热 量的散失途经, 从而降低刀具与工件、刀具与切屑之间的热冲击和力冲击, 有效地改善了刀具的使用性能。 刀具涂层所起的作用表现为: 1) 在刀具与被切削材料之间形成

硬质合金车刀几何角度选择原则

●硬质合金车刀合理前角、后角的参考值 (1)前角的选择 增大前角,可减小切削变形,从而减小切削力、切削热,降低切削功率的消耗,还可以抑制积屑瘤和鳞刺的产生,提高加工质量。但增大前角,会使楔角减小、切削刃与刀头强度降低,容易造成崩刃,还会使刀头的散热面积和容热体积减小,使切削区局部温度上升,易造成刀具的磨损,刀具耐用度下降。 选择合理的前角时,在刀具强度允许的情况下,应尽可能取较大的值,具体选择原则如下: 1)加工塑性材料时,为减小切削变形,降低切削力和和切削温度,应选较大的前角,加工脆性材料时,为增加刃口强度,应取较小的前角。工件的强度低,硬度低,应选较大的前角,反之,应取较小的前角。用硬质合金刀具切削特硬材料或高强度钢时,应取负前角。 2)刀具材料的抗弯强度和冲击韧性较高时,应取较大的前角。如高速钢刀具的前角比硬质合金刀具的前角要大;陶瓷刀具的韧性差,其前角应更小。 3)粗加工、断续切削时,为提高切削刃的强度,应选用较小的前角。精加工时,为使刀具锋利,提高表面加工质量,应选用较大的前角。当机床的功率不足或工艺系统的刚度较低时,应取较大的前角。对于成形刀具和在数控机床、自动线上不宜频繁更换的刀具,为了保证工作的稳定性和刀具耐用度,应选较小的前角或零度前角。 (2)后角的选择 增大后角,可减小刀具后刀面与已加工表面间的摩擦,减小磨损,还可使切削刃钝圆半径减小,提高刃口锋利程度,改善表面加工质量。但后角过大,将削弱切削刃的强度,减小散热体积使散热条件恶化,降低刀具耐用度。实验证明,合理的后角主要取决于切削厚度。其选择原则如下: 1)工件的强度、硬度较高时,为增加切削刃的强度,应选较小后角。工件材料的塑性、韧性较大时,为减小刀具后刀面的摩擦,可取较大的后角。加工脆性材料时,切削力集中在刃口附近,应取较小的后角。 2)粗加工或断续切削时,为了强化切削刃,应选较小的后角。精加工或连续切削时,刀具的磨损主要发生在刀具后刀面,应选用较大的后角。 3)当工艺系统刚性较差,容易出现振动时,应适当减小后角。在一般条件下,为了提高刀具耐用度,可增大后角,但为了降低重磨费用,对重磨刀具可适当减小后角。 为了使制造、刃磨方便,一般副后角等于主后角。下表1给出了硬质合金车刀合理后角的参考值。 表1 硬质合金车刀合理前角、后角的参考值

刀具涂层有哪些-刀具涂层种类大全

刀具涂层有哪些 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方 法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼 等超硬材料刀片上)而制备的。涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩 散和化学反应,从而减少了基体的磨损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳 定、耐热耐氧化、摩擦系数小和热导率低等特性,切削时可比未涂层刀具寿命提高3~5倍 以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。 现状 涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。切削加工中 使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、 成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。 类别 涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚 石或立方氮化硼)刀片上的涂层刀具。但以前两种涂层刀具使用最多。在陶瓷和超硬材料刀 片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以 上),可减少刀片的崩刃及破损,扩大应用范围。 新型涂层技术

Ti-Al-X-N新型涂层技术是利用气相沉积方法在高强度工具基体表面涂覆几微米高硬度、高耐磨性难熔Ti-Al-X-N涂层,从而达到减少刀具磨损,延长寿命,提高切削速度的目的。它是高档数控机床与基础制造装备国家重大专项课题取得的重要成果。 涂层方法 生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。 近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD 相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。涂层材料 涂层材料须具有硬度高、耐磨性好、化学性能稳定、不与工件材料发生化学反应、耐热耐氧化、摩擦因数低,以及与基体附着牢固等要求。显然,单一的涂层材料很难满足上述各项要求。所以硬质涂层材料已由最初只能涂单一的TiC、TiN、Al2O3,进入到开发厚膜、复合和多元涂层的新阶段。新开发的TiCN、TiAlN、TiAlN多元、超薄、超多层涂层与TiC、TiN、Al2O3等涂层的复合,加上新型的抗塑性变形基体,在改善涂层的韧性、涂层与基体

硬质合金刀具牌号

焊接刀、焊接刀片:A1型:A116、A118、A120、A122、A125、A130、A136、A140等 A2型:A216 A220 A225等 A3型:A315 A320 A325 A330 A340等 A4型:A416 A420 A425 A430等 B2型:B214 B216 B220 B225等 C1型:C116 C120 C122 C125等 C3型:C304 C305 C306 C308 C310 C312 C316等 C4型:420 C425 C430 C435等 D2型:D216 D220 D224 D226 D228 D230等 E3型:E325 E330等 F2型:F216 F216A F220 F230 F230A等 机夹刀片主要型号: 3A型:31305A 31605A等 3C型:31303C 31603C等 3D型:31303D 31603D 31903D等 3V型:31305V 31310V 31320V 31605V 31610V 31620V等 C-H型:C1610H6 C1610H6Z C1910H6 C1910H6Z等 T3A型:T31305A T31605A T31905A等 T3F型:T31305F T31605F T31905F等 T3V型:T31305V T31310V T31605V T31610V T31910V等 4A型:41305A 41315A 41605A 41905A等 4F型:41305F 41605F 41905F等 4H型:41305H 41605H 41905H 41910H 42210H8 42510H8等 4V型:41305V 41310V 41605V 41610V 41620V等 铣刀片主要型号: 3-0型:313100 316100等 3-8型:313058 313108等 3-11型:3100511 3130511 3131011等 4-0型:413050 413100 416050 416100 419100 419200等 4-8型413058 416058 416108 416158 419108等 4-11型:4130511 4131011 4160511 4161011 4161511 4191011等 G3-0型:G307050 G310050 G313050 G316050等

PVD涂层硬质合金刀具材料分类分组对照表

表4-4,五国十厂PVD 涂层硬质合金刀具材料分类分组对照表 注:上表摘自各公司样本和刊物,没有取得各公司的认可。 作 业 ISO 分类 分组代号 株洲 钻石 自贡 764 山特 维克 肯纳 公司 伊斯卡 公司 三菱 公司 东芝 公司 住友 公司 山高 公司 黛杰 公司 车 削 P P01 JC5003 P10 YBM252 KC5010 KC5510 1C507 VP10MF CP200 JC5003 P20 YBM252 GC1020 GC4125 GC1025 1C507 1C570 1C308 1C908 VP15TF VP20MF CP250 JC5015 P30 1C354 1C308 1C908 1C328 1C3028 VP15TF VP20MF GH330 AH120 CP500 JC5015 P40 GC1020 GC2145 1C328 1C3028 1C354 AH120 CP500 M M01 EH510Z M10 YBG202 GC1005 GC1025 KC5010 KC5510 1C507 1C907 VP10MF EH510Z CP200 JC5003 M20 YBG202 YBG302 YBM351 GC1020 GC1025 GC4125 1C507 1C907 1C1028 VP15TF VP20MF GH330 EH520Z CP200 CP500 JC5015 M30 YBG202 YBG302 YBM351 GC1020 GC2035 KC5025 KC5525 KC710 1C328 1C3028 1C1028 VP15TF VP20MF AH120 CP500 JC5015 M40 YBG302 YBM351 GC2145 1C328 1C3028 K K01 AH110 EH10Z JC5003 K10 KC5010 KC5510 1C507 1C907 GH110 AH110 EH10Z EH20Z CP200 JC5003 JC5015 K20 GC1020 1C308 1C908 VP15TF AH120 EH20Z CP200 CP250 JC5015 K30 GC4125 1C328 1C3028 1C1028 VP15TF CP500 S S01 VP05RT AH110 JC5003 S10 YBG102 GC1005 GC1025 KC5410 KC5010 KC5510 VP05RT VP10RT AH120 EH510Z CP200 CP250 CP500 JC5015 S20 YBG202 GC4125 KC5025 KC5525 VP10RT VP15TF EH20Z EH520Z CP250 CP500 S30 YBG202 VP15TF 铣 削 P P01 JC5003 P10 YBG202 KC792M KC715M ACZ310 JC5003 JC5030 P15 YBG202 YBG302 P20 YBG202 YBG302 GC1025 KC522M KC525M 1C950 1C908 VP15TF ACZ310 ASZ330 F25M JC5015 JC5030 JC5040 P25 YBG202 YBG302 P30 YBG302 YBG402 YBM351 KC725M 1C250 VP15TF VP30RT GH330 AH330 AH120 AH740 ACZ330 ACZ350 F25M F30M JC5015 JC5040 P40 YBG302 YBG402 YBM351 KC735M 1C328 1C928 VP30RT AH120 ACZ350 F40M T60M JC5040 P50 YBG402 YBM351

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 ......................................................... 错误!未定义书签。 2 常用刀具材料及特点 ........................................................ 错误!未定义书签。 碳素工具钢 ................................................................... 错误!未定义书签。 合金工具钢 ................................................................... 错误!未定义书签。 高速钢 ........................................................................... 错误!未定义书签。 硬质合金 ....................................................................... 错误!未定义书签。 陶瓷 ............................................................................... 错误!未定义书签。 超硬材料 ....................................................................... 错误!未定义书签。 3 刀具材料的典型应用 ........................................................ 错误!未定义书签。 工件材料与刀具材料 ................................................... 错误!未定义书签。 加工条件与刀具材料 ................................................... 错误!未定义书签。 4 总结 .................................................................................... 错误!未定义书签。 5 参考文献 ............................................................................ 错误!未定义书签。

硬质材料之硬质合金与硬质合金涂层

h 硬丽 硬质合金 謬第 硬质合金涂 第一! -

硬质材料包括硬质合金f并包括组成硬质合金的碳化磚粉、碳化起.碳化帆、碳化错、碳化钛这些硬质粉末”以及金刚石(C)f PcD (多晶钻),cBN (立方氮化硼)f和Si3N4 氮化硅。 PcD (多晶钻)是一种使用金刚石微粒和化学粘合剂混合之后,在高温高压环境下沉积为相干结构的人造材料。 cBN (立方氮化硼)是来自PcBN的多晶体。PcBN是一种由cBN微 粒和陶瓷或金属触媒粘合剂在高温高压下沉积而成的聚合体。 Si3 N4氮化硅是一种具有高抗碎性能的陶瓷材料。 硬质合金和碳-氮化合物一尽管高速钢对于如钻孔. 拉削这样的应用仍然非常重要■但大多数的金属切削都是通过

硬质合金工具完成的。对于那些非常难于加工的材料,硬质合金现在正逐渐由碳氮化合物、陶瓷制品和超硬材料所替代。渗碳的(或烧结的)硬质合金和碳氮化合物,被世界上大多数一致认为是硬金属, 是一系列通过粉末;台金技术制成的非常硬的.耐火. 耐磨的合金。微小的硬质合金或者氮化物颗粒在处于烧结題液体时被金属粘结剂”胶结"o个体硬金属的成分和属性与那些黄铜和高速钢是不同的。所有的硬金属都是金属陶瓷,是由陶瓷颗粒和金属粘结剂化合而成。 第一节硬质合金 ? “碳化磚”是非常硬的硬质合金颗粒,特别是碳化锯在 工能力。早期 富铁基质的出现 的硬质合金在用于工业用途时过于脆弱■但是不久发现将

碳化锯粉末与大约10%的金属,如铁、银或钻,允许压坯在大约1500°CT 烧结,在这个过程中生成的产品具有低孔隙率、非常高的硬度,而且相当大的强度。这些性质的组合使得材料理想的适合用来作为切削金属的加工刀具。 ?硬质合金的变化是由铜焊接硬质合金嵌入变成夹具嵌入,以及涂敷技术的迅速发展。 硬质合金刀具材料的制法: 一种是经过压锻和烧结至精确的形状和尺寸。 另外的一个进步是高温真空固态渗粘法(HIP)的应用。此方法实际上允许通过高压下的惰性气体将硬质合金中所有的残余孔隙度都挤出来>应用的温度大约是烧结温度。通过此方法刚度、抗裂强度和抗

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

涂层硬质合金刀具磨损机理的研究

收稿日期:2005年3月 涂层硬质合金刀具磨损机理的研究 贾庆莲 乔彦峰 中国科学院长春光学精密机械与物理研究所 摘 要:通过高速切削试验,观察了涂层刀片的磨损过程,描述了其磨损形态,分析了涂层刀片磨损率不同的原因,提出了涂层硬质合金刀具的磨损机理模型以及涂层硬质合金刀具的磨损类型。 关键词:T i N 涂层, 硬质合金刀具, 磨损机理, 高速切削 S tudy on Wearing Mechanism of C oated C emented C arbide Tool Jia Qinglian Qiao Yanfeng Abstract:Based on experiments of hi gh speed cutting,the wear process and wear appearance of the coated cemented carbide tools are studied.T he causes of different quanti ties of wear in the experiments are analyzed.T he model of wear mechanism of the coated cemented carbide tools and the wear styles of the coated cemented carbide tools such as di ffuse wear,plastic distortion wear and fatigue flake are presented. Keywords:TiN coating, cemented carbide tools, wearing mechanism, high -speed cutting 1 引言 用化学气相沉积法(CVD 法)在WC 基硬质合金表面涂覆一薄层高硬度的难熔金属化合物(如TiC 、TiN),所制备的涂层硬质合金具有高耐磨性的表层 和足够韧性的基体。在高速切削条件下,涂层硬质合金刀具的切削性能较佳,其原因之一是由于刀具表面的涂层材料向基体材料一方的/渗透0作用,使刀具上涂层材料已磨穿区的抗扩散磨损能力提高;原因之二是由于刀具刃口涂层材料被磨损的滞后性,即在继续切削过程中,刃口涂层材料起到了有效的机械支承作用,提高了涂层刀片的耐磨性。一般情况下,涂层硬质合金的低速切削性能较差,这是因为在低速切削条件下,涂层的磨损会以磨损率很高的脆性疲劳剥落磨损为主。 2 高速切削试验 试验中以TiC 涂层硬质合金刀片在无级变速车床上加工材料为38Cr Ni3Mo VA 的工件,切削用量为: f =012m m/r,a p =2mm,v =70~300m/min 。由试验可知,在较高切削速度范围内,涂层刀片的磨损过程大致可划分为三个阶段(见图1)。 (1)初磨阶段 自切削开始至刀具表面涂层材料被磨穿前的这个阶段称为初磨阶段。由于涂层刀片表面存在残余拉应力,其表面不平度约为2~4L m,在刀具)切屑(或工件)间的强烈摩擦下,表面涂层材料沿切屑流 动(或主运动)方向发生塑性滑移。其后果必导致前、后刀面的涂层材料发生塑性断裂,即塑性疲劳剥落磨损,前、后刀面的涂层在图1a 所示R 、F 处被磨穿。 图1 磨损特征 (2)正常磨损阶段 大量观察表明,在正常磨损阶段,前、后刀面涂层磨穿区均离刃口一定距离(见图1b)。也就是说,刀片刃口的涂层完整性尚好。为便于分析,将前、后刀面磨损面划分为六个区(见表1)。 表1 磨损区域划分 区域 特征 ?前刀面近主刃处未磨穿区ò前刀面已磨穿区 ó前刀面远离主刃处未磨穿区?后刀面近主刃处未磨穿区?后刀面已磨穿区 ? 后刀面远离主刃处未磨穿区 据观察,已被磨穿的ò、?区磨损面呈均匀的晶粒状,未磨穿的前刀面?、ó区,后刀面?、?区均呈/脊沟0状浅擦痕,深度为1~3L m,其方向平行于切屑流动方向(或主运动方向)。据分析,可以认为磨 损面上的脊沟是涂层材料沿切屑流动方向的塑性滑移所形成。

硬质合金刀具并使用高效率的切削条件

硬质合金刀具并使用高效率的切削条件 选择合适的硬质合金刀具并使用高效率的切削条件,这就是车削三要素。 1.切削深度(ap) 切削深度指未加工表面与已加工表面的差值,单位毫米。它是工件未加工直径与已加工直径差值的一半。 切削深度应根据工件的加工余量、形状、机床功率、刚性及刀具的刚性来确定。 切削深度变化对硬质合金刀具寿命影响不大。切削深度过小时,会造成刮擦,只切削工件表面的硬化层,缩短刀具寿命。当工件表面具有硬化的氧化层时,应在机床功率允许范围内选择尽可能大的切削深度,以避免硬质合金刀尖只切削工件表面硬化层,造成刀尖的异常磨损甚至破损。 2.进给量(fn) 进给量是指工件每旋转一周,刀具的移动量,单位为毫米/转。 进给量是决定被加工表面质量的关键因素,同事也影响加工时切屑形成的范围和切削的厚度。 在对硬质合金刀具寿命影响方面,进给量过小,后刀面磨损大,刀具寿命大幅度降低;进给量过大,切削温度升高,后刀面磨损也增大,但较之切削速度对硬质合金刀具寿命的影响要小。 3.切削速度(Vc)

工件在车床上旋转,将其每分钟的转数定义为主轴转速(n)。由于工件旋转,在其直径的切削点处产生切削速度,称为线速度,单位米/分钟。通常用线速度来参考切削速度对加工的影响。 切削速度对刀具寿命有非常大的影响。提高切削速度时,切削温度就上升,而使硬质合金刀具寿命大大减短。加工不同种类、硬度的工件,切削速度会有相应的变化。通过大量钨钢刀片切削试验得出: a.在通常情况下,切削速度提高20%,刀具耐用度降低1/2;切削速度提高50%,刀具耐用度降低至原来的1/5。 b.低速(20-40m/min)切削易产生震动,使刀具寿命缩短。

硬质合金刀具基础知识

硬质合金刀具材料基础知识浏览: 文章来源:中国刀具信息网添加人:阿刀添加时间:2011-01-31 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和

硬质合金刀具的型号、分类、用途

硬质合金刀具的型号、分类、用途 型号 1、整体硬质合金刀具类,包含麻花钻,铣刀,铰刀,镗刀,铣刀片,球头铣刀,锯片铣刀,锥度铣刀,光面塞规,圆棒及阶梯钻。 2、镶合金刀具类,包含铰刀、螺旋立铣刀,钻扩成型刀,汽车轮毂刀,三面刃,T型铣刀和各种成型刀。 3、可转位刀具类,包括硬质合金可转位立铣刀,可转位面铣刀,可转位燕尾铣刀和可 转位三面刃。 4、高速钢刀具类,包括高速钢成型铣刀,左旋钻,球面铣刀,钴高速钢刀具及各种非标成型高速钢刀具。 5、行业专用刀具类,包含汽车行业专用刀、动员机行业专用刀、缝纫机行业专用刀、模具行业专用刀、纺机业专用刀和印制线路板行业专用刀。 硬质合金分类与用途- 硬质合金分类及用途,直到国家标准正式发布之前,国内相关书本、杂志、资料中表 述没有严格规范,通常按合金成份进行分类,用途表述则比较分散。 分类 碳化钨基硬质合金:包括WC—Co、WC—TaC—Co、WC—TiC—Co、WC—TiC—TaC —Co、WC—Ti—TaC—NbC—Co等合金,这些合金均以碳化钨为主成份。 碳化钛基或碳氮化钛基硬质合金:通常以TiC或Ti(C、N)为基础成份,以Ni—Mo 作粘结剂而组成的一种硬质合金。这类硬质合金近几年又有许多新的进展,如含Ta、W等重金属元素的多元复式碳化物固溶体加入研制高性能Ti(C、N)基金属陶瓷等。 碳化铬基硬质合金:以Cr3C2为基,以Ni或Ni—W等作粘结剂而组成的硬质合金, 通常用来作耐磨耐腐蚀零件,近几年还大量用于装饰品部件如表链等。 钢结硬质合金:以TiC或 WC为基,钢作粘结剂而组成的一种硬质合金,是一种可进 行机加工和热处理的合金,是介于传统硬质合金与合金钢之间的一种工程材料。 涂层硬质合金:通常指在韧性的碳化钨基硬质合金基体上通过化学气相沉积或物理涂 层方法,涂上几微米厚的TiC、TiN、Ti(C、N)、Al2O3之类的硬质化合物而生产的。 用途

硬质合金材料的特点

硬质合金刀具材料特点 1 引言 科学技术的进步、新材料的开发以及高精度机械的发展,对刀具的性能提出了更高的要求。特别是随着木材及建材加工的进一步高速化和高功效化,要求刀具具有更高的耐用度,否则经常更换刀具会影响机器和设备的生产效率。因此,一般的刀具难以符合机器和设备的高生产效率,因而,研究硬质合金刀具成为了必不可少的一环。 2 硬质合金的介绍 (1)硬质合金刀具的种类 按晶粒大小区分,硬质合金可分为普通硬质合金、细晶粒硬质合金和超细晶粒硬质合金。按主要化学成分区分,硬质合金可分为碳化钨基硬质合金和碳化钛基硬质合金。碳化钨基硬质合金包括钨钴类(YG)、钨钴钛类(YT)和添加稀有碳化类(YW)三类,它们各有优缺点,主要成分为碳化钨(WC)、碳化钛(Tic)、碳化铌(NbC)等常用的金属粘接相是Co。碳化钛基硬质合金是以Tic为主要成分的硬质合金,常用的金属粘接相Mo和Ni。 (2)硬质合金刀具的历史 刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。 然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。 1923年,德国的施勒特尔往碳化钨粉末中加进10%~20%的钴做粘结剂,发明了碳化钨和钴的新合金,硬度仅次于金刚石,这是世界上人工制成的第一种硬质合金。用这种合金制成的刀具切削钢材时,刀刃会很快磨损,甚至刃口崩裂。1929年美国的施瓦茨科夫在原有成分中加进了一定量的碳化钨和碳化钛的复式碳化物,改善了刀具切削钢材的性能。这是硬质合金发展史上的又一成就。 近二十年来,涂层硬质合金也问世了。1969年瑞典研制成功了碳化钛涂层刀具,刀具的基体是钨钛钴硬质合金或钨钴硬质合金,表面碳化钛涂层的厚度不过几微米,但是与同牌号的合金刀具相比,使用寿命延长了3倍,切削速度提高25%~50%。20世纪70年代已出现第四代涂层工具,可用来切削很难加工的材料。 (3)硬质合金刀具的性能 硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,即使在500℃的温度下也基本保持不变,在1000℃时仍有很高的硬度。硬质合金广泛用作刀具材料,如车刀、铣刀、刨刀、钻头、镗刀等,用于切削铸铁、有色金属、塑料、化纤、石墨、玻璃、石材和普通钢材,也可以用来切削耐热钢、不锈钢、高锰钢、工具钢等难加工的材料。现在新型硬质合金刀具的切削速度等于碳素钢的数百倍。 (4)硬质合金刀具的用途 硬质合金还可用来制作凿岩工具、采掘工具、钻探工具、测量量具、耐磨零件、金属磨具、汽缸衬里、精密轴承、喷嘴、五金模具(如拉丝模具、螺栓模具、螺母模具、以及各种紧固件模具,硬质合金的优良性能逐步替代了以前的钢铁模具)。 (5)硬质合金刀具的选择 在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、

硬质合金刀具牌号

硬质合金常用牌号及用途介绍 牌号/相当标准ISO/ 物理机械性能(min):抗弯强度N/mm2;硬度HRA/用途。 1、YG3x/ K01/ 1420;92.5/适于铸铁、有色金属及合金、淬火钢合金钢小切削断面高速精加工。 2、YG6/ K20 /1900;90.5/适于铸铁、有色金属及合金、非金属材料中等到切削速度下半精加工和精加工。 3、YG6x /K15/ 1800;92.0/ 适于冷硬铸铁、球墨铸铁、灰铸铁、耐热合金钢的中小切削断面高速精加工、半精加工。 4、YG6A/ K10/ 1800;92.0 /适于冷硬铸铁、球墨铸铁、灰铸铁、耐热合金的中小切削断面高速精加工。 5、YG8/ K30/ 2200;90.0/ 适于铸铁、有色金属及合金、非金属材料低速粗加工。 6、YG8N/ K30/ 2100;90.5/适于铸铁、白口铸铁、球墨铸铁以及铬镍不锈钢等合金材料的高速切削。 7、YG15/ K40/ 2500;87.0 /适于镶制油井、煤炭开采钻头、地质勘探钻头。 8、YG4C/ 1600;89.5/ 适于镶制油井、煤炭开采钻头、地质勘探钻头。 9、YG8C/ 1800;88.5/适于镶制油井、矿山开采钻头一字、十字钻头、牙轮钻齿、潜孔钻齿。 10、YG11C/ 2200;87.0 /适于镶制油井、矿山开采钻头一字、十字钻头、牙轮钻齿、潜孔钻齿。 11、YW1/ M10/ 1400;92.0 /适于钢、耐热钢、高锰钢和铸铁的中速半精加工。 12、YW2/ M20/ 1600;91.0 /适于耐热钢、高锰钢、不锈钢等难加工钢材中、低速粗加工和半精加工。 13、GE1/ M30/ 2000;91.0 /适于非金属材料的低速粗加工和钟表齿轮耐磨损零件。 14、GE2 /2500;90.0 /硬质合金顶锤专用牌号。 15、GE3/ M40/ 2600;90.0 /适于制造细径微钻、立铣刀、旋转挫刀等。 16、GE4/ 2600;88.0/ 适于打印针、压缸及特殊用途的管、棒、带等。 17、GE5 /2800;85.0 /适于轧辊、冷冲模等耐冲击材料。 18、YT30 P01 92.5 适合碳钢、合金钢的精加工,小断面的精车,精镗,精扩等 硬质合金yìngzhìhéjīn 英文明:cemented carbide 硬质合金是以高硬度难熔金属的碳化物(WC、TiC)微米级粉末为主要成分,以钴(Co)或镍(Ni)、钼(Mo)为粘结剂,在真空炉或氢气还原炉中烧结而成的粉末冶金制品。IVB、VB、VIB族金属的碳化物、氮化物、硼化物等,由于硬度和熔点特别高,统称为硬质合金。下面以碳化物为重点来说明硬质含金的结构、特征和应用。 IVA、VA、VIA族金属与碳形成的金属型碳化物中,由于碳原子半径小,能填充于金属品格的空隙中并保留金属原有的晶格形式,形成间充固溶体。在适当条件下,这类固溶体还能继续溶解它的组成元素,直到达到饱和为止。因此,它们的组成可以在一定范围内变动(例如碳化钛的组成就在TiC0.5~TiC之间变动),化学式不符合化合价规则。当溶解的碳含量超过某个极限时(例如碳化钛中Ti∶C=1∶1),晶格型式将发生变化,使原金属晶格转变成另一种形式的金属晶格,这时的间充固溶体叫做间充化合物。 金属型碳化物,尤其是IVB、VB、VIB族金属碳化物的熔点都在3273K以上,其中碳化铪、碳化钽分别为4160K和4150K,是当前所知道的物质中熔点最高的。大多数碳化物的硬度很大,它们的显微硬度大于1800kg?mm2(显微硬度是硬度表示方法之一,多用于硬

相关文档
相关文档 最新文档