文档库 最新最全的文档下载
当前位置:文档库 › 线元法简介

线元法简介

线元法简介
线元法简介

线元法万能曲线正反算简介

我的线元法是把线形分为直线和曲线,直线就不用说了,起止点桩号,坐标和方位角就可以算了;曲线最基本的组合:是由一段缓和曲线+一段圆曲线组成,任意复杂的曲线都可以分解成缓和曲线+圆曲线或者其中之一就可以。

分析最复杂的曲线可以看到:

一般复杂线形由Ls1 ,R1,Ls2, R2组成,相邻的Ls1+R1,一般满足A*A=Ls1*R1,这就是一个线元法单元,即使不满足也可以作为一个线元:

当Ls1= Ls2,且R1= R2时,为单曲线

当Ls1≠ Ls2,或者R1≠R2时,为复合曲线

当Ls1= Ls2=0时,线性为圆曲线,

当圆曲线长度为0时,线性为缓和曲线+缓和曲线,

当A*A≠Ls1*R1时,为卵形曲线,需要计算虚拟起点坐标

综合以上线形,本程序正反算计算全部可以处理。结合目前流行的线元法,本程序也可以,分为缓和曲线和圆曲线录入,方法是一样的,所不同的是起点要注意,复杂曲线,是两边向中间定义数据库,缓和曲线永远是ZH点或HZ点为起点。

曲线要素说明(有9个):

1、起点桩号:(一般为ZH点或HZ点,或ZY点或YZ点,或者卵形公切点GQ)

2~3、起点坐标:(X,Y)

4、起点方位角:FWJ 114°15′24.33″写成:114.152433

5、线性特征:直线,左偏,右偏;三个选一个

6、终点桩号:如果起点为ZH点,终点一边为YH点,QZ点,HY点,都可以,一般为YH点,缓和曲线+圆曲线。如果缓和曲线Ls=0,就是YZ点;大小不一定按路线顺序,如果起点为HZ点,终点根据缓和曲线+圆曲线的特点,和上个线元对接上就可以了。

7、缓和曲线长度Ls:

8、圆曲线半径R:

9、回旋参数A: 一般满足A*A=Ls1*R1,不满足条件的是卵形曲线。

可以处理任意数量断链。

操作流程:1、先编辑线元数据,保存后推出。

2、如果有线元断链的输以下线元断链数据

3、打开线元万能曲线计算单点计算就可以了。

目前,已有一个例子文件在里面,在安装文件目录下“ \dmfx4.0\demo\左线”,有个CAD文件,里面有校核数据,可以看到本软件处理的逐桩表和要素表,可以验证软件的数据,任意数据坐标反算可以得到桩号和距中,任意输入桩号和距中可以正算得坐标。

授权版用户,可以通过运行交点文件编辑,保存后,退出;打开线元法数据编辑,浏览正在使用的主项目文件,就可以看到一个线元数据,点击这个文件确定,保存退出。就完成交点法数据转换线元法数据过程。

线元法线路坐标正反算程序

经苦心钻研,奋战多日,终于编写出了代码短,速度快,精度高,功能全的线路坐标正反算程序,欢迎试用并提出宝贵意见。 功能简介及特点: 1、选用高斯-勒让德公式作计算内核,保证精度,模块化设计,便于扩充功能。 2、线元数据可自动从数据库调用,也可手工输入。 3、可管理多条线路,如里程不在线路或线元范围,将警告里程偏大、偏小。 4、边桩计算设计为导线式递推方式,可用于由一个中桩推出结构物所有角点坐标。 5、反算实现了智能化操作,只需输入线路号(或手工输线元资料)、坐标,不需近似里程,即可自动从起点向后开始试算出里程、位置,如对算出里程、位置表示怀疑,还可以让计算器从终点起再向前试算下一个可能的位置(匝道、回头曲线同一坐标可能会有一个以上结果)。第三次及以后试算才要求输入近似里程。 6、程序代码规范简洁,便于阅读、理解。 完整程序清单: ZFS %正反算主程序 B=.1739274226:C=.5-B: Lbl 1:U"0 ZS 1 FS"=0=>Prog "ZS": ≠>U=1=>Prog"FS":≠>Goto 1

ZS %正算子程序 {K}:Prog"ZZ":I=0:{I}:I"L"≠0=>"Prog"WY":≠>Prog"ZB" FS %反算子程序 {KVW}:V"XC"W"YC":Lbl 2:Prog "ZZ":I=V-S:J=W-T:Pol(I,J: J=J-F:K=K+Rec(I,J:AbsI<1m=>Prog"WZ":≠>Goto 2Δ M=0:{M}:M"0 NEXT"=0=>U=U+1:Goto 2:≠>U=1 ZZ %高斯法中桩子程序(4节点) Prog"XL":M=K-L:O=(P-R)÷2PQR: D=.0694318442:E=.3300094782:F=1:G=1-E:H=1-D: I=5:Lbl 1:C[I]=A+MrC[I](1÷P+OMC[I]:Dsz I:Goto 1: S=X+M(BcosD+CcosE+CcosG+BcosH: T=Y+M(BsinD+CsinE+CsinG+BsinH WY %外移点计算子程序 Lbl 1:J=90:{J}:J=F+J"<":F=J:S=S+Rec(I,J:T=T+J: Prog"ZB":I=0:{I}:I"L"≠0=>Goto 1 WZ %位置显示子程序 "KJ":K:Pause 1:J◢ ZB %坐标显示子程序 "XY":S:Pause 1:T◢ YC %异常处理子程序 U=1=>K=L:U=2Δ U=3=>K=M:U=4Δ

线元法简介

线元法万能曲线正反算简介 我的线元法是把线形分为直线和曲线,直线就不用说了,起止点桩号,坐标和方位角就可以算了;曲线最基本的组合:是由一段缓和曲线+一段圆曲线组成,任意复杂的曲线都可以分解成缓和曲线+圆曲线或者其中之一就可以。 分析最复杂的曲线可以看到: 一般复杂线形由Ls1 ,R1,Ls2, R2组成,相邻的Ls1+R1,一般满足A*A=Ls1*R1,这就是一个线元法单元,即使不满足也可以作为一个线元: 当Ls1= Ls2,且R1= R2时,为单曲线 当Ls1≠ Ls2,或者R1≠R2时,为复合曲线 当Ls1= Ls2=0时,线性为圆曲线, 当圆曲线长度为0时,线性为缓和曲线+缓和曲线, 当A*A≠Ls1*R1时,为卵形曲线,需要计算虚拟起点坐标 综合以上线形,本程序正反算计算全部可以处理。结合目前流行的线元法,本程序也可以,分为缓和曲线和圆曲线录入,方法是一样的,所不同的是起点要注意,复杂曲线,是两边向中间定义数据库,缓和曲线永远是ZH点或HZ点为起点。 曲线要素说明(有9个): 1、起点桩号:(一般为ZH点或HZ点,或ZY点或YZ点,或者卵形公切点GQ) 2~3、起点坐标:(X,Y) 4、起点方位角:FWJ 114°15′24.33″写成:114.152433 5、线性特征:直线,左偏,右偏;三个选一个 6、终点桩号:如果起点为ZH点,终点一边为YH点,QZ点,HY点,都可以,一般为YH点,缓和曲线+圆曲线。如果缓和曲线Ls=0,就是YZ点;大小不一定按路线顺序,如果起点为HZ点,终点根据缓和曲线+圆曲线的特点,和上个线元对接上就可以了。 7、缓和曲线长度Ls: 8、圆曲线半径R: 9、回旋参数A: 一般满足A*A=Ls1*R1,不满足条件的是卵形曲线。 可以处理任意数量断链。 操作流程:1、先编辑线元数据,保存后推出。 2、如果有线元断链的输以下线元断链数据 3、打开线元万能曲线计算单点计算就可以了。 目前,已有一个例子文件在里面,在安装文件目录下“ \dmfx4.0\demo\左线”,有个CAD文件,里面有校核数据,可以看到本软件处理的逐桩表和要素表,可以验证软件的数据,任意数据坐标反算可以得到桩号和距中,任意输入桩号和距中可以正算得坐标。 授权版用户,可以通过运行交点文件编辑,保存后,退出;打开线元法数据编辑,浏览正在使用的主项目文件,就可以看到一个线元数据,点击这个文件确定,保存退出。就完成交点法数据转换线元法数据过程。

线元法万能坐标计算程序

线元法万能坐标计算程序(适用于CASIO fx-9750GⅡ计算器) 论文https://www.wendangku.net/doc/046677407.html,/:本论文仅供学习交流使用,本站仅作合理转载,原作者可来邮要求删除论 文。 摘要:我国公路建设事业正处于一个高速发展的时期,在公路工程施工过程中,施工技术人员经常要使用全站仪、水准仪进行施工放样、高程测量,在测量过程中,手工计算速度慢,失误率高,工作效率极低。利用CASIO fx-9750GⅡ编程函数计算器强大的内存(可诸存63000个字符)和编程功能,编写各种计算程序,能够在2秒钟内计算出施工放样、桩点坐标等施工过程中的各项数据资料,同时也使我们有更多的时间去挑战更富有创造性的工作。 关键词:坐标放线线元测量程序 1、前言 本程序采用Gauss-Legendre(高斯-勒让德)五节点公式作内核,计算速度(太约2秒)适中,计算精度很高。在此之前,本人曾用过以下公式作内核:①积分公式simpson法②双重循环复化高斯2节点③高斯-勒让德3节点④求和公式复化simpson法⑤双重循环复化simpson法⑥高斯-勒让德4节点,⑦高斯-勒让德5节点,经过测试③计算最快,⑦代码稍长但计算速度只比③⑥稍慢,精度最高,可满足线元长小于1/2πD 的所有线形的精度要求。⑦作内核分别计算圆曲线长1/4πD、1/2πD、3/4πD、πD处的精度,1/4πD时偏差为0.001mm,1/2πD时偏差为0.55m m,3/4πD时偏差为31.63mm,πD时偏差为968mm,偏差按半径倍数增大,如线元长大于1/2πD(1/2圆周长)时,可将其拆分二个或多个线元单位,以确计算保精度。 2、程序特点 事先将所有的平曲线交点的线元要素诸存到计算器内,测量时只输桩号、边距等程序会自动寻找各类要素,一气呵成地完成施工测量任务,中途不需人工转换各类要素数据,本程序可诸存几百条线路的要素数据,计算时可按需选择线路编号进行测量。测量时不需查阅及携带图纸,仅一台CASIO fx-9750GⅡ编程函数计算器即可。 本程序含一个主程序:3XYF,五个子程序:GL(公式内核)、QD(线路选择)、XL(线路要素判断)、GF(坐标反算)、File 1 (要素存放的串列工作簿)。可以根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、终点里程、起点曲率半径、止点曲率半径)及里程边距或坐标,对该线元段范围内任意里程中边桩坐标进行正反算。 3、计算公式及原理 如图:BC 间为一曲线元,曲线元上任一点的曲率随至B 点的弧长作线性变化。设起点B 的曲率为KA ,终点C 的曲率为KB ,R 为曲线半径。±表示曲线元的偏向,当曲线元左偏时取负号,当曲线元右偏时取正号,直线段以1的45次方代替(即半径无穷大)。 式中:αΑ=起始方位角l =p 点到B的距离lS=曲线总长αp=p 点切线方位角 R1=R5=0.118463442528095 ,R2 = R4 = 0.239314335249683 , R3 = 0.28444444444444 V1=1-V5= 0.046910070 ,V 2= 1-V4 = 1 0.2307653449 V3= 0.5 利用上面公式及CASIO fx-9750GⅡ编程函数计算器可编写下列计算程序。 4、程序清单 (1)、3XYF(主程序) "1→XY2→FS"?→V:V=1=>Goto 1:V=2=>Goto 2↙(选择计算功能) Lbl 1:File 1:”XLn”?→S:Prog “QD”↙(选择线路)

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

交点法线元法坐标计算

3、交点法、线元法坐标计算 坐标计算是根据图纸中“直线及曲线转角一览表”提供的数据计算道路中桩坐标,然后和图纸提供的“逐桩坐标表”比对,如果一样则说明输入平曲线参数输入正确,可以计算边桩坐标和其他结构物坐标了;如果中桩坐标不一样,一般是平曲线参数输入有误,需要重新检查输入,另一种结果是图纸有错,这种情况少见,但不代表没有。“直线及曲线转角一览表”和“逐桩坐标表”见附件1、附件2。 线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标;交点法是以路线的交点要素和路线的主要要素来求得坐标。 ①交点法 交点:路线的转折点,路线改变方向是相邻两直线的延长线相交的点。用JD表示, 有些图 纸上用 IP表示。 看下图: 交 点是针对曲线的(包含圆曲线和缓和曲线),一段曲线就有一个交点。交点参数有:坐标(X,Y)、交点桩号、转角值、圆曲线半径R、缓和曲线长度。 教学提供软件(轻松测量、双心软件、测量工具)交点法曲线要素输入说明: 1、QD起点坐标: 起点坐标必须在直线段上,或填写前一交点的坐标。

2、JD交点曲线要素: (1)交点桩号 (2)交点坐标(X,Y) (3)曲线半径R 始点的话,起始里程有时候需要校正,当然,并不是每个图纸给出的起点里程都需要校正,大多数图纸的起点里程已经被设计院校正过,我们输入平曲线的时候需要验证一下。如果我们按照图纸给出的起点里程输入,发现后面的交点里程都和图纸相差一个相同的值,这就表明我们输入的起点里程需要校正。 起始点里程正常输入,第二、三个交点输入完成后,检查第二个交点的切线长和交点

里程是否和图纸一样,如果切线长正确,交点里程不正确,说明起点里程需要校正,将第二个交点的里程与正确里程的差值,应用到起点里程中,从而使第二个交点里程和后面交点的里程与图纸吻合。 注意:交点法计算坐标适用的平曲线为对称或不对称缓和曲线、圆曲线。对于非普通的三单元曲线,交点法不适用。非普通的三单曲线例如下页的JD18及JD19处的平曲线, 的输入是否正确,有的图纸给的方位角数据较少,需要每隔几个线元才能检验方位角。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

公路坐标计算公式

一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度

α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反 x Z,y Z为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 x Z,y Z为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径

P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: 五、超高缓和过渡段的横坡计算

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

边界元与有限元

边界元与有限元 边界元法boundary element method 定义:将力学中的微分方程的定解问题化为边界积分方程的定解问题,再通过边界的离散化与待定函数的分片插值求解的数值方法。 所属学科:水利科技(一级学科) ;工程力学、工程结构、建筑材料(二级学科) ;工程力学(水利)(三级学科) 边界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点.但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。 简介 边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。又称边界积分方程-边界元法。它以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,

有限元法的概述

有限元法的概述 有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。有限元法在设计过程中有极为关键的作用。 人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。 有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而

交点法与线元法

本人一直以来想找一个交点法与线元法相结合的坐标正反算程序,在网上找了很久很久,没能找到一个较为满意的,有幸在测量空间看到大歪哥的《Casio5800交点法程序》与《线元法(积木法)匝道坐标正反算放样程序》,根据歪哥意见“需要的自行修改结合XY框架自己修改为数据库反算程序等”,本人不才,采用最笨的办法将两个程序综合了一下,使之能既能进行交点法正反算,又能进行线元法正反算。在此特别感谢大歪哥!将程序发上来,愿与大家一同交流学习欢迎大家吐口水,只要能进步就行! 程序由一个主程序ZBZFS和8个子程序(JS、XY-A、XY-B、JDYS、1、2、3、4)构成,运行时只需运行主程序即可! 本程序适用于单交点对称型、不对称型、无缓和曲线单圆曲线型一个交点范围内(含交点前后有直线段时)的曲线要素核对和坐标正反算,手工输入要素,对设计图纸的“直线、曲线转角表”中交点数据进行复核验证,并能对单一线元进行坐标正反算。 1主程序名:ZBZFS(功能:进入计算主程序) 65→Dimz↙ Deg:Fix 3↙ "1.JD ZFS 2. ZHADAO ZFS"? I: I→Z[61]: "1.ZHONG SHU JS 2. JS"? I↙ If I=1: Then Goto1: Else Goto2:IfEnd↙ LbI 1 :If Z[61]=1: Then Prog"JDYS":Else Cls:"K0"?A:"KN"?L :"X0"?U :"Y0"?V :"F0"?W :"R0"?P :"RN"?Q:"ZX:-1,+1,0"?G:IfEnd↙ LbI 2 :Prog"JS" 2子程序名:JS(功能:选择正算或反算模式) Cls:"XC"?H:"YC"?Z↙ Cls:"1.ZS 2.FS"? I: I=2=>Goto 3↙ LbI 1 : Cls: If Z[61]=1: Then"JD ZS KX+XXX"?K :Prog"4": Else "ZHADAO ZS KX+XXX"?K :IfEnd↙ LbI 2: Cls:90→B: Cls:"RJ Or 0 To K"?B:B=0 =>Goto 1:"Z"?T↙ Prog "XY-A"↙ X+Tcos(M+B)→X↙ Y+Tsin(M+B)→Y↙ 360Frac((M+360)÷360→M↙ Pol(X-H,Y-Z : 360Frac((J+360)÷360→J↙ 2→O: Prog "XY-B":Goto 2↙ LbI 3 : Cls: If Z[61]=1: Then"JD FS KN+"?K:"X"?C:"Y"?D:Prog"4":Else Cls: "ZHADAO FS":"X"?C:"Y"?D:IfEnd↙ LbI 4 :Prog "XY-A"↙ (D-Y)sin(M)+(C-X)cos(M)→H↙ If Abs(H)>X10-3 :Then K+H→K:Goto 4:IfEnd↙ (D-Y)÷cos(M)→T↙ 3→O: Prog "XY-B":Goto 3↙ 3子程序名:XY-A(功能:坐标计算程序) 5→N: G(Q-1-P-1)÷Abs(L-A)→F: Abs(K-A)÷N→R: 90R÷π→S:

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

通用显式非线性有限元程序:LS-DYNA

通用显式非线性有限元程序:LS-DYNA LS-DYNA 是世界上最著名的通用显式非线性有限元分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维、三维非线性结构的碰撞、金属成型等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。在工程应用领域被广泛认可为最佳的分析软件包。与实验的无数次对比证实了其计算的可靠性。 LS-DYNA 是功能齐全的几何非线性(大位移、大转动和大应变)、材料非线性(140多种材料动态模型)和接触非线性(50多种)软件。它以Lagrange 算法为主,兼有ALE 和Euler 算法;以显式求解为主,兼有隐式求解功能;以结构分析为主,兼有热分析、流体-结构耦合功能;以非线性动力分析为主,兼有静力分析功能(如动力分析前的预应力计算和薄板冲压成型后的回弹计算);是通用的结构分析非线性有限元程序。 特色功能 ? 显式求解为主,兼有隐式算法,适合于求解高度非线性问题; ? 具有多种求解算法,以Lagrange 算法为主,兼有ALE、Euler 算法、SPH (Smoothed Particle Hydrodynamics)光顺质点流体动力算法和边界元法BEM(Boundary Element Method); ? 具有160多种材料模型,是材料模型非常丰富的有限元软件; ? 具有50多种接触类型,是接触类型非常齐全的有限元软件; ? 极好的并行计算能力,包括分布式并行算法(MPP)和共享内存式并行(SMP); ? 良好的自适应网格剖分技术,包括自适应网格细分和粗化; ? 行业化的专用功能:如针对汽车行业的安全带单元、滑环、预紧器、牵引器、传感器、加速计、气囊等。 客户价值 ? 拥有显式和隐式算法,各向异性材料模型,使得板成型、回弹、预应力计算等,可以连续求解; ? 多种控制选项和用户子程序使得用户在定义和分析问题时有很大的灵活性; ? MPP 版本大幅度减少计算时间,计算效率随计算机数目增多而显著提高; ? 与大多数的CAD/CAE 软件集成并有接口。 广州有道科技培训中心 h t t p ://w w w .020f e a .c o m

5800线元法程序

1. 主程序 Lbl 4:"1.SZ => XY":"2.XY => SZ":?N:?S:Prog“SUB0”↙ 1÷P→C: (P-R)÷(2HPR) →D:180÷∏→E:N=1 => Goto1:Goto2↙ Lbl 1:? Z:Abs(S-O) →W:Prog "SUB1":"XS=":X◢ "YS=":Y◢F-90→F:“FS=”:F▲DMS◢:Goto4↙ Lbl 2:?X:?Y:X→I:Y→J:Prog“SUB2”:O+W→S:“S=”:S◢“Z=”:Z◢Goto4↙ 2. 正算子程序(SUB1) 0.1739274226→A:0.3260725774→B:0.0694318442→K:0.3300094782→L:1-L→F:1-K→M:U+W(Acos(G+QEKW(C+KWD))+Bcos(G+QELW(C+LWD))+Bcos(G+QEFW (C+FWD))+Acos(G+QEMW(C+MWD))) →X: V+W(Asin(G+QEKW(C+KWD))+Bsin(G+QELW(C+LWD))+Bsin(G+QEFW(C+FWD))+Asin(G+QEMW(C +MWD))) →Y: G+QEW(C+WD)+90→F:X+Zcos(F)→X:Y+Zsin(F)→Y 2. 反算子程序(SUB2) G-90→T:Abs((Y-V)cosT-(X-U)sinT) →W:0→Z:Lbl 0:Prog "SUB1": T+QEW(C+WD) →L:(J-Y)cos(L)-(I-X)sin(L)→Z:Abs(Z)<1E-6=>Goto1:W=W+Z:Goto 0←┘Lbl 1:Z=0:Prog "SUB1":(J-Y)÷sin(F)→Z SUB0 数据库子程序 Goto1↙同时保存多个曲线时的指针 Lbl 1:IF S<***(线元终点里程):Then***→G(线元起点方位角):***→O(线元起点里程):***→U(线元起点X):***→V(线元起点Y):***→P(线元起点曲率半径):***→R(线元终点曲率半径): ***→H(线元起点至终点长度):0或1、-1→Q:Return:IfEnd↙ Lbl 1:IF S<***(线元终点里程):Then***→G(线元起点方位角):***→O(线元起点里程):***→U(线元起点X):***→V(线元起点Y):***→P(线元起点曲率半径):***→R(线元终点曲率半径): ***→H(线元起点至终点长度):0或1、-1→Q:Return:IfEnd ……………………….. 为了便于解读,每增加一个线元增加一行语句,每增加一条曲线增加一个Lbl,每增加一个工程增加一个文件。 三、使用说明 1、规定 (1) 以道路中线的前进方向(即里程增大的方向)区分左右;当线元往左偏时,

线元法

5800 计算程序 主程序 QXJS Fix 3:Deg:Lbl 4:“1.SZ=>XY”:“2.XY=>SZ”:? Q Lbl 4: “LICHENG= ” ?S:Prog“SUB0” ↙ Lbl 0:If Q=1:Then Goto1:IfEnd IfQ=2:ThenGoto2:IfEnd ↙ Lbl 1:”-B,0,B=”? Z: “J J右交角=”?G:Prog“SUB1”: Fix 4:Cls “X=”:N →N ◢“X=”: Locate3,1,N◢ “Y=”:E →E ◢“Y=”: Locate3,1,E◢ Prog“JI”:Goto4 “QXFWJ=”:F →F:F ▲ DMS ◢ Goto4 ↙ Lbl 2: “X=”? B: “Y=”? C:B→N: C→E:Prog“SUB2”: “LICHENG=”:S◢ “OUT JL=”:Z◢ Goto4 ↙ 说明: Q: 代表正反算,其中 1 为正算, 2 为反算; S: 代表里程; Z :代表偏移距离; G :代表偏移角度(以线路前进方向为 X 方向,顺时针转为正; N : X 坐标; E : Y 坐标; F :切线方位角; JI Clstat Pol(N-G,-E-H):Cls If S<0:Then J+360→Y:Ease J→Y:Ifend “F W J=”:Y▲ DMS ◢黄色为计算机程序

SUB0 ( 数据库 ) Goto1 ↙ Lbl 1 IF S<157687.528:THEN 2884169.2517→U:471475.6573→V:157547.528→O:98 ° 32 ′ 43.08 ″ →A:140→L:10^45→P:10000→R: Return:IfEnd ↙ IF S<163781.879:THEN 2883008.7030→U:477458.2815→V:163641.879→O:101 ° 6 ′ 4.08 ″ →A:140→L:10^45→P:10000→R: Return:IfEnd ↙ IF S<164195.661:THEN 2882981.4268→U:477595.5984→V:163781.879→O:101 ° 30 ′ 7.93 ″ →A:413.7833→L:10000→P:10000→R: Return:IfEnd ↙ IF S<164335.661:THEN 2882890.5519→U:477999.2492→V:164195.6623→O:103 ° 52 ′ 22.82 ″ →A:140→L:10000→P:10^45→R: Return:IfEnd ↙ IF S<171831.142:THEN 2882856.3502→U:478135.0069→V:164335.6623→O:104 ° 16 ′ 26.67 ″ 说明: S :里程;157547.528→O 为线元终点里程; 2884169.2517→U 为线元起点 X 坐标;471475.6573→V 为线元起点 Y 坐标;98 ° 32 ′ 43.08 ″ →A 线元起点切线方位角;0^45→P 线元起点半径(左转为负右转为正);10000→R 线元终点半径(左转为负右转为正) SUB1 正算子程序 0.5 (1÷R-1÷P)÷L→D:S-O→X ↙ U+∫(cos(A+(X÷P+DX2)×180÷π,0,X)→N ↙ V+∫( sin(A+(X÷P+DX2)×180÷π,0,X)→E ↙ A+(X÷P+DX2)×180÷π→F ↙ N+Zcos(F+G) →N:E+Zsin(F+G) →E Return SUB2 反算子程序 Lbl 1:0→Z :1→Q :Prog“SUB0”: 0.5 (1÷R-1÷P )÷L→D:S-O→X ↙ U+∫(cos(A+(X÷P+DX2)×180÷π,0,X)→N ↙ V+∫( sin(A+(X÷P+DX2)×180÷π,0,X)→E ↙ A+(X÷P+DX2)×180÷π→F ↙ N+Zcos(F+90) →N:E+Zsin(F+90) →E : Pol(N-B+10^(-46), E-C+10^(-46)):Isin(F-90-J) →W:S+W→S ↙

边界元法发展综述

边界元法发展综述 刘娅君 学号:11080922005 从工程实际中提出的力学问题,一般可归结为数学的定解问题。但其中只有极少数简单情况可以求得解析解,而大多情况都必需借助于有效的数值方法来求解。有限元法是目前工程中应用最广泛的数值方法,已有很多通用程序和专用程序在各个工程领域投人了实际应用。然而,有限元法本身还存在一些缺点。例如,在应力分析中对于应力集中区域必须划分很多的单元,从而增加了求解方程的阶数,计算费用也就随之增加;用位移型有限元法求解出的应力的精度低于位移的精度,对于一个比较复杂的问题必须划分很多单元,相应的数据输人量就很大,同时,在输出的大量信息中,又有许多并不是人们所需要的。 边界积分方程—边界元法在有限元法之后发展起来成为工程中广泛应用的一种有效的数值分析方法。它的最大特点就是降低了问题的维数,只以边界未知量作为基本未知量,域内未知量可以只在需要时根据边界未知量求出。在弹性问题中,由于边界元法的解精确满足域内的偏微分方程,因此它相对有限元法的解具有较高的精度。同时在一些领域里,例如线弹性体的应力集中问题,应力有奇异性的弹性裂纹问题,考虑脆性材料中裂纹扩展的结构软化分析,局部进人塑性的弹塑性局部应力问题以及弹性接触问题…等,边界元法已被公认为比有限元法更为有效。正是因为这些特点,使边界元法受到了力学界、应用数学界及许多工程领域的研究人员的广泛重视。 边界元与有限元相比有很多优点:首先,它能使问题的维数降低一维,如原为三维空间的可降为二维空间,原为二维空间的问题可降为一维。其次,它只需将边界离散而不象有限元需将区域离散化,所划分的单元数目远小于有限元,这样它减少了方程组的方程个数和求解问题所需的数据,不但减少了准备工作,而且节约了计算时间。第三,由于它是直接建立在问题控制微分方程和边界条件上的,不需要事先寻找任何泛函,不像以变分问题为基础的有限元法,如果泛函不存在就难于使用。所以边界元法可以求解经典区域法无法求解的无限域类问题。最后,由于边界元法引入基本解,具有解析与离散相结合的特点,因而具有较高的精度。

相关文档